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High-wavenumber Raman spectroscopy for the
detection of Mycobacterium tuberculosis in saliva

Alec B. Walter, ab Luke Whitehead,ab Amelia L. Taylorc and Andrea K. Locke *abc

Despite the increased availability of low-cost and effective treatments for tuberculosis (TB), ∼1 million

people continue to die from TB-related symptoms annually. One major challenge limiting the effectiveness

of TB treatment is delays in diagnosis, largely due to current detection methods requiring either weeks of

culture time or complex processing steps that cannot be performed at the point-of-care. Thus, there is a

need for alternative methods that are easier to use yet still effective in providing an accurate TB diagnosis.

This work investigates the feasibility of using high-wavenumber Raman spectroscopy to detect the

presence of the causative agent of TB, Mycobacterium tuberculosis, in human saliva. To accomplish this,

raw saliva was collected from healthy participants and inoculated with a fixed, physiologically relevant,

concentration of bacteria (106 CFU mL−1) and concentrated into a pellet. The samples were measured using

Raman spectroscopy and analyzed with a spectral unmixing approach to determine the relative

biochemical composition. The presence of M. tuberculosis resulted in a significant increase in the lipid

signal of saliva pellets containing the spiked bacteria, with a median percent increase of 423.6% as

compared to the control samples. Control experiments using Streptococcus mutans, a common oral

bacterium, only resulted in a slight increase of 9.8%. Additionally, using linear regression analysis, a

predictive relationship was found between the Raman lipid fractions of the raw saliva and the control saliva

pellets. Using the 95% prediction interval of this relationship as a classification threshold, the presence of

M. tuberculosis was accurately determined for all samples with an overall training accuracy of 98.5% and a

cross-validation accuracy of 100%. These results showcase the potential of high-wavenumber Raman

spectroscopy as a reagent-free method of detecting M. tuberculosis in saliva samples.

Introduction

Tuberculosis (TB) remains one of the top infectious diseases,
resulting in a high global burden. Despite the availability of
low-cost and effective TB treatment, annually, approximately
10 million people acquire TB, and over 1 million people die
from disease-related symptoms.1,2 During the COVID-19
pandemic, there was a rise in TB cases and deaths as well as
drug-resistant cases, according to the World Health
Organization.3 This may have been due to the disruption in
services and screening due to the COVID-19 focus.4 The
pathogen driving TB infections is Mycobacterium tuberculosis
(M. tuberculosis), a bacterial pathogen that is transmitted
through the air. One of the main challenges with TB
treatment is the late-stage diagnosis due to self-reported
symptoms not occurring until the late onset of the disease.5

Another challenge is the issue of latent TB (LTBI). The TB
pathogen is transmitted airborne and can live from three
months to two years in its host without active signs of the
disease. About 5–10% of LTBI cases will go on to develop
active TB which can then result in the spreading of the
disease to others.6 Typically, the first signs are noted in the
lungs, and then evidence of the disease can be found in other
parts of the body, detectable in bodily fluids such as urine,
blood, or saliva.7–10

The gold-standard tools for detecting bacterial infections
are not always translatable to the point of care for certain
pathogenic species. These techniques rely on culture-based
methods or molecular sensing for high accuracy.11 However,
culture-based methods can take days to grow for an adequate
pathogen count required for sensing, which limits
applicability for rapid detection in the field. In the case of M.
tuberculosis, it takes an estimated four to eight weeks for an
adequate colony count.12 Thus, alternative approaches for
detection are required, such as deoxyribonucleic acid (DNA)
amplification via polymerase chain reaction (PCR) or
immunoassays. While commercially-available, urine-based,
lipoarabinomannan (LAM) antigen tests are an easy-to-use,
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rapid diagnostic, they suffer from poor sensitivity (<50%),
especially for individuals who are not HIV positive or those
with high white blood cell counts.13 Overall, immunoassays
such as the antigen-based test either lack sensitivity or
specificity (<70%), while the skin test has a high rate of false
positives. PCR-based techniques such as the Xpert tests are
complex, requiring multiple reagents, buffers, and standards
for accurate diagnosis, resulting in a high financial cost.
Thus, there is still a need for cost-effective, easy-to-use,
culture-free platforms that deliver robust and accurate
pathogen detection at the point of care.

