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Abstract
Despite the increased availability of low-cost and effective treatments for tuberculosis 

(TB), ~1 million people continue to die from TB-related symptoms annually. One major 

challenge limiting the effectiveness of TB treatment is delays in diagnosis, largely due to 

current detection methods requiring either weeks of culture time or complex processing 

steps that cannot be performed at the point-of-care. Thus, there is a need for alternative 

methods that are easier to use yet still effective in providing an accurate TB 

diagnosis. This work investigates the feasibility of using high-wavenumber Raman 

spectroscopy to detect the presence of the causative agent of TB, Mycobacterium 

tuberculosis, in human saliva. To accomplish this, raw saliva was collected from healthy 

participants and inoculated with a fixed, physiologically relevant, concentration of bacteria 

(106 CFU/mL) and concentrated into a pellet. The samples were measured using Raman 

spectroscopy and analyzed with a spectral unmixing approach to determine the relative 

biochemical composition. The presence of M. tuberculosis resulted in a significant 

increase in the lipid signal of saliva pellets containing the spiked bacteria, with a median 

percent increase of 423.6% as compared to the control samples. Control experiments 

using Streptococcus mutans, a common oral bacterium, only resulted in a slight increase 

of 9.8%. Additionally, using linear regression analysis, a predictive relationship was found 

between the Raman lipid fractions of the raw saliva and the control saliva pellets. Using 

the 95% prediction interval of this relationship as a classification threshold, the presence 

of M. tuberculosis was accurately determined for all samples with an overall training 

accuracy of 98.5% and a cross-validation accuracy of 100%. These results showcase the 

potential of high-wavenumber Raman spectroscopy as a reagent-free method of 

detecting M. tuberculosis in saliva samples.
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Introduction
Tuberculosis (TB) remains one of the top infectious diseases, resulting in a high global 

burden. Despite the availability of low-cost and effective TB treatment, annually, 

approximately 10 million people acquire TB, and over 1 million people die from disease-

related symptoms.1,2 During the COVID-19 pandemic, there was a rise in TB cases and 

deaths as well as drug-resistant cases, according to the World Health Organization.3 This 

may have been due to the disruption in services and screening due to the COVID-19 

focus.4The pathogen driving TB infections is Mycobacterium tuberculosis (M. 

tuberculosis), a bacterial pathogen that is transmitted through the air. One of the main 

challenges with TB treatment is the late-stage diagnosis due to self-reported symptoms 

not occurring until the late onset of the disease.5 Another challenge is the issue of latent 

TB (LTBI). The TB pathogen is transmitted airborne and can live from three months to 

two years in its host without active signs of the disease. About 5-10% of LTBI cases will 

go on to develop active TB which can then result in the spreading of the disease to 

others.6 Typically, the first signs are noted in the lungs, and then evidence of the disease 

can be found in other parts of the body, detectable in bodily fluids such as urine, blood, 

or saliva.7–10

           The gold-standard tools for detecting bacterial infections are not always 

translatable to the point of care for certain pathogenic species. These techniques rely on 

culture-based methods or molecular sensing for high accuracy.11 However, culture-based 

methods can take days to grow for an adequate pathogen count required for sensing, 

which limits applicability for rapid detection in the field. In the case of M. tuberculosis, it 

takes an estimated four to eight weeks for an adequate colony count.12 Thus, alternative 

approaches for detection are required, such as deoxyribonucleic acid (DNA) amplification 

via polymerase chain reaction (PCR) or immunoassays. While commercially-available, 

urine-based, lipoarabinomannan (LAM) antigen tests are an easy-to-use, rapid 

diagnostic, they suffer from poor sensitivity (<50%), especially for individuals who are not 

HIV positive or those with high white blood cell counts.13 Overall, immunoassays such as 

the antigen-based test either lack sensitivity or specificity (<70%), while the skin test has 
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a high rate of false positives. PCR-based techniques such as the Xpert tests are complex, 

requiring multiple reagents, buffers, and standards for accurate diagnosis, resulting in a 

high financial cost. Thus, there is still a need for cost-effective, easy-to-use, culture-free 

platforms that deliver robust and accurate pathogen detection at the point of care.

Another challenge is the type of sample collected to confirm the presence of the M. 

tuberculosis. The most common practice is the assessment of sputum samples from 

suspected patients. However, sputum samples, acquired in a cough-like manner, can be 

difficult to produce by most patients and present additional safety concerns for healthcare 

workers. Moreover, children and those living with HIV are often unable to provide this type 

of sample.14,15 This leads to a need for alternative sample types that are less invasive but 

still effective in allowing for a proper TB diagnosis. In recent years, tongue swabs and 

saliva samples have been examined as alternative samples for the detection.16 Oral 

swabs analysis (i.e., tongue swabs) and saliva testing, is known to be faster, safer, and 

easier to collect compared to sputum. However, these samples have also been shown to 

carry a significantly smaller bacterial load, averaging around 1% the amount found in 

sputum samples 17–21. Despite this, researchers have shown sensitivity between 65-90% 

and specificity between 95-100% when analyzing tongue swabs versus sputum using the 

