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Rapid and accurate detection and characterization of pathogenic bacteria is critical for clinical diagnosis.

Most selective clinical procedures are limited by their diagnostic speed, accuracy, and sensitivity challenges.

In order to overcome these, we introduce a novel photonics-based, point-of-care device designed for

rapid and accurate characterization of bacteria. The device is designed to capture optical scatter signatures

unique to various pathogenic bacteria, which are analyzed using advanced clustering and machine learning

techniques for characterization. Our preliminary results from controlled experiments show that our device

successfully distinguishes bacteria genus with reasonable accuracy.

1 Introduction

Pathogenic bacteria continue to impose a substantial global
burden across clinical,1,2 food safety,3 and environmental
domains.4 Traditional methods for identifying and
characterizing bacteria encompass a variety of approaches,
including molecular methods,5,6 phenotypic assays,7–9

microscopy,10 and proteomics-based techniques,11 each with
its unique advantages and limitations. Culture-based
techniques are considered the gold standard in bacterial
quantification.7 However, these methods are often time-
consuming and may pose challenges with culturing certain
bacteria, making them less suitable for rapid diagnostics and
quantification. Also, polymerase chain reaction (PCR)12 is a
widely used technique that excels in detecting and
quantifying specific DNA sequences of pathogenic bacteria,
yet it may not always accurately reflect bacterial counts.
Microscopy methods,13 such as phase-contrast and
fluorescence microscopy, are effective for visualizing and
counting bacteria. However, these techniques are generally

not conducive to high-throughput quantification and are
labor-intensive. Flow cytometry14 approach allows for high-
throughput quantification by analyzing bacteria based on
their optical properties and fluorescence signals, but involves
complex processes and infrastructure.14,15 While
microbiology-based diagnostic procedures and devices have
traditionally played a vital role in identifying pathogens,16,17

enhancing their speed and accuracy reliably remains
challenging. Major challenges include the complexity of
obtaining biological samples,18 varying sample volumes, and
the need for expensive and specialized equipment combined
with the need for the knowledge of the diverse technological
approaches currently in use.17,19

Over the past few years, optical methods have emerged as
compelling alternatives or complements to traditional
approaches because they can interrogate pathogen–light
interactions with high sensitivity, label-free operation, and
minimal sample preparation. Techniques span colorimetric
and fluorescence readouts, surface plasmon resonance (SPR),
Raman and surface-enhanced Raman spectroscopy (SERS),
interferometry, and elastic/scattering-based modalities, many
of which can be miniaturized and multiplexed via
nanophotonic and microfluidic integration.3,6,20 These
platforms have demonstrated the capacity to detect and
differentiate clinically relevant bacteria (e.g., Staphylococcus
aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and
foodborne pathogens with fast turnaround and potential
portability.3,20,21 The integration of optical sensing with
machine learning (ML) has emerged as an approach for
innovative applications. Optical measurements generate
high-dimensional signatures including vibrational spectra,
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scattering patterns, or image textures that are challenging to
interpret by hand or with simple heuristics. Modern ML
(including convolutional neural networks and object-
detection models) automates feature discovery and
classification, improving accuracy and robustness while
enabling near-real-time analysis.5,22 For example, alignment-
free optical scattering with commodity LEDs coupled to
YOLOv8 achieved high performance for colony-level
identification, illustrating how simplified optics plus deep
learning can deliver practical, low-cost systems that integrate
into existing workflows.5,23 Likewise, microfluidic systems
that embed sample preparation and optical detection are
maturing toward POC deployment, offering compact form
factors, reduced reagent consumption, and faster time-to-
answer for infectious-disease diagnostics.24,25

Recent reviews on AI-enabled Raman/SERS and photonic
POC devices and applications report high classification
accuracies and progress on resistance phenotyping when
paired with deep learning, while also highlighting dataset
curation and interpretability challenges.2,5 Also, photonic
POC devices that co-integrate optics, nanostructured
substrates, and microfluidics are enabling portable, low-cost
platforms for rapid, on-site pathogen detection and,
increasingly, for accelerated susceptibility testing.6,24,26

Authors27 developed a compact, non-invasive photonic
system that utilizes backscattering for real-time, remote
detection of airborne microbes, demonstrating its ability to
characterize various pathogenic bacterial and their mixtures.
Collectively, these trends point to miniaturized, AI-driven
optical diagnostics that bridge laboratory precision and field
practicality. Despite these advances, gaps remain in
standardized datasets, clinically interpretable models,
calibration/transfer across instruments and sites, and end-to-
end validation within real clinical workflows.2,5 This work
addresses those gaps by presenting an optical scatter based

characterization framework coupled with machine-learning
classifiers designed for rapid, and high-throughput bacterial
characterization.