Another challenge is the type of sample collected to
confirm the presence of the M. tuberculosis. The most
common practice is the assessment of sputum samples from
suspected patients. However, sputum samples, acquired in a
cough-like manner, can be difficult to produce by most
patients and present additional safety concerns for healthcare
workers. Moreover, children and those living with HIV are
often unable to provide this type of sample.14,15 This leads to
a need for alternative sample types that are less invasive but
still effective in allowing for a proper TB diagnosis. In recent
years, tongue swabs and saliva samples have been examined
as alternative samples for the detection.16 Oral swabs analysis
(i.e., tongue swabs) and saliva testing, is known to be faster,
safer, and easier to collect compared to sputum. However,
these samples have also been shown to carry a significantly
smaller bacterial load, averaging around 1% the amount
found in sputum samples.17–21 Despite this, researchers have
shown sensitivity between 65–90% and specificity between 95–
100% when analyzing tongue swabs versus sputum using the
Xpert PCR analysis system with the sputum reference
standard.22 Other researchers have examined saliva samples
as another alternative approach to sputum collection since it
was widely used for rapid detection of COVID-19 pathogen. In
general, the analysis of saliva has proven to be comparable in
sensitivities in the low 90% for HIV-negative cases.23 One
drawback is both methods utilized a form of PCR to assess the
presence of the M. tuberculosis. Access to Xpert PCR systems is
still limited due to cost, and the turn-around time for sample
analysis is much greater than 20 minutes, which is not ideal
based on the World Health Organization criteria. Therefore,
the call for new diagnostic tools for detecting M. tuberculosis
in a variety of sample types was a challenge put forth in
2018.24 In addition, the need for rapid, culture-free
technologies could potentially help the early detection of the
vast majority of TB cases that typically go undetected for long
periods of time. Herein, we assessed the design a culture-free
platform using high-wavenumber Raman spectroscopy for
rapid detection of the pathogen using its biochemical
“fingerprint”.

Raman spectroscopy (RS) is an analytical technique that
provides a unique spectral fingerprint representative of the
biochemical components of a specimen, based on light
interaction with the chemical bonds within a sample. This
interaction results in inelastic scattering when the frequency
of the input light is close to the chemical bonds' vibrational

frequencies.25 For biological applications, RS has been well-
documented for the analysis of biomolecules such as lipid
membranes, proteins, amino acids, carbohydrates, nucleic
acids, and glucose, amongst others.26 It has a wide range of
applications, from in vivo detection of cancerous tissues and
inflammatory sites to ex vivo application of bacterial
differentiation, including drug-resistant strains.27–30 Overall,
Raman spectroscopy is a label-free, non-destructive method
that can be used in vivo or ex vivo for rapid assessment of
collected tissue specimens or biofluids.31,32

While most biological Raman studies have utilized the
fingerprint region (400–1800 cm−1) of the spectrum due to its
multiple discrete peaks, there has been an increased interest
in using the high-wavenumber region (2800–3800 cm−1)
instead. This is because the high-wavenumber region has
been shown to provide significantly stronger Raman
intensities, as compared to the autofluorescence background,
without the need to include external agents, such as with
surface-enhanced Raman spectroscopy.32 This results in an
improvement in the accuracy of spectral processing and a
decrease in the required measurement times when
specifically designed spectrometers are used. Additionally,
despite only having two major Raman bands that are
representative of oxygen–hydrogen bonds and carbon–
hydrogen (–CHx) bonds, the high-wavenumber region has
been shown to provide comparable diagnostic accuracies as
the fingerprint region, indicating that these two bands are
similarly rich in biochemical information.33–35 Moreover, the
high-wavenumber Raman peak at 2850 cm−1 is characteristic
of lipids and not shared with the other classes of
biomolecules.26,36 This is in contrast with the fingerprint
region which has greater number of lipid-associated peaks
that commonly overlap with those of proteins and
carbohydrates.26,36,37 These overlaps can confound the
detection of lipids in complex media, especially when they
are at relatively lower concentrations. As Mycobacterium
species are characterized by their cell wall-associated lipids,
known as mycolic acids, the ability to easily measure the
presence of lipids with high-wavenumber Raman
spectroscopy is expected to further improve the capability of
detecting M. tuberculosis in a biologically complex
envirnonment.38–41