Xpert PCR analysis system with the sputum reference standard.22 Other researchers 

have examined saliva samples as another alternative approach to sputum collection since 

it was widely used for rapid detection of COVID-19 pathogen. In general, the analysis of 

saliva has proven to be comparable in sensitivities in the low 90% for HIV-negative 

cases.23 One drawback is both methods utilized a form of PCR to assess the presence of 

the M. tuberculosis. Access to Xpert PCR systems is still limited due to cost, and the turn-

around time for sample analysis is much greater than 20 minutes, which is not ideal based 

on the World Health Organization criteria. Therefore, the call for new diagnostic tools for 

detecting M. tuberculosis in a variety of sample types was a challenge put forth in 2018.24 

In addition, the need for rapid, culture-free technologies could potentially help the early 

detection of the vast majority of TB cases that typically go undetected for long periods of 

time. Herein, we assessed the design a culture-free platform using high-wavenumber 

Raman spectroscopy for rapid detection of the pathogen using its biochemical 

“fingerprint.”
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Raman spectroscopy (RS) is an analytical technique that provides a unique 

spectral fingerprint representative of the biochemical components of a specimen, based 

on light interaction with the chemical bonds within a sample. This interaction results in 

inelastic scattering when the frequency of the input light is close to the chemical bonds’ 

vibrational frequencies.25 For biological applications, RS has been well-documented for 

the analysis of biomolecules such as lipid membranes, proteins, amino acids, 

carbohydrates, nucleic acids, and glucose, amongst others.26 It has a wide range of 

applications, from in vivo detection of cancerous tissues and inflammatory sites to ex vivo 

application of bacterial differentiation, including drug-resistant strains.27–30 Overall, 

Raman spectroscopy is a label-free, non-destructive method that can be used in vivo or 

ex vivo for rapid assessment of collected tissue specimens or biofluids.31,32

While most biological Raman studies have utilized the fingerprint region (400-1800 

cm-1) of the spectrum due to its multiple discrete peaks, there has been an increased 

interest in using the high-wavenumber region (2800-3800 cm-1) instead. This is because 

the high-wavenumber region has been shown to provide significantly stronger Raman 

intensities, as compared to the autofluorescence background, without the need to include 

external agents, such as with surface-enhanced Raman spectroscopy.32 This results in 

an improvement in the accuracy of spectral processing and a decrease in the required 

measurement times when specifically designed spectrometers are used. Additionally, 

despite only having two major Raman bands that are representative of Oxygen-Hydrogen 

bonds and Carbon-Hydrogen (-CHx) bonds, the high-wavenumber region has been 

shown to provide comparable diagnostic accuracies as the fingerprint region, indicating 

that these two bands are similarly rich in biochemical information.33–35 Moreover, the high-

wavenumber Raman peak at 2850 cm-1 is characteristic of lipids and not shared with the 

other classes of biomolecules.26,36 This is in contrast with the fingerprint region which has 

greater number of lipid-associated peaks that commonly overlap with those of proteins 

and carbohydrates.26,36,37 These overlaps can confound the detection of lipids in complex 

media, especially when they are at relatively lower concentrations. As Mycobacterium 

species are characterized by their cell wall-associated lipids, known as mycolic acids, the 

ability to easily measure the presence of lipids with high-wavenumber Raman 
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spectroscopy is expected to further improve the capability of detecting M. tuberculosis in 

a biologically complex envirnonment.38–41

Herein, we demonstrate the feasibility of utilizing high-wavenumber RS (HWRS) 

for the detection of M. tuberculosis strain H37Ra spiked in human saliva samples. We 

show that the HW spectra of the bacteria generate a strong lipid-based spectrum, which 

we believe is associated with its mycolic acid components. We also show that using a 

non-negative least-squares spectral unmixing approach with known endmember spectra, 

we can determine the fraction of lipids present within the pelleted cells of the saliva and 

use this fraction to detect the presence of the biochemical fingerprint of the bacteria. This 

work demonstrates the potential for HWRS to be used as a label-free method for detecting 

TB, requiring no reagents and minimal sample preparation for translation to point-of-care 

applications.

Experimental 
Participant Recruitment and Saliva Collection

This study was approved by the Vanderbilt University Medical Center Institutional Review 

Board (IRB #191004). For this work, 9 participants with no known oral diseases were 

recruited after obtaining written informed consent. Saliva collection was performed by 

asking participants to slowly spit into a sterile collection tube (5016.02, Salimetrics) 

without stimulating the production of saliva or rinsing out the mouth. In total, 12 saliva 

samples were collected and utilized in this work. Half of these samples were collected 

from the participants in a non-fasting state, usually after midday. The other half of the 

samples were collected with the participants in a fasting state. This was accomplished by 

providing the participants with sterile collection tubes and asking them to collect a sample 

themselves the following morning before eating or performing any oral hygiene. Once 

received, the samples were aliquoted and stored at -80 °C until used.