2 Portable bacteria characterization
device

The portable bacteria characterization device is a photonic
system based on forward scatter principles to characterize
bacteria using scatter data and machine learning models.
This photonic system is composed of a laser source, a duo-
lateral quadrant photodetector (PD), a data acquisition
system (DAQ), an onboard computing module, and an
enclosure that houses these components, as shown in Fig. 1.
The laser source is precisely aligned to project its beam onto
the center of the PD's active sensing area, enabling the
detection of bacteria present in the beam path. The PD's
outputs are connected to an amplifier circuit that calculates
the beam's deflection on the (x, y) plane based on the
differential currents from the four quadrants and the total
beam power, which is proportional to the sum of the
currents. This amplified data signal is then digitized by a
high-speed DAQ connected to a compute module. The device
is designed with a compact form factor to ensure its
portability while also efficiently meeting the requirements for
computing power, storage, and data transmission. A service-
based firmware was developed for the device that enables
wireless connectivity to an interface with software running on
a personal computer. This device operates on the principles
of optical scattering and employs a continuous, coherent,
and collimated laser beam aimed at the surface of the
photodetector (PD). The intensity and position of the laser
beam, as received by the PD, alter due to scattering and
refraction events caused by the presence and composition of
bacteria in the intervening space. The working principles of

Fig. 1 (a) Overview of the bacteria characterization device. (b) An exploded view showing various components of the device.
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this device are elaborated in our patent28 and it was observed
that the scattering signatures are distinct and vary depending
on the composition of the aerosols containing pathogens.
The present study involves the collection and characterization
of scatter data from various bacteria, analyzing them based
on their distinct optical scatter features. A detailed
representation of the device, in its most recent version, is
depicted in Fig. 1, and a sectional view along with scatter
configuration is presented in Fig. 3. The device supports the
deposition of particles onto glass slides, as illustrated in 1,
enabling the accumulation of pathogenic bacteria for
subsequent static analysis.

3 Materials and methods

We conducted controlled experiments by depositing specific
bacteria at known concentrations onto glass slides to
examine their unique scatter characteristics. This section
elaborates on the bacteria preparation and deposition
process, followed by an in-depth discussion of data collection
and analysis methodologies.

3.1 Materials

Staphylococcus aureus (ATCC® 6538™), Escherichia coli
(ATCC® 25922™), Klebsiella pneumoniae (ATCC® 700603™),
Staphylococcus epidermidis (ATCC® 35984™), Staphylococcus
mutans (ATCC® 25175™), and Pseudomonas aeruginosa
(ATCC® 27853™) were purchased from American Type
Culture Collection (ATCC, Manassas, VA USA). Table 1
presents the size and shape characteristics of various bacteria
considered in this study. Phosphate buffered saline (PBS) at
7.4 pH and Luria Bertani (LB) broth were purchased from
Sigma-Aldrich (St. Louis, MO USA).

3.2 Methods

The methods for preparing bacterial solutions were derived
from the well-established ISO 10993 standards29 and
performed under aseptic conditions in a laminar airflow
cabinet. All media and buffer solutions were sterilized in an
autoclave at 121 °C for 30 minutes. Preparation of the
bacterial solution began by inoculating a single bacteria
colony into either Luria Bertani (LB) or brain heart infusion
(BHI) broth for all bacteria used. These solutions were

placed in an incubated shaker at 37 °C and 150 rpm until
the log-phase of growth for each bacterium was reached.
The bacteria were then centrifuged at 3500 rpm for 7.5
minutes using an Allegra X-30R Centrifuge (Beckman
Coulter, Indianapolis, IN USA). The remaining supernatant
fluid was removed and then the bacterial pellet was
resuspended with 0.01 M sterile phosphate-buffered saline
(PBS) for rinsing at 3500 rpm for 7.5 minutes. Supernatant
fluid was removed once more, and the bacterial pellet
resuspended with fresh 0.01 M PBS. At this point, the
bacteria solutions were measured for absorbance at 600 nm
using a Cary 60 UV-vis spectrophotometer (Agilent, Santa
Clara, CA USA) and diluted to 108 CFU mL−1. The optical
density at 600 nm (OD600nm) was measured using a
Genesys 10S ultraviolet-visible spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA), with the assumption
that an OD of 0.1 corresponds to approximately 108 cells
per mL. A summary of the bacteria solutions prepared is
presented in Table 1.