Herein, we demonstrate the feasibility of utilizing high-
wavenumber RS (HWRS) for the detection of M. tuberculosis
strain H37Ra spiked in human saliva samples. We show that
the HW spectra of the bacteria generate a strong lipid-based
spectrum, which we believe is associated with its mycolic acid
components. We also show that using a non-negative least-
squares spectral unmixing approach with known endmember
spectra, we can determine the fraction of lipids present
within the pelleted cells of the saliva and use this fraction to
detect the presence of the biochemical fingerprint of the
bacteria. This work demonstrates the potential for HWRS to
be used as a label-free method for detecting TB, requiring no
reagents and minimal sample preparation for translation to
point-of-care applications.
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Experimental
Participant recruitment and saliva collection

This study was approved by the Vanderbilt University Medical
Center Institutional Review Board (IRB #191004) and written
informed consent was obtained from each participant prior
to collection. All associated protocols and methods were
performed in accordance with approved guidelines and
regulations, and in accordance with the Declaration of
Helsinki and its amendments. For this work, 9 participants
with no known oral diseases were recruited after obtaining
written informed consent. Saliva collection was performed by
asking participants to slowly spit into a sterile collection tube
(5016.02, Salimetrics) without stimulating the production of
saliva or rinsing out the mouth. In total, 12 saliva samples
were collected and utilized in this work. Half of these
samples were collected from the participants in a non-fasting
state, usually after midday. The other half of the samples
were collected with the participants in a fasting state. This
was accomplished by providing the participants with sterile
collection tubes and asking them to collect a sample
themselves the following morning before eating or
performing any oral hygiene. Once received, the samples
were aliquoted and stored at −80 °C until used.

Bacterial species and culturing

The H37Ra strain of Mycobacterium tuberculosis (ATCC
#25177) and the UA159 strain of Staphylococcus mutans (S.
mutans; ATCC #700610), a bacterial species commonly found
in the oral cavity, were used in this work.42 Liquid cultures of
M. tuberculosis were made by diluting 0.5 mL of frozen stock
into 9.5 mL of Middlebrook 7H9 broth (M0178, Millipore
Sigma) supplemented with 10% albumin-dextrose-catalase
growth supplement (BD 211887, Fisher Scientific), 0.2%
glycerol (G7893, Sigma- Aldrich), and 0.1% Tween-80 (P4780,
Sigma-Aldrich). Cultures were grown for 6 days on a rolling
incubator at 37 °C and 5% CO2. S. mutans was cultured from
frozen stock on brain heart infusion (BD 237500, Fisher
Scientific) agar plates at 37 °C and 5% CO2 for 24 hours.
Liquid cultures were made by collecting and inoculating
single colonies into 3 mL of brain heart infusion broth and
incubating for an additional 24 hours. All liquid cultures
were arrested at 4 °C for at least 24 hours prior to use.