Bacterial Species and Culturing

The H37Ra strain of Mycobacterium tuberculosis (ATCC #25177) and the UA159 strain 

of Staphylococcus mutans (S. mutans; ATCC #700610), a bacterial species commonly 

found in the oral cavity, were used in this work.42 Liquid cultures of M. tuberculosis were 

made by diluting 0.5 mL of frozen stock into 9.5 mL of Middlebrook 7H9 broth (M0178, 
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Millipore Sigma) supplemented with 10% albumin-dextrose-catalase growth supplement 

(BD 211887, Fisher Scientific), 0.2% glycerol (G7893, Sigma- Aldrich), and 0.1% Tween-

80 (P4780, Sigma-Aldrich). Cultures were grown for 6 days on a rolling incubator at 37 

°C and 5% CO2. S. mutans was cultured from frozen stock on brain heart infusion (BD 

237500, Fisher Scientific) agar plates at 37 °C and 5% CO2 for 24 hours. Liquid cultures 

were made by collecting and inoculating single colonies into 3 mL of brain heart infusion 

broth and incubating for an additional 24 hours. All liquid cultures were arrested at 4 °C 

for at least 24 hours prior to use.

High-wavenumber Raman Characterization

Before being used together, high-wavenumber Raman spectra of the fasting saliva, non-

fasting saliva, and bacterial species were determined. Whole saliva samples were 

prepared without any additional processing by depositing three 1 µL droplets onto an 

aluminum foil-coated (Reynolds Wrap, Reynolds) microscope slide and allowing them to 

dry for at least 5 minutes. This process was repeated for each of the collected saliva 

samples. To prepare the bacterial cultures for measurement, they were first washed to 

remove the liquid media. 1 mL culture samples were washed twice with sterile phosphate-

buffered saline, centrifuging at 3300g for 8 minutes each time. To maximize the signal 

collected from the bacteria, the bacterial pellet was isolated by centrifuging a third time 

and removing the supernatant. Similar to the saliva, samples were prepared by depositing 

three 1 µL droplets of the bacterial pellet onto an aluminum foil-coated microscope slide. 

This process was repeated three time for both species, using a different culture each time 

to account for any biological variability.

High-wavenumber Raman measurements of the dried saliva and bacteria samples 

were acquired using a Renishaw inVia Qontor Raman microscope with a 785 nm 

excitation laser. The wavenumber axis for the system was calibrated before each set of 

measurements using an internal silicon standard. Sample spectra were acquired using a 

50x/0.5NA objective which supplied ~90 mW of laser power at the sample. Each 

measurement was obtained using a total integration time of 50 seconds (5 accumulations 

with 10 seconds of exposure) to compensate for the low quantum efficiency of the 

detector across the measurement range. Three spectra were acquired along the edge of 

each dried droplet where the material was thickest, resulting in 9 total spectra per sample.
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Spectral Preprocessing

All acquired high-wavenumber Raman spectra were preprocessed prior to analysis. 

Collected spectra were first calibrated against the spectral response of the system using 

a 785 nm luminescence standard reference material (SRM 2242, NIST), before being 

truncated from 2765 to 3205 cm-1. The autofluorescence background of the 

measurements were removed using a 1st order polynomial estimate obtained through the 

modified polynomial method.43 Background estimation was performed while excluding the 

region from 2800 and 3100 cm-1 to prevent the strong -CHx
 band from influencing the 

shape of the estimated background. Noise reduction was accomplished by smoothing the 

resulting Raman spectra using a 2nd order Savitsky-Golay filter with a window size of 11, 

corresponding to a spectral width of approximately 8.25 cm-1, matching established 

smoothing parameters for fingerprint Raman spectra.44 Lastly, to isolate the -CHx
 band 

for further analysis, the resulting spectra were binned using a 1 cm-1 bin-width and 

truncated between 2800 and 3100 cm-1.

Saliva Sample Preparation

Prior to use, arrested bacterial cultures were removed from storage and washed twice 

using sterile deionized water containing 0.001% Tween-80. Optical density readings at 

600 nm were made on the washed cultures to quantify the bacterial concentrations. The 

concentrations of the measured cultures were subsequently adjusted to be 2x107 

CFU/mL. This process was kept consistent for both M. tuberculosis and S. mutans.  After 

preparing the bacterial culture, a saliva sample was removed from -80 °C storage and 

allowed to thaw at room temperature. Once completely liquid, the saliva was vortexed for 

2-3 seconds to ensure homogenization before aliquoting 95 uL into two sterile 

microcentrifuge tubes. Using these two aliquots, three different measurement samples 

were made for each saliva sample.