After the bacterial solution was prepared it was pipetted
directly onto a glass slide inside of a BSL-2 approved
biosafety cabinet to maintain sterility. The droplets were then
uniformly spread and contained using a cover slip before
testing. The entire sample preparation is carried out inside of
the biosafety cabinet. Only once the sample is finalized is it
removed from the cabinet for testing. Usually the testing took
60 s for each trail. An overview of bacteria solution
preparation and testing is presented in Fig. 2.

4 Testing and data analysis

Testing began 1–2 hours after placing the glass slides onto the
device. The slide with the bacteria coating was inserted in a slot
closer to the laser source in the P2 position, and a blank slide
was inserted on the detector end in the P1 position, as shown
in Fig. 3. We conducted several trials involving combinations of
concentrations (0.05, 0.1, and 0.2) and volumes (5 μL, 10 μL,
and 20 μL) to capture scatter signatures of light passing
through various bacteria. In each trial, optical scatter data was
collected for 60 seconds. The data processing and classification
workflow began with controlled experiments aimed at
gathering optical scatter data, particularly focusing on beam
power (Power) and position measurements as outlined in
Fig. 4. The raw data underwent pre-processing steps, including

Table 1 Various bacteria considered in this study and their characteristics

Bacteria Type Size Shape

Staphylococcus aureus (SA) – ATCC 6538 Gram positive 0.5–1.5 μm diameter Round
Escherichia coli (EC) – ATCC 25922 Gram negative 0.5 μm wide 1.5 μm long Rod
Pseudomonas aeruginosa (PA) – ATCC 27853 Gram negative 0.5–1.0 μm wide 1.0–5.0 μm long Rod
Staphylococcus epidermidis (SE) – ATCC 35984 Gram positive 0.5–1.5 μm diameter Round
Klebsiella pneumoniae (KP) – ATCC 700603 Gram negative 0.3–1.0 μm wide 0.6–6.0 μm long Rod
Streptococcus mutans (SM) – ATCC 25175 Gram positive 0.5–0.75 μm diameter Round
EC + SA Combination
PA + SE Combination
SM + KP Combination
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demeaning and outlier removal through sigma clipping.
Following this, key metrics such as beam deflection efficiency
(BDE) and scatter intensity variability (SIV) was computed.
These metrics were then refined using principal component
analysis (PCA). The processed data was subsequently fed into
machine learning models to accurately classify and quantify
various bacterial genus.

During data collection and pre-processing steps to ensure
optimal alignment of the laser and detector, we analyzed
the Xpos and Ypos difference signals. Ideally, these signals
should be close to zero, indicating proper alignment.
However, even with good alignment, deviations from zero
can occur due to various environmental factors, such as
dust on the detector surface, air currents, vibrations, or
slight misalignments during assembly. To mitigate these
effects and eliminate baseline errors, we conducted multiple
trials using blank slides in positions P1 and P2, without
any samples. The beam power and position values from
these trials were averaged to establish a baseline
representing the inherent system noise and drift. This
baseline data was then deducted from the experimental data
collected with actual samples as shown in eqn (1) and (2),
effectively isolating the bacterial signal while minimizing
the impact of environmental factors and system noise. This
process, known as de-meaning, enhances the data's
sensitivity to the unique scatter profiles of bacteria by
removing the mean values obtained from the control trials
across all experimental runs.

Xpos = Xraw − Mean(Xcontrol) (1)

Fig. 4 Data processing and classification work flow.

Fig. 2 Workflow of the methods used for bacteria slide preparation for testing.

Fig. 3 (a) A cross-sectional view of the device depicting the light
source, the detector, and the glass separators. (b) Diagram illustrating
the placement of the slide containing the bacteria sample in the
forward scatter configuration. The slide containing the sample is
positioned closer to the light source to optimize scatter detection.
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Ypos = Yraw − Mean(Ycontrol) (2)

From the computed Xpos and Ypos, the magnitude of the
beam's displacement according to eqn (3) and (4).

Magnitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
pos þ Y2

pos

q
(3)

dir ¼ arctan
Ypos

Xpos

� �
(4)

The following step in the procedure entails the outlier
removal, which is a critical pre-processing step in our
current data analysis, aimed at identifying and excluding
anomalous data points from a dataset. In our study, outliers
are defined as those points lying beyond three standard
deviations from the mean. This threshold is based on the
empirical rule,30 which suggests that approximately 99.7%
of data in a normal distribution should fall within three
standard deviations from the mean, rendering points
outside this range exceedingly uncommon. Upon
examination, we found approximately 0–0.5 seconds' worth
of outlier data per trial, equating to 0–500 data points.
Consequently, any samples exceeding this predefined
boundary were deemed outliers and subsequently omitted
from the dataset. For the ease of reading, we continue the
usage of labels Xpos, Ypos and Power that from this point
represent data with the outliers removed.