High-wavenumber Raman characterization

Before being used together, high-wavenumber Raman spectra
of the fasting saliva, non-fasting saliva, and bacterial species
were determined. Whole saliva samples were prepared
without any additional processing by depositing three 1 μL
droplets onto an aluminum foil-coated (Reynolds Wrap,
Reynolds) microscope slide and allowing them to dry for at
least 5 minutes. This process was repeated for each of the
collected saliva samples. To prepare the bacterial cultures for
measurement, they were first washed to remove the liquid
media. 1 mL culture samples were washed twice with sterile

phosphate-buffered saline, centrifuging at 3300g for 8
minutes each time. To maximize the signal collected from
the bacteria, the bacterial pellet was isolated by centrifuging
a third time and removing the supernatant. Similar to the
saliva, samples were prepared by depositing three 1 μL
droplets of the bacterial pellet onto an aluminum foil-coated
microscope slide. This process was repeated three time for
both species, using a different culture each time to account
for any biological variability.

High-wavenumber Raman measurements of the dried
saliva and bacteria samples were acquired using a Renishaw
inVia Qontor Raman microscope with a 785 nm excitation
laser. The wavenumber axis for the system was calibrated
before each set of measurements using an internal silicon
standard. Sample spectra were acquired using a 50×/0.5NA
objective which supplied ∼90 mW of laser power at the
sample. Each measurement was obtained using a total
integration time of 50 seconds (5 accumulations with 10
seconds of exposure) to compensate for the low quantum
efficiency of the detector across the measurement range.
Three spectra were acquired along the edge of each dried
droplet where the material was thickest, resulting in 9 total
spectra per sample.

Spectral preprocessing

All acquired high-wavenumber Raman spectra were
preprocessed prior to analysis. Collected spectra were first
calibrated against the spectral response of the system using a
785 nm luminescence standard reference material (SRM
2242, NIST), before being truncated from 2765 to 3205 cm−1.
The autofluorescence background of the measurements were
removed using a 1st order polynomial estimate obtained
through the modified polynomial method.43 Background
estimation was performed while excluding the region from
2800 and 3100 cm−1 to prevent the strong –CHx band from
influencing the shape of the estimated background. Noise
reduction was accomplished by smoothing the resulting
Raman spectra using a 2nd order Savitsky–Golay filter with a
window size of 11, corresponding to a spectral width of
approximately 8.25 cm−1, matching established smoothing
parameters for fingerprint Raman spectra.44 Lastly, to isolate
the –CHx band for further analysis, the resulting spectra were
binned using a 1 cm−1 bin-width and truncated between 2800
and 3100 cm−1.

Saliva sample preparation

Prior to use, arrested bacterial cultures were removed from
storage and washed twice using sterile deionized water
containing 0.001% Tween-80. Optical density readings at 600
nm were made on the washed cultures to quantify the
bacterial concentrations. The concentrations of the measured
cultures were subsequently adjusted to be 2 × 107 CFU mL−1.
This process was kept consistent for both M. tuberculosis and
S. mutans. After preparing the bacterial culture, a saliva
sample was removed from −80 °C storage and allowed to
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thaw at room temperature. Once completely liquid, the saliva
was vortexed for 2–3 seconds to ensure homogenization
before aliquoting 95 μL into two sterile microcentrifuge
tubes. Using these two aliquots, three different measurement
samples were made for each saliva sample.

In one of the tubes, 5 μL of sterile deionized water
containing 0.001% Tween-80 was added to serve as a negative
control. In the other, 5 μL of the washed 2 × 107 CFU mL−1

M. tuberculosis culture was spiked into the saliva, resulting in
final sample concentration of 106 CFU mL−1. This represents
the upper range reported for the M. tuberculosis load in
saliva, tongue-swab, and other non-sputum oral samples
during an active infection.17–21 As such, it serves as an ideal
concentration for this feasibility study by falling within
physiological parameters while providing a sensitivity buffer
for the new and unoptimized diagnostic approach. For the
first measurement sample, designated as the raw saliva
sample, a 1 μL droplet of the spiked saliva was dropped onto
a microscope slide coated with non-stick aluminum foil
(Reynolds Wrap Nonstick, Reynolds) and allowed to dry. Non-
stick aluminum foil was utilized as its modestly hydrophobic
nature serves to reduce the size of the dried droplet, thus
increasing the effective concentration, while contributing
minimal background to the Raman measurement. After
plating the raw saliva sample, both saliva tubes were
concentrated by centrifuging at 3300g for 5 minutes,
removing 95% of the total volume from the supernatant, and
resuspending the cellular pellet. Similar to the raw saliva
sample, a 1 μL droplet from both the bacteria-containing
pellet sample and the control pellet sample was placed on
the nonstick aluminum foil and allowed to dry. In total, this
process was repeated for 4 of the fasting saliva samples and 4
of the non-fasting saliva samples. The remaining 4 sets of
saliva were used to create a set of control samples where
everything was kept the same except that the M. tuberculosis
was replaced with the same concentration of S. mutans.