In one of the tubes, 5 µL of sterile deionized water containing 0.001% Tween-80 was 

added to serve as a negative control. In the other, 5 µL of the washed 2x107 CFU/mL M. 

tuberculosis culture was spiked into the saliva, resulting in final sample concentration of 

106 CFU/mL. This represents the upper range reported for the M. tuberculosis load in 

saliva, tongue-swab, and other non-sputum oral samples during an active infection.17–21 

As such, it serves as an ideal concentration for this feasibility study by falling within 
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physiological parameters while providing a sensitivity buffer for the new and unoptimized 

diagnostic approach. For the first measurement sample, designated as the raw saliva 

sample, a 1 µL droplet of the spiked saliva was dropped onto a microscope slide coated 

with non-stick aluminum foil (Reynolds Wrap Nonstick, Reynolds) and allowed to dry. 

Non-stick aluminum foil was utilized as its modestly hydrophobic nature serves to reduce 

the size of the dried droplet, thus increasing the effective concentration, while contributing 

minimal background to the Raman measurement. After plating the raw saliva sample, 

both saliva tubes were concentrated by centrifuging at 3,300g for 5 minutes, removing 

95% of the total volume from the supernatant, and resuspending the cellular pellet. Similar 

to the raw saliva sample, a 1 µL droplet from both the bacteria-containing pellet sample 

and the control pellet sample was placed on the nonstick aluminum foil and allowed to 

dry. In total, this process was repeated for 4 of the fasting saliva samples and 4 of the 

non-fasting saliva samples. The remaining 4 sets of saliva were used to create a set of 

control samples where everything was kept the same except that the M. tuberculosis was 

replaced with the same concentration of S. mutans.

Raman Mapping

High-wavenumber Raman spectra of the raw, control pellet, and bacteria-containing pellet 

samples were acquired using a Renishaw inVia Qontor Raman microscope. As the 

localization of the bacteria within the dried droplets is unknown, measurements were 

taken across all relative radial locations throughout the droplets. This was accomplished 

by collecting a Raman map consisting of a series of measurements around the edge of a 

circle inscribed between the center and the edge of the droplet (see Figure 2). 

Measurements were taken 25 µm apart using LiveTrack, the automatic focus tracking 

feature built into WiRE 5.6 (Renishaw), to account for variable sample height across the 

droplet. Measurements at each location were acquired in a similar manner as was 

previously described. A 50x/0.5NA objective was used to supply ~90 mW of 785 nm laser 

power to the sample, and high-wavenumber Raman measurements were acquired using 

a total of 3 accumulations with 10 seconds of exposure each. Each spectrum was 

preprocessed using the same methodology as described above except that the spectra 

were smooth using an increased Savitzky-Golay windows size of 21, corresponding to an 

approximate spectral width of 15.75 cm-1. While this is wider than what is traditionally 
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used, the spectral features of the high-wavenumber region are, on average, broader than 

the fingerprint region. Therefore, it was found that this combination of order and window 

size minimized the increased noise present in the mapping measurements without 

significantly altering the shape or intensity of the -CHx
 band. However, some of the 

measurements in the map were found to have too low of a Raman signal to be usable, 

even after smoothing, due to a lack of sample material or inadequate autofocusing at 

different locations across the region of interest. To account for such measurements, the 

signal-to-noise ratio (SNR) of each spectrum was determined before any smoothing was 

applied. SNR was approximated as the average Raman value between 2910 and 2950 

cm-1, the major protein-dominated peak of the -CHx band, divided by the standard 

deviation of the values found with the lower signal region between 3000 and 3100 cm-1. 

Spectra that were found to have an SNR less than 8 were excluded from any subsequent 

analysis.  

Spectral Unmixing Analysis

To approximate the composition of the dried saliva samples, a total of 8 pure components 

were selected across the 4 major biochemical categories of proteins, nucleic acids, 

carbohydrates, and lipids.35 Salivary proteins were represented by amylase (A3176, 

Sigma-Aldrich) and γ-globulin (G5009, Sigma-Aldrich), two of the most abundant proteins 

found in saliva, while bovine serum albumin (A2153, Sigma-Aldrich) was used to 

approximate the remaining population of general proteins.45 DNA (D1501, Sigma-Aldrich) 

was used to represent any nucleic acids found in saliva, while carbohydrates were 

represented by glycogen (G0855, Sigma-Aldrich).  As the focus of this analysis, three 

different lipid components were used to account for any potential sources of variability. 

Oleic acid (364525, Sigma-Aldrich) was used as the representative free fatty acid, the 

most common type of salivary lipid, while phosphatidylethanolamine (PE; P1223, Sigma-

Aldrich) was chosen to represent the less common polar salivary lipids.46 Finally, to 

account for the unique Mycobacterium lipid inclusion, the most abundant form of mycolic 

acid produced by M. tuberculosis, α-mycolic acid (791280; Avanti Research), was also 

included.39 High-wavenumber Raman spectra of the pure components were acquired and 

processed using the methodology described above. Three separate spectra were taken 
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10

for each component, with the average of the normalized spectra being used as the 

endmembers in the subsequent spectral unmixing analysis.