4.1 Characterization metrics

In this section, we explore two characterization metrics: beam
deflection efficiency (BDE) and scattering intensity variability
(SIV). These features have been specifically designed to
enhance the differentiation and classification of bacteria
based on their optical scatter patterns.

4.1.1 Beam deflection efficiency. We define the beam
deflection efficiency (BDE) as the ratio of the beam's lateral
displacement magnitude to the power of the scattered beam
as shown in eqn (5). The BDE quantifies both the scatter
due to deflection and the intensity of the beam. For
example, in the absence of scattering agents, the beam
deflection is minimal. Thus, the beam remains closer to the
origin, and its power is at Pmax, equal to the laser's power.
In contrast, the introduction of scattering agents causes
deflection of the beam, suggesting that BDE is proportional
to the magnitude of deflection representative of the
characteristics and concentration of these agents.
Additionally, a higher scattering results in a reduced power
of the incident beam, which, in turn, implies an increased
BDE value. Therefore, the BDE value ranges from a
minimum of zero to potentially infinity in the event of
complete occlusion. While no complete occlusion was
observed in our experiments, and excessively high BDE
values were not encountered, for computational
convenience, we assign a nominal value in the order of 10−9

when the beam power is zero.

BDE ¼ Magnitude
Power

(5)

4.2 Scattering intensity variability

The scattering intensity variability (SIV), as shown in eqn (6),
is the coefficient of variation that measures the variation in
light scattering responses from bacterial samples by
assessing the degree of fluctuation in scattering intensity
across different detection angles. This variability is
proportional to the physical diversity within the sample. High
SIV values indicate significant fluctuations in scattering
intensity, suggesting a heterogeneous bacterial composition.
Conversely, low SIV values suggest a more uniform scattering
response, characteristic of a homogeneous composition.
Thus, SIV is a crucial metric for assessing the underlying
physical properties of a sample, making it valuable for
differentiating between bacterial species and analyzing
sample composition.

SIV ¼ σ Powerð Þ
μ Powerð Þ (6)

where σ(Power) and μ(Power) represent the standard
deviation and mean of the scattered beam, respectively.

4.2.1 Principle component analysis (PCA). For PCA
analysis, we selected the BDE, SIV, and dir features,
computed using eqn (5), (6), and (4), respectively. Before
applying PCA, the data was standardized to ensure all
variables were on the same scale.

After standardization, we applied principal component
analysis (PCA) to reduce the dimensionality of the dataset.
PCA identifies the most important patterns in the data by
generating components that capture the maximum variance.
We retained the two most significant components, enabling
us to represent the data in a simplified two-dimensional
space. This transformation can be understood as finding the
optimal linear combinations of the original features that best
capture the variance in the data.

PC = Dscaled × W (7)

Here, PC represents the principal components, Dscaled is
the standardized data matrix, and W is the matrix of weights
(or loadings) that define the linear combinations of the
original features used to form the principal components.

4.2.2 Centroid computation and data filtering. The PCA
data was projected into this new two-dimensional space, and
a centroid was computed, for each type of bacteria using the
equation below from.31

Cb ¼ Cb;x; Cb;y
� �¼ 1

Nb

XNb

i¼1

PCA1i;
1
Nb

XNb

i¼1

PCA2i

 !
(8)

where Nb is the number of data points for a given bacterial
type.
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To assess the clustering of data points around their
respective centroids, we calculated the Euclidean distance
between each point and its corresponding centroid. This
distance serves as a metric for quantifying how far each point
deviates from the central tendency of its group. This
computation, as shown in eqn (9), computes the
measurement of the dispersion of data points within each
bacterial group in the PCA-transformed space.

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PCA1i −Cb;x
� �2 þ PCA2i −Cb;y

� �2q
(9)

To ensure that only representative data points were
retained, we established a threshold based on the
distribution of distances. Specifically, we excluded any data
point that exceeded the average distance plus one standard
deviation from the centroid.

T = D + σd (10)

This filtering criterion allowed us to focus on data points
that were more closely aligned with the central trends of their
respective bacterial groups, thereby enhancing the reliability
of our final analysis.