Raman mapping

High-wavenumber Raman spectra of the raw, control pellet,
and bacteria-containing pellet samples were acquired using a
Renishaw inVia Qontor Raman microscope. As the
localization of the bacteria within the dried droplets is
unknown, measurements were taken across all relative radial
locations throughout the droplets. This was accomplished by
collecting a Raman map consisting of a series of
measurements around the edge of a circle inscribed between
the center and the edge of the droplet (see Fig. 2).
Measurements were taken 25 μm apart using LiveTrack, the
automatic focus tracking feature built into WiRE 5.6
(Renishaw), to account for variable sample height across the
droplet. Measurements at each location were acquired in a
similar manner as was previously described. A 50×/0.5NA
objective was used to supply ∼90 mW of 785 nm laser power
to the sample, and high-wavenumber Raman measurements
were acquired using a total of 3 accumulations with 10

seconds of exposure each. Each spectrum was preprocessed
using the same methodology as described above except that
the spectra were smooth using an increased Savitzky–Golay
windows size of 21, corresponding to an approximate spectral
width of 15.75 cm−1. While this is wider than what is
traditionally used, the spectral features of the high-
wavenumber region are, on average, broader than the
fingerprint region. Therefore, it was found that this
combination of order and window size minimized the
increased noise present in the mapping measurements
without significantly altering the shape or intensity of the
–CHx band. However, some of the measurements in the map
were found to have too low of a Raman signal to be usable,
even after smoothing, due to a lack of sample material or
inadequate autofocusing at different locations across the
region of interest. To account for such measurements, the
signal-to-noise ratio (SNR) of each spectrum was determined
before any smoothing was applied. SNR was approximated as
the average Raman value between 2910 and 2950 cm−1, the
major protein-dominated peak of the –CHx band, divided by
the standard deviation of the values found with the lower
signal region between 3000 and 3100 cm−1. Spectra that were
found to have an SNR less than 8 were excluded from any
subsequent analysis.

Spectral unmixing analysis

To approximate the composition of the dried saliva samples, a
total of 8 pure components were selected across the 4 major
biochemical categories of proteins, nucleic acids, carbohydrates,
and lipids.35 Salivary proteins were represented by amylase
(A3176, Sigma-Aldrich) and γ-globulin (G5009, Sigma-Aldrich),
two of the most abundant proteins found in saliva, while bovine
serum albumin (A2153, Sigma-Aldrich) was used to approximate
the remaining population of general proteins.45 DNA (D1501,
Sigma-Aldrich) was used to represent any nucleic acids found in
saliva, while carbohydrates were represented by glycogen
(G0855, Sigma-Aldrich). As the focus of this analysis, three
different lipid components were used to account for any
potential sources of variability. Oleic acid (364525, Sigma-
Aldrich) was used as the representative free fatty acid, the most
common type of salivary lipid, while phosphatidylethanolamine
(PE; P1223, Sigma-Aldrich) was chosen to represent the less
common polar salivary lipids.46 Finally, to account for the
unique Mycobacterium lipid inclusion, the most abundant form
of mycolic acid produced by M. tuberculosis, α-mycolic acid
(791280; Avanti Research), was also included.39 High-
wavenumber Raman spectra of the pure components were
acquired and processed using the methodology described
above. Three separate spectra were taken for each component,
with the average of the normalized spectra being used as the
endmembers in the subsequent spectral unmixing analysis.