Spectral unmixing analysis was performed on each viable spectrum obtained from 

the Raman maps using a non-negative least-squares approach.35 Prior to analysis, both 

the target and component spectra were normalized such that their respective area-under-

the-curves (AUC) were equal to 1. This helps to directly approximate the fractional 

contributions each component has to the measured Raman spectra. All eight components 

described above were used as the endmembers to spectrally unmix each high-

wavenumber Raman measurement of the different Raman maps. The overall fitting error 

for each spectrum was determined by summing the absolute residuals and multiplying by 

100. Due to the AUC normalization, this metric approximates the absolute percentage 

fitting error. After unmixing, the individual component contributions were combined to 

obtain an estimate of the Raman fractions originating from the broader biochemical 

classes.

Statistical Analysis and Detection Model

The Raman lipid fractions, obtained from the spectral unmixing analysis, of the paired 

control and bacteria-spiked pellet samples were compared against each other using a 

Wilcox rank sum test. The change in the relative lipid content caused by the centrifugation 

and concentration of the saliva was assessed using linear regression analysis with 

individual samples represented by the average Raman lipid fraction across their viable 

map measurements. The linear regression compared the values of the raw saliva 

samples to that of their respective control pellet sample, fixing the intercept at 0 under the 

assumption that having no detectable lipid signal in the raw saliva would result in the 

same for the concentrated sample.

In addition to the linear fit, the 95% prediction interval (α=0.05) of the regression 

was determined and compared to the results of the bacteria-spiked samples. To evaluate 

if this relationship could be used to detect the presence of M. tuberculosis, the upper 

bound of the prediction interval was set as the classification threshold, with values 

exceeding the interval being categorized as containing M. tuberculosis. The performance 

of this classification model was assessed using a leave-one-sample-out cross-validation. 

For each fold of the cross-validation, both the control pellet and the bacteria-spiked pellet 
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from the test sample were classified. To further assess the model's performance, an 

analysis of the training accuracy was conducted in parallel with the cross-validation. This 

was accomplished by classifying each of the bacteria-spiked samples that were paired 

with the training data, for each fold of the cross-validation. While not a direct metric of 

performance, this analysis provides insight into the robustness of the model by 

determining if any significant changes are occurring in the construction of the model due 

to withholding specific training data.

Results and Discussion
High-wavenumber Characterization

To assess the feasibility of using high-wavenumber Raman spectroscopy to detect the 

presence of M. tuberculosis in saliva, an initial characterization of saliva collected before 

and after a minimum 6-hour overnight fast was performed. As seen in Figure 1, overnight 

fasting had minimal effects on the high-wavenumber Raman spectra, with both fasting 

and non-fasting samples remaining primarily protein dominant with the commonly 

associated peak at 2935 cm-1.26,47 However, it was observed that fasting served to reduce 

the spectral differences between the saliva samples, particularly around the 2850 and 

2975 cm-1 shoulders, which are indicative of lipid and protein/nucleic acid content, 

respectively.26,36,37This variability could become impactful when trying to detect M. 

tuberculosis as the primary feature that distinguishes the pathogen from saliva is a strong 

2850 cm-1 lipid peak (Figure 1). The strength of this peak, which also distinguishes it from 

other oral bacteria like S. mutans, is likely due to the abundance of mycolic acids, which 

are long-chain fatty acids that Mycobacterium species incorporate into their cell walls.39 

The presence of mycolic acids has been shown to be indicative of M. tuberculosis 

infection, and improved detection methods are being investigated.38,40,41 With the high-

wavenumber lipid peak having minimal overlap with other biological components, and the 

observed low lipid content of human saliva, these results support the potential for rapid 

and nondestructive detection of M. tuberculosis, or its shed mycolic acids, in saliva 

samples using HWRS.

Saliva Raman Maps
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To assess the use of HWRS for M. tuberculosis detection in saliva, the pathogen was 

spiked at physiologically relevant concentrations and Raman maps were performed 

across the dried droplets to mitigate any variation in biochemical signal due to 

heterogeneous drying. A representation of the processing steps for the Raman spectral 

maps is show in Figure 2. With each map taking the form of a circle inscribed between 

the center and edge of the dried droplet, sampling was achieved across all relative radial 

distances. Due to differences in spot sizes between the dried saliva samples, the total 

number of measurements taken varied between samples, with an average number of 67 

per sample. Out of these, a number of Raman measurements were unusable due to a 

poor signal-to-noise ratio. This was caused by both bare spots, where minimal solid 

materials were deposited, and thicker regions where too much material was deposited 

and the autofocus could not work against the dominance of the reflective substrate. Using 

a threshold value of 8 for an acceptable SNR, an average of 70% of points in each map 

were deemed viable and used for further analysis. Overall, the remaining Raman spectra 

had an average SNR of 13.3, with a standard deviation of 2.64. 