4.2.3 K-Means clustering and silhouette score. Bacterial
suspensions were prepared at multiple concentrations C ∈
{C1, C2, …, Cm} and volumes V ∈ {V1, V2, …, Vn}. For
each concentration–volume combination (Ci, Vj), three
microscope slides were prepared, and each slide
underwent three independent trials. Thus, the dataset for
each bacterial species consisted of 3 × 3 = 9 replicates
per (Ci, Vj).

Each trial produced a set of feature vectors as described in
characterization metrics section:

X = {x1, x2, …, xN}, xk ∈ d∀k ∈ {1, …, N} (11)

where N is the number of detected events per trial and d is
the dimensionality of extracted photonic features.

To evaluate separability of bacterial data from
background/noise, K-means32 clustering was applied
independently on each trial dataset X. The K-means objective
minimizes within cluster variance:

min
S

XK
i¼1

X
xj∈Si

xj − μi
�� ��2 (12)

where K is the number of clusters, Si is the set of points
assigned to cluster i, and μi is the centroid of cluster i.

Cluster quality was quantified using the silhouette score
s(i)33 for each data point xi:

s ið Þ ¼ b ið Þ − a ið Þ
max a ið Þ; b ið Þf g (13)

where a(i) is the mean intra-cluster distance (cohesion), and
b(i) is the mean nearest-cluster distance (separation). The
overall Silhouette score for a trial dataset is given by

S ¼ 1
N

XN
i¼1

s ið Þ (14)

Higher values of S indicate more compact and well-
separated clusters, suggesting stronger bacterial signal
detection.

For each bacteria type, silhouette scores were aggregated
across slides and trials:

S ̄ Ci; Vj
� � ¼ 1

R

XR
r¼1

Sr Ci; Vj
� �

(15)

where R = 9 (3 slides × 3 trials), and Sr(Ci, Vj) is the silhouette
score of replicate r. The concentration–volume combination
yielding the highest S̄ was considered the optimal condition
for bacterial detection.

Finally, for each bacterial species, the optimal conditions
were identified as

C*; V*ð Þ ¼ arg max
Ci ; Vjð Þ

S ̄ Ci; Vj
� �

(16)

where (C*, V*) indicates the concentration–volume pair at
which the device achieves maximal discriminatory
performance.

4.3 Classification models

The filtered dataset was then utilized for training machine
learning algorithms aimed at predicting class labels within
the optimal clusters, thereby enabling the identification of
distinguishing features for the identified bacterial groups.
We applied four advanced machine learning models that
include support vector classifier (SVC),34 gradient boosting,35

LightGBM,36 and XGBoost37 to classify different bacterial
types based on the extracted features. These models were
selected for their ability to handle various aspects of the
classification task, contributing to a comprehensive and
accurate data analysis.

Support vector classifier (SVC)34 works by identifying the
optimal hyperplane that maximizes the margin between the
nearest points of different classes, effectively separating the
data into distinct groups. This makes SVC particularly
effective in binary classification tasks with a clear boundary
between classes.

Gradient boosting, on the other hand, is a powerful
ensemble learning technique that builds models sequentially,
each one attempting to correct the errors of the previous
models by optimizing the residuals. This approach excels in
complex, non-linear relationships between input features and
the target variable. LightGBM,36 XGBoost37 a widely adopted
implementation of gradient boosting known for its scalability
and precision. XGBoost was selected for its ability to handle
complex data patterns and provide a robust framework for
bacterial classification in this study.

Each of these models was strategically chosen to take
advantage of their strengths, ensuring a comprehensive and
accurate analysis of the data. For instance, SVM has been
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chosen based on the literature38,39 which uses similar kind of
techniques that are based on optics.

4.3.1 Evaluation metrics. After training each model on our
dataset, we evaluated their performance using key metrics,
including accuracy, F1 score, precision, and recall. These
metrics provided a comprehensive understanding of each
model's strengths and weaknesses in classifying bacteria,
allowing us to identify the most effective approach for this
specific classification problem. In doing so, we carefully
balance factors such as model complexity, training time, and
predictive accuracy.

In general, combining these four models provided a broad
exploration of machine learning techniques, with each model
contributing valuable information to the bacterial
classification process. The results demonstrated the
feasibility of using machine learning for this purpose while
also highlighting opportunities for further refinement and
optimization in future studies.