Spectral unmixing analysis was performed on each viable
spectrum obtained from the Raman maps using a non-negative
least-squares approach.35 Prior to analysis, both the target and
component spectra were normalized such that their respective
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area-under-the-curves (AUC) were equal to 1. This helps to
directly approximate the fractional contributions each
component has to the measured Raman spectra. All eight
components described above were used as the endmembers to
spectrally unmix each high-wavenumber Raman measurement
of the different Raman maps. The overall fitting error for each
spectrum was determined by summing the absolute residuals
and multiplying by 100. Due to the AUC normalization, this
metric approximates the absolute percentage fitting error. After
unmixing, the individual component contributions were
combined to obtain an estimate of the Raman fractions
originating from the broader biochemical classes.

Statistical analysis and detection model

The Raman lipid fractions, obtained from the spectral
unmixing analysis, of the paired control and bacteria-spiked
pellet samples were compared against each other using a
Wilcox rank sum test. The change in the relative lipid content
caused by the centrifugation and concentration of the saliva
was assessed using linear regression analysis with individual
samples represented by the average Raman lipid fraction
across their viable map measurements. The linear regression
compared the values of the raw saliva samples to that of their
respective control pellet sample, fixing the intercept at 0
under the assumption that having no detectable lipid signal
in the raw saliva would result in the same for the
concentrated sample.

In addition to the linear fit, the 95% prediction interval (α
= 0.05) of the regression was determined and compared to
the results of the bacteria-spiked samples. To evaluate if this
relationship could be used to detect the presence of M.
tuberculosis, the upper bound of the prediction interval was
set as the classification threshold, with values exceeding the
interval being categorized as containing M. tuberculosis. The
performance of this classification model was assessed using
a leave-one-sample-out cross-validation. For each fold of the
cross-validation, both the control pellet and the bacteria-
spiked pellet from the test sample were classified. To further
assess the model's performance, an analysis of the training
accuracy was conducted in parallel with the cross-validation.
This was accomplished by classifying each of the bacteria-
spiked samples that were paired with the training data, for
each fold of the cross-validation. While not a direct metric of
performance, this analysis provides insight into the
robustness of the model by determining if any significant
changes are occurring in the construction of the model due
to withholding specific training data.

Results and discussion
High-wavenumber characterization

To assess the feasibility of using high-wavenumber Raman
spectroscopy to detect the presence of M. tuberculosis in saliva,
an initial characterization of saliva collected before and after a
minimum 6-hour overnight fast was performed. As seen in
Fig. 1, overnight fasting had minimal effects on the high-

wavenumber Raman spectra, with both fasting and non-fasting
samples remaining primarily protein dominant with the
commonly associated peak at 2935 cm−1.26,47 However, it was
observed that fasting served to reduce the spectral differences
between the saliva samples, particularly around the 2850 and
2975 cm−1 shoulders, which are indicative of lipid and protein/
nucleic acid content, respectively.26,36,37 This variability could
become impactful when trying to detect M. tuberculosis as the
primary feature that distinguishes the pathogen from saliva is a
strong 2850 cm−1 lipid peak (Fig. 1). The strength of this peak,
which also distinguishes it from other oral bacteria like S.
mutans, is likely due to the abundance of mycolic acids, which
are long-chain fatty acids that Mycobacterium species
incorporate into their cell walls.39 The presence of mycolic acids
has been shown to be indicative of M. tuberculosis infection,
and improved detection methods are being investigated.38,40,41

With the high-wavenumber lipid peak having minimal overlap
with other biological components, and the observed low lipid
content of human saliva, these results support the potential for
rapid and nondestructive detection of M. tuberculosis, or its
shed mycolic acids, in saliva samples using HWRS.