From these usable portions of the Raman maps, no particular region of the dried 

droplets was found to contain more of the M. tuberculosis induced lipid signal than the 

others. This indicates that the bacteria and their lipid products are accumulating 

throughout the entirety of the droplet. This is likely a consequence of the material 

properties of the substrate, including the hydrophobicity and the surface roughness, 

acting together to suppress the coffee ring effect.48 Additionally, ellipsoidal particles, such 

as the rod-shaped M. tuberculosis, have also been shown to inhibit the formation of coffee 

rings, leading to a more uniform deposition during droplet drying.49 As such, it can be 

concluded that no singular region of the droplet should be used alone. Instead, 

measurements approaching averages of the entire droplet should be utilized to account 

for any variances in the deposition location of the bacteria. For this work, all viable 

measurements within the map are used, with average results representing the sample as 

a whole. Future work using this approach will aim to leverage low magnification, large 

spot size measurements to sample most, if not all, of the droplet at once. This can be 

paired with optimization of both the physical properties of the substrate and the droplet 
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drying conditions to enable more direct control of the coffee ring effect, ultimately 

improving the consistency and concentration of the deposited particles.

Spectral Unmixing

After acquiring the Raman maps, spectral unmixing analysis was performed on the viable 

spectra, using 8 pure biochemical components, to determine the Raman lipid fractions of 

each droplet.35 The -CHx bands for the protein, nucleic acid, carbohydrate, and lipid 

components used in the spectral unmixing analysis can be found in Figure 3a. These four 

biochemical classes cover the majority of the spectral variation observed within the -CHx 

band of biological samples. While a single representative biomolecule is expected to be 

sufficient to capture the nucleic acid and carbohydrate contribution of the saliva spectra, 

an increased number of protein and lipid components were used to account for the more 

nuanced spectral differences that can occur between samples. Since protein is the 

primary component of dried saliva, differences in the relative protein content can have 

significant effects on the overall spectral shape which, if unaccounted for, can severely 

diminish overall fit accuracy.45 Additionally, as the primary goal of this analysis is to 

determine the lipid content of the sample, accounting for the spectral differences between 

the polar salivary lipids, non-polar salivary lipids, and mycolic acids expected in the 

samples is critical.46

The chosen pure components yielded accurate spectral fits for all samples when 

used as the endmembers of the spectral unmixing analysis, as evidenced by the 

representative result presented in Figure 3 that show the computed spectra to closely 

match the measured spectra. Despite variations in composition between saliva samples, 

the average relative fitting errors across all analyzed spectra were consistently close to 

5% for the raw saliva (5.98%), control pellet (5.65%), and bacteria-spiked pellet (4.97%) 

samples. This represents an improvement to the fitting accuracy obtained from using the 

same approach for fingerprint spectra, likely due to the lower molecular specificity of the 

high-wavenumber region allowing the spectra of the selected representative 

biomolecules to better approximate the spectral shapes of the components within the 

saliva samples.50–52 This has enabled the direct spectral unmixing approach to achieve 

reconstruction errors on par or better than those obtained when using automated 

endmember retrieval strategies on fingerprint spectra.53,54 As expected, all samples were 
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found to be predominantly protein-based (61.3 - 92.2%), with varying levels of contribution 

attributed to nucleic acids, carbohydrates, and lipids. Across the 12 raw saliva samples, 

most were determined to have a minimal lipid fraction of 2% or less. As lipids have a 

higher Raman cross-section in the -CHx region compared to the other classes of 

biomolecules, this represents an even smaller fraction of the overall mass.36 However, a 

quarter of the samples, including both fasting and non-fasting samples, were found to 

have a much higher lipid fraction, ranging from 5 to 11%, than what was expected for 

normal saliva composition.46 These increased values are likely due to either increased 

cellularity or remnant food debris within the samples, as no rinsing was performed prior 

to saliva collection. While this results in a greater variability in the measured samples, 

oral rinsing has been shown to affect the relative prevalence of bacteria within saliva 

sample, such procedures should likely be avoided for the diagnostic detection of M. 

tuberculosis until their effects are better understood.55

Despite these differences in the raw saliva composition, comparisons between the 

negative control and bacteria-spiked pellet samples (Figure 4) found that the inclusion of 

M. tuberculosis resulted in a significant increase in the Raman lipid fraction for both fasting 

and non-fasting saliva, with a median percent difference of 423.6%. Additionally, it was 

found that saliva spiked with the same concentration of S. mutans did not lead to a 

correspondingly significant increase in the Raman lipid fraction, with a median percent 

difference of only 9.8%. This indicates that the high lipid content of M. tuberculosis, 

thought to be due to their mycolic acids, induces a specific and detectable increase in the 

relative lipid content of concentrated saliva, when present at concentrations that have 

been reported during infection.17–21 However, due to the variability observed in the amount 

of lipid present between samples, a single threshold value capable of determining M. 

tuberculosis presence could not be set. Moreover, as paired control saliva will not exist in 

a diagnostic setting to compare against, another approach that takes into account this 

inherent variability in saliva composition is required.