The first metric used in our analysis is accuracy, which is
a measure of the correctness of a model's predictions. It is
calculated as the ratio of correctly predicted instances to the
total instances and computed according to eqn (17)

Accuracy ¼ Number of Correct Predictions
Total Number of Predictions

× 100 (17)

F1 score, another important metric, is particularly useful
in handling imbalanced datasets. It balances precision and
recall, making it more effective in applications where both
are critical. The F1 score is calculated as the harmonic mean
of precision and recall as shown in eqn (18)

F1 score ¼ 2 ×Precision ×Recall
Precisionþ Recall

(18)

Here, precision measures the accuracy of positive
predictions, calculated as the ratio of true positives (TP) to
the sum of true positives and false positives (FP), as shown in
eqn (19).

Precision ¼ TP
TPþ FP

(19)

True positives (TP) are instances correctly identified as
positive, while false positives (FP) are instances incorrectly
predicted as positive. Recall, also known as sensitivity,
measures the model's ability to correctly identify positive
instances. It is calculated as the ratio of true positives (TP) to
the sum of true positives and false negatives (FN) shown in
eqn (20)

Recall ¼ TP
TPþ FN

(20)

Here, false negatives (FN) are instances incorrectly
predicted as negative despite being positive, while true

negatives (TN) are instances correctly identified as
negative.

5 Results and discussion

We collected optical scatter data metrics for multiple
Gram-positive and Gram-negative bacteria, as well as their
combinations, across three different concentrations (0.05,
0.1, and 0.2) and three different volumes (5 mL, 10 mL,
and 20 mL). Our observations indicate that data collected
from slides prepared with lower volumes and
concentrations are more likely influenced by the sterile
phosphate-buffered saline (PBS) used during slide
preparation. Microscopic analysis further confirmed that
lower volumes and concentrations resulted in a reduced
bacterial cell count within the test region. Also, a lower
refractive index contrast relative to PBS will diminish
elastic-scatter amplitude at the detector.

Based on these findings, we determined that a
concentration of 0.2 and a volume of 20 mL provided the
most representative data for capturing accurate scatter
signatures. Therefore, this combination was used for the
subsequent analysis.

5.1 Optical scatter measurements and PCA analysis

Optical scatter data plots for beam deflection efficiency
(BDE) and direction (DIR) of various Gram-positive and
Gram-negative bacteria are presented in Fig. 5. The
scatter data signatures exhibit distinct patterns across
different bacterial species. However, some cluster overlap
is observed, particularly between Klebsiella pneumoniae
(KP) and Pseudomonas aeruginosa (PA), as well as
between PA + SE and SM + KP. This overlap can be
attributed to the similarity in scatter signatures resulting
from their comparable rod-shaped morphologies, as
detailed in Table 1.

Building on the insights from existing
literature,16,18,19,27,40–43 which highlight significant variations
in optical signatures across different bacteria, we further
explored these patterns by integrating beam deflection
efficiency (BDE) and direction metrics with scattering
intensity variation (SIV). By applying principal component
analysis (PCA), we uncovered distinct and well-separated
clusters for each bacteria, as depicted in Fig. 6. This analysis
clearly demonstrates that our portable device effectively
captures and differentiates multiple bacteria based on their
scatter data signatures.

The ability of the device to accurately distinguish between
bacteria, even those with similar shapes and sizes,
emphasizes its efficacy in microbial analysis. This not only
validates the sensitivity and precision of the optical scatter
metrics employed but also highlights the potential of our
device for rapid and reliable bacterial characterization in
various practical applications.
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5.2 Repeatability of experimental data

The test was carried out on Escherichia coli (EC) and
Staphylococcus aureus (SA) to assess repeatability, with the
resulting scatter data presented in Fig. 7. Multiple trials
were performed on the same slide, starting with two trials
using SA bacteria, followed by three trials using EC bacteria.
As shown in Fig. 7, the scatter data is consistently clustered
for each bacterium, demonstrating a high degree of
repeatability in the trials. This consistency indicates that
the data are both reliable and reproducible under the
experimental conditions. The minimal variation observed
between trials allowed us to confidently use the results from

a single trial for further quantitative analysis, as the
consistency across trials ensured that the overall data
integrity remained unaffected.

5.3 Effects of bacteria solution concentration and volume

In order to evaluate the best combination of bacteria
concentrations and volumes considered, a cluster analysis
was carried out using K-means algorithm.32 The results of
silhouette score obtained from the cluster analysis are
presented in Table 2. Results show that a concentration of

Fig. 5 Plot of beam deflection efficiency (BDE) versus directionality
(dir) computed from the original features Xpos, Ypos, and power.