Saliva Raman maps

To assess the use of HWRS for M. tuberculosis detection in
saliva, the pathogen was spiked at physiologically relevant
concentrations and Raman maps were performed across the

Fig. 1 High-wavenumber Raman spectra for fasting and non-fasting
human saliva compared to M. tuberculosis and S. mutans. Each spectra
represents the mean (solid line) and standard deviation (shaded region)
of the saliva samples (n = 5) and bacterial cultures (n = 3). Spectra are
mean normalized and vertically offset for visualization.
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dried droplets to mitigate any variation in biochemical signal
due to heterogeneous drying. A representation of the
processing steps for the Raman spectral maps is show in
Fig. 2. With each map taking the form of a circle inscribed
between the center and edge of the dried droplet, sampling
was achieved across all relative radial distances. Due to
differences in spot sizes between the dried saliva samples,
the total number of measurements taken varied between
samples, with an average number of 67 per sample. Out of
these, a number of Raman measurements were unusable due
to a poor signal-to-noise ratio. This was caused by both bare
spots, where minimal solid materials were deposited, and
thicker regions where too much material was deposited and
the autofocus could not work against the dominance of the
reflective substrate. Using a threshold value of 8 for an
acceptable SNR, an average of 70% of points in each map
were deemed viable and used for further analysis. Overall,
the remaining Raman spectra had an average SNR of 13.3,
with a standard deviation of 2.64.

From these usable portions of the Raman maps, no
particular region of the dried droplets was found to contain
more of the M. tuberculosis induced lipid signal than the
others. This indicates that the bacteria and their lipid
products are accumulating throughout the entirety of the
droplet. This is likely a consequence of the material
properties of the substrate, including the hydrophobicity

and the surface roughness, acting together to suppress the
coffee ring effect.48 Additionally, ellipsoidal particles, such
as the rod-shaped M. tuberculosis, have also been shown to
inhibit the formation of coffee rings, leading to a more
uniform deposition during droplet drying.49 As such, it can
be concluded that no singular region of the droplet should
be used alone. Instead, measurements approaching averages
of the entire droplet should be utilized to account for any
variances in the deposition location of the bacteria. For this
work, all viable measurements within the map are used,
with average results representing the sample as a whole.
Future work using this approach will aim to leverage low
magnification, large spot size measurements to sample
most, if not all, of the droplet at once. This can be paired
with optimization of both the physical properties of the
substrate and the droplet drying conditions to enable more
direct control of the coffee ring effect, ultimately improving
the consistency and concentration of the deposited
particles.

Spectral unmixing

After acquiring the Raman maps, spectral unmixing analysis
was performed on the viable spectra, using 8 pure biochemical
components, to determine the Raman lipid fractions of each
droplet.35 The –CHx bands for the protein, nucleic acid,

Fig. 2 Raman map analysis of dried saliva droplets. (A) For each sample, a circle was inscribed between the center and the edge of the droplet,
with measurements, denoted by black squares, made every 25 μm along the circumference, (B) in some locations, the signal-to-noise ratio (SNR)
was too low to be usable. Spectra with an SNR above 8 (red) were kept for further analysis while those with SNR below 8 (blue) were discarded.
(C) For each spectrum, spectral unmixing analysis was performed to determine the Raman lipid fraction.
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carbohydrate, and lipid components used in the spectral
unmixing analysis can be found in Fig. 3A. These four
biochemical classes cover the majority of the spectral variation
observed within the –CHx band of biological samples. While a
single representative biomolecule is expected to be sufficient to
capture the nucleic acid and carbohydrate contribution of the
saliva spectra, an increased number of protein and lipid
components were used to account for the more nuanced
spectral differences that can occur between samples. Since
protein is the primary component of dried saliva, differences in
the relative protein content can have significant effects on the
overall spectral shape which, if unaccounted for, can severely
diminish overall fit accuracy.45 Additionally, as the primary goal
of this analysis is to determine the lipid content of the sample,

accounting for the spectral differences between the polar
salivary lipids, non-polar salivary lipids, and mycolic acids
expected in the samples is critical.46