Linear Regression Model

As the variability in the lipid content was observed in both the concentrated and 

unconcentrated samples, it was hypothesized that a raw saliva measurement could be 

used to predict the expected lipid content of the saliva pellet. To understand how the 
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concentration process alters the observed lipid fraction, the relationship between the raw 

saliva and the control saliva pellet measurements was assessed using linear regression. 

For the 12 samples used in this work, a strong linear relationship (R2=0.994) was found 

between the two sets of values with a fixed intercept through 0 and a slope of 1.647 

(Figure 5a). Using this relationship, measurement of a raw saliva sample can be used to 

predict the lipid fraction of the corresponding pelleted sample. To account for processing, 

sampling, and other unknown sources of variability that may occur between samples, a 

range of acceptable values for this prediction was set using the 95% prediction interval of 

the linear fit. As seen in Figure 5b, when this range is compared to the results of the 

bacteria-spiked pellets, all samples containing M. tuberculosis were found to exceed the 

upper bounds of the prediction interval. In contrast, the samples containing S. mutans 

remained within the normally expected bounds. This suggests that the upper bounds of 

the prediction interval can serve as a detection threshold that scales with the initial 

composition of the saliva.

Using a leave-one-sample-out cross-validation approach, the accuracy of the 

proposed detection method was assessed. As can be seen from the resulting confusion 

matrix (Figure 5c), the accuracy in detecting the presence M. tuberculosis was maintained 

at 100% for both the negative controls and the bacteria-spiked samples. This showcases 

that the observed linear relationship is robust enough that it is maintained despite the 

removal of a sample. However, it was observed that not being trained on certain samples 

resulted in small, but noticeable, shifts in the linear fit and the bounds of the prediction 

interval. While these shifts did not result in classification errors for the test samples, an 

assessment of the model’s training accuracy, made using the measurements of the 

bacteria-spiked samples paired to the training data (Figure 5d), found that the differences 

in the linear model caused some of the samples containing S. mutans to be inaccurately 

categorized as containing M. tuberculosis. This decrease in performance occurred when 

samples with higher lipid fractions were withheld from training, as their relative scarcity 

gave them more weight in the overall fit. As this relationship between raw and 

concentrated saliva becomes better characterized through an increased sample size, the 

potential impact that a single sample has on the model will be minimized. Additionally, 
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increasing the confidence level of the prediction interval would help prevent false positives 

at the risk of increased false negatives.

Despite this, however, the overall training accuracy of the model still displayed a 

strong performance with an average accuracy of 98.5%, positive predictive value of 

97.8%, and sensitivity of 100% and the worst performing fold maintaining a training 

accuracy of 81.8%, a positive predictive value of 80%, and a sensitivity of 100%. Taken 

together, it can be concluded that a combination of spectral unmixing analysis and linear 

regression is capable of detecting the presence of M. tuberculosis in human saliva, 

showcasing the potential of diagnostic approaches leveraging high-wavenumber Raman 

spectroscopy. 

However, there are a number of limitations that will need to be overcome to better 

establish the feasibility of using high-wavenumber Raman spectroscopy as a diagnostic 

tool for TB infection. The first limitation of this study centers on the type of samples used 

in this work. While spiking bacteria into human saliva mimics the complex fluid matrix that 

would be found in a clinical sample, it does not account for any changes that can be 

expected to occur due to an active TB infection. The cellular and biochemical composition 

of both the saliva and the M. tuberculosis are known to change in response to the immune 

response. While this work did account for variability in saliva composition between 

patients and fasting states, future work using confirmed clinical samples will be required 

to fully evaluate the effectiveness of the proposed technique. Second, before clinical 

samples can be effectively tested, the overall sensitivity of this high-wavenumber Raman 

approach will need to be determined. While this work demonstrated the potential to 

achieve high detection accuracies, the use of a concentration at the top of the reported 

range is not enough to draw conclusions about clinical viability as concentrations of M. 

tuberculosis in saliva have been reported to range down to as low as between 102 and 

103 CFU/mL.17,18 As such, future work will be required to fully determine the potential limit 

of detection. Third, current clinical tools for TB detection, such as the Xpert MTB/RIF 

assay and loop-mediated isothermal amplification for TB (LAMP-TB), can reach limits of 

detections between 10 and 102 CFU/mL.56,57 To realize these sensitivities using HWRS, 

future optimizations will be needed. These could include utilizing more effective methods 

of concentrating the saliva samples, improving the substrate’s ability to better localize the 
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bacteria within the measurement samples, and using larger laser spot sizes, potentially 

using a cheaper portable Raman spectrometer, to reduce the number of measurements 

that need to be taken on each sample. Alternatively, single-cell localization and 

measurement techniques using higher magnification objectives could be integrated into 

this approach to further improve the sensitivity and enable the determination of antibiotic 

resistance status, at the cost of requiring more complex instrumentation than the current 

approach.58–60 Despite these limitations, this work is the first to demonstrate the feasibility 

of using high-wavenumber Raman spectroscopy as a reagent-free and culture-free 

method of detecting M. tuberculosis directly in human saliva samples.