Fig. 6 Data clusters observed after applying principal component
analysis (PCA). The plot demonstrates the separation of different
bacterial groups into distinct clusters, indicating the effectiveness
of PCA.
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0.2 and a volume of 20 mL are representative for better
capture of scatter data, and this data was used for further
analysis for quantification. Also, in all the experiments with
lower volumes and concentrations, it is the same volume and
concentration of PBS, just less bacteria. We also observed
under microscopic study that lower volumes and

concentrations of bacteria have lower cell count within the
test region. This is consistent with reduced cell counts in the
illuminated region and a lower refractive index contrast
relative to PBS, which diminishes elastic scatter amplitude at
the detector.

5.4 Performance evaluation and comparison of the models

The performance of four machine learning models, gradient
boosting (GB), LightGBM, support vector machine (SVM), and
XGBoost was evaluated for classifying Gram-positive and
Gram-negative bacteria, as shown in Table 3. The evaluation
was conducted using different combinations of training and
test data derived from three samples, referred to as S1, S2,
and S3. Test accuracy and F1 scores were used to assess each
model's effectiveness across various combinations of training
and test data.

Gradient boosting showed varying performance depending
on the data split. For Gram-positive bacteria, it performed
well when trained on S1 and S2 and tested on S3, achieving a
test accuracy of 0.8550 and an F1 score of 0.8300. However,
its performance dropped when the training data was
switched to (S1, S3) and tested on S2, with accuracy and F1
scores decreasing to 0.7027 and 0.6300, respectively. For
Gram-negative bacteria, GB struggled, especially when trained
on (S1, S2) and tested on S3, where it managed only 0.4937
accuracy and 0.4900 F1 score. Interestingly, the model's
performance improved significantly for Gram-negative
bacteria when the training data was (S1, S3), with accuracy

Fig. 7 Results from repeatability tests conducted, demonstrating the
consistency and reliability of the scatter data across different trials.

Table 2 Silhouette score for various combinations of volumes and
concentrations of bacteria considered

Bacteria Concentration Volume
Silhouette
score

Staphylococcus aureus (SA) 0.2 20 0.911
Escherichia coli (EC) 0.2 20 0.964
Pseudomonas aeruginosa (PA) 0.2 5 0.933
Staphylococcus epidermidis (SE) 0.2 10 0.842
Klebsiella pneumoniae (KP) 0.05 20 0.971
Streptococcus mutans (SM) 0.2 20 0.952
EC + SA 0.1 20 0.876
PA + SE 0.1 20 0.889
SM + KP 0.1 10 0.871

Table 3 A summary of the performance evaluation of various classifiers
applied to three distinct samples, S1, S2, and S3. Different combinations
of these samples were used for training and testing the models to assess
their effectiveness

Model Data group
Training
data

Test
data

Test
accuracy

F1
score

Gradient boosting
(GB)

Gram-positive (S1, S2) S3 0.8550 0.8300
(S1, S3) S2 0.7027 0.6300

Gram-negative (S1, S2) S3 0.4937 0.4900
(S1, S3) S2 0.8195 0.7900

Combinations (S1, S2) S3 0.9247 0.9200
(S1, S3) S2 1.0000 1.0000

LightGBM Gram-positive (S1, S2) S3 0.9998 1.0000
(S1, S3) S2 0.7036 0.6400

Gram-negative (S1, S2) S3 0.7365 0.7300
(S1, S3) S2 0.8795 0.8700

Combinations (S1, S2) S3 0.8958 0.8900
(S1, S3) S2 1.0000 1.0000

SVM Gram-positive (S1, S2) S3 1.0000 1.0000
(S1, S3) S2 0.7128 0.6400

Gram-negative (S1, S2) S3 1.0000 1.0000
(S1, S3) S2 1.0000 1.0000

Combinations (S1, S2) S3 1.0000 1.0000
(S1, S3) S2 1.0000 1.0000

XGBoost Gram-positive (S1, S2) S3 1.0000 1.0000
(S1, S3) S2 0.6857 0.6300

Gram-negative (S1, S2) S3 0.7302 0.7300
(S1, S3) S2 0.7661 0.7400

Combinations (S1, S2) S3 0.9097 0.9100
(S1, S3) S2 1.0000 1.0000
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and F1 scores rising to 0.8195 and 0.7900, respectively.
Notably, GB performed exceptionally well on the combination
of bacteria data, achieving perfect accuracy when trained on
(S1, S3) and tested on S2.