Conclusion
This study aimed to determine the feasibility of using high-wavenumber Raman 

spectroscopy to detect the presence of M. tuberculosis in human saliva. To achieve this, 

six fasting and six non-fasting saliva samples were collected from healthy human 

participants and used to create a series of measurement samples including raw saliva, 

negative control saliva pellets, and bacteria-spiked saliva pellets. Using spectral unmixing 

analysis, it was found that the presence of M. tuberculosis caused the bacteria-spiked 

saliva pellets to have a significantly greater Raman lipid fraction than the paired negative 

control. Additionally, substituting M. tuberculosis with the common oral bacterial species 

S. mutans eliminated this difference, indicating the specificity of this measurement. 

However, due to the inherent variability in the lipid content between saliva samples, a 

single threshold value to detect the presence of M. tuberculosis could not be found. 

Instead, a linear regression model was used to predict the Raman lipid fraction of a control 

pellet given the lipid fraction of its corresponding raw saliva. When compared to the 

bacteria-spiked samples, it was found that only samples containing M. tuberculosis had 

lipid fractions exceeding the 95% prediction interval. Using the upper bounds of this 

interval as a classification threshold, leave-one-sample-out cross-validation found that the 

model was able to accurately determine the presence of M. tuberculosis in all of the 

samples tested. Overall, this work showcases the potential of using high-wavenumber 

Raman spectroscopy as a point-of-care method of detecting M. tuberculosis in human 

saliva without the need for reagents or complex sample preparations.
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Figure 1. High-wavenumber Raman spectra for 
fasting and non-fasting human saliva compared 
to M. tuberculosis and S. mutans. Each spectra 
represents the mean (solid line) and standard 
deviation (shaded region) of the saliva samples 
(n=5) and bacterial cultures (n=3). Spectra are 
mean normalized and vertically offset for 
visualization.
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Figure 2. Raman map analysis of dried saliva droplets. (A) For each sample, a circle was 
inscribed between the center and the edge of the droplet, with measurements, denoted by black 
squares, made every 25 µm along the circumference, (B) In some locations, the signal-to-noise 
ratio (SNR) was too low to be usable. Spectra with an SNR above 8 (red) were kept for further 
analysis while those with SNR below 8 (blue) were discarded. (C) For each spectrum, spectral 
unmixing analysis was performed to determine the Raman lipid fraction.

Page 25 of 29 Sensors & Diagnostics

S
en

so
rs

&
D

ia
gn

os
tic

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
2/

20
25

 1
2:

21
:0

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5SD00092K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sd00092k


26

Figure 3. (A) High-wavenumber Raman spectra for the 8 components used in the spectral 
unmixing analysis. Components are categorized as either protein (purple), nucleic acid (gold), 
carbohydrate (orange), or lipid (blue). Representative spectral unmixing results for the raw saliva 
(B, E), control pellets (C, F), and bacteria-spiked pellets (D, G) for a set of samples spiked with 
M. tuberculosis (B-D) and S. mutans (E-G). Pure components (dotted lines) are grouped by 
biochemical category and are represented by the weighted sum of the individual components. 
The overall computed spectra (dashed line) represent the sum of each category multiplied. 
Percentage contributions reported in each legend are the average values across the Raman map 
measurement for each category. Individual spectra are normalized to their area-under-the-curve 
(AUC) for the unmixing analysis and the pure component spectra are offset for visualization.
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Figure 4. Comparison of the Raman mapping 
results for the negative control and bacteria-
spiked saliva pellets. M. tuberculosis presence 
significantly increased the Raman lipid fraction of 
both (A) fasting (F) and (B) non-fasting (NF) 
saliva samples. (C) Inclusion of S. mutans did not 
significantly alter the relative lipid concentration. 
(n.s. p > 0.05, *p < 0.05, ***p < 0.001).
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Figure 5. (A) Linear regression model used to 
predict the Raman lipid fraction of a pelleted 
saliva sample from a measurement of the raw 
saliva. (B) Comparing the bacteria-spiked pellets 
to the linear model found that samples containing 
M. tuberculosis exceeded the 95% prediction 
interval while those containing S. mutans 
remained within. A leave-one-sample-out cross-
validation of the model found (C) high 
classification accuracies and (D) high training 
accuracies when using the upper prediction 
interval as a classification threshold.
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Data Availability 

The data underlying this study are available in the published article. Additional data related to this 

research may be requested from the authors. 
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