LightGBM on the other hand, consistently delivered strong
results across both Gram-positive and Gram-negative bacteria
classifications. For Gram-positive bacteria, it nearly achieved
a very high accuracy of 0.9998 and an F1 score of 1.000 when
trained on (S1, S2) and tested on S3. The model remained
robust across different data splits, showing its reliability. For
Gram-negative bacteria, LightGBM performed solidly, with
accuracy ranging from 0.7036 to 0.8795 and corresponding
F1 scores. Its performance on combination data was similarly
strong, achieving perfect accuracy and F1 scores when
trained on (S1, S3) and tested on S2, indicating its
generalization capability.

SVM also performed exceptionally well, particularly with
Gram-positive bacteria. It achieved perfect accuracy and F1
scores (1.000) when trained on (S1, S2) and tested on S3.
However, its performance was somewhat sensitive to different
data splits, as seen when accuracy dropped to 0.7128 and the
F1 score to 0.6400 with the training and test combination of
(S1, S3) and S2, respectively. Despite this, SVM maintained
high performance across Gram-negative bacteria and
combination data, consistently achieving perfect accuracy
and F1 scores in several scenarios. These results highlight
SVM's effectiveness in classifying bacterial data when trained
with the appropriate dataset.

XGBoost displayed strong performance, particularly with
Gram-positive bacteria, where it achieved perfect accuracy and
F1 scores across multiple data splits. However, its performance
was slightly less consistent with Gram-negative bacteria, as
evidenced by an accuracy of 0.7302 and an F1 score of 0.7300
when trained on (S1, S2) combination and tested on S3. The
model improved significantly when trained on (S1, S3) and
tested on S2, achieving perfect accuracy. XGBoost's ability to
deliver strong results across different data combinations
demonstrates its robustness, though it showed some sensitivity
to specific training-test configurations.

In comparing the models, LightGBM and SVM emerged as
the most consistent and reliable classifiers, delivering high
accuracy and F1 scores across various data splits. Their
performance was particularly impressive with Gram-positive
bacteria, where they often achieved perfect or near-perfect
results. XGBoost also performed well, particularly for Gram-
positive bacteria, though it showed some sensitivity to different
training and test data combinations. Gradient Boosting
displayed more variability, especially with Gram-negative
bacteria, indicating that it may require further tuning or an
alternative approach to optimize its performance.

The sample decision boundary visualizations in Fig. 8
illustrate how well the SVM models classify both Gram-
positive and Gram-negative bacteria. The clear decision
boundaries and accurate test data predictions confirm the
model's effectiveness. Additionally, the shared decision
boundary observed between PA + SE and SM + KP

suggests that non-linear patterns in the data may be
present, which could potentially be addressed using a
non-linear kernel in SVM.

Nonpathogenic organisms can be detected optically;
however, classification is restricted to trained pathogenic
genera. If a new sample is kept under test and the probability
of prediction of the model falls below an adjustable
threshold, the sample is treated as ‘unknown’. These
signatures are stored for future model updates. The planned

Fig. 8 Decision boundary visualization of the SVM models trained on
Gram-positive and Gram-negative bacteria data. The plot illustrates
the decision regions for different bacteria types, with training data
points, support vectors, and test data predictions overlaid.
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future work includes expanding the reference libraries and
implementing advanced anomaly detection approaches.

6 Limitations

An earlier aerosol study27 used a device based on backscatter
geometry and dynamic aerosols, which provided richer
temporal features that allowed bacteria discrimination. In
contrast, the current forward-scatter bacteria device uses
static-slide configuration that integrates over a quasi-static
field, reducing fine-grained cues. It is very difficult to directly
compare static slide and aerosol configurations due to
different experimental conditions and protocols. In addition,
genus-level predictions can inform early clinical assessment
even if species/strain confirmation requires downstream
methods. We now explicitly state that the present study
demonstrates robust genus-level discrimination and species-
level separation only within Staphylococcus. Future work will
explore time-resolved scattering for finer resolution. In
addition, the current approach and the model developed are
optimized for bacteria. Fungi are outside the model training
set, and the present model will not be able to classify, and
hence future work needs to include dedicated training data
for fungi in the model for characterization.

7 Conclusion

In this study a portable photonics-based point-of-care device
designed for rapid and accurate characterization of bacteria
is investigated. Experiments were conducted on multiple
Gram-positive and Gram-negative bacteria and their
combinations that can capture optical scatter data. The
results of bacteria characterization are obtained using the
optical scatter data and adopting clustering and machine
learning algorithms. Based on the results obtained, it was
demonstrated that the current portable device can be used
for robust genus-level bacteria discrimination, and not
bacterial strains. More work is needed to investigate the
device for bacterial strains and fungi.
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