The chosen pure components yielded accurate spectral fits
for all samples when used as the endmembers of the spectral
unmixing analysis, as evidenced by the representative result
presented in Fig. 3 that show the computed spectra to closely
match the measured spectra. Despite variations in composition
between saliva samples, the average relative fitting errors across
all analyzed spectra were consistently close to 5% for the raw
saliva (5.98%), control pellet (5.65%), and bacteria-spiked pellet
(4.97%) samples. This represents an improvement to the fitting
accuracy obtained from using the same approach for fingerprint
spectra, likely due to the lower molecular specificity of the high-

Fig. 3 (A) High-wavenumber Raman spectra for the 8 components used in the spectral unmixing analysis. Components are categorized as either
protein (purple), nucleic acid (gold), carbohydrate (orange), or lipid (blue). Representative spectral unmixing results for the raw saliva (B and E),
control pellets (C and F), and bacteria-spiked pellets (D and G) for a set of samples spiked with M. tuberculosis (B–D) and S. mutans (E–G). Pure
components (dotted lines) are grouped by biochemical category and are represented by the weighted sum of the individual components. The
overall computed spectra (dashed line) represent the sum of each category multiplied. Percentage contributions reported in each legend are the
average values across the Raman map measurement for each category. Individual spectra are normalized to their area-under-the-curve (AUC) for
the unmixing analysis and the pure component spectra are offset for visualization.
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wavenumber region allowing the spectra of the selected
representative biomolecules to better approximate the spectral
shapes of the components within the saliva samples.50–52 This
has enabled the direct spectral unmixing approach to achieve
reconstruction errors on par or better than those obtained when
using automated endmember retrieval strategies on fingerprint
spectra.53,54 As expected, all samples were found to be
predominantly protein-based (61.3–92.2%), with varying levels
of contribution attributed to nucleic acids, carbohydrates, and
lipids. Across the 12 raw saliva samples, most were determined
to have a minimal lipid fraction of 2% or less. As lipids have a
higher Raman cross-section in the -CHx region compared to the
other classes of biomolecules, this represents an even smaller
fraction of the overall mass.36 However, a quarter of the
samples, including both fasting and non-fasting samples, were
found to have a much higher lipid fraction, ranging from 5 to
11%, than what was expected for normal saliva composition.46

These increased values are likely due to either increased
cellularity or remnant food debris within the samples, as no
rinsing was performed prior to saliva collection. While this
results in a greater variability in the measured samples, oral
rinsing has been shown to affect the relative prevalence of
bacteria within saliva sample, such procedures should likely be
avoided for the diagnostic detection of M. tuberculosis until their
effects are better understood.55

Despite these differences in the raw saliva composition,
comparisons between the negative control and bacteria-
spiked pellet samples (Fig. 4) found that the inclusion of M.
tuberculosis resulted in a significant increase in the Raman
lipid fraction for both fasting and non-fasting saliva, with a
median percent difference of 423.6%. Additionally, it was
found that saliva spiked with the same concentration of S.
mutans did not lead to a correspondingly significant increase
in the Raman lipid fraction, with a median percent difference
of only 9.8%. This indicates that the high lipid content of M.
tuberculosis, thought to be due to their mycolic acids, induces
a specific and detectable increase in the relative lipid content
of concentrated saliva, when present at concentrations that
have been reported during infection.17–21 However, due to the
variability observed in the amount of lipid present between
samples, a single threshold value capable of determining M.
tuberculosis presence could not be set. Moreover, as paired
control saliva will not exist in a diagnostic setting to compare
against, another approach that takes into account this
inherent variability in saliva composition is required.

Linear regression model

As the variability in the lipid content was observed in both the
concentrated and unconcentrated samples, it was hypothesized
that a raw saliva measurement could be used to predict the
expected lipid content of the saliva pellet. To understand how
the concentration process alters the observed lipid fraction, the
relationship between the raw saliva and the control saliva pellet
measurements was assessed using linear regression. For the 12
samples used in this work, a strong linear relationship (R2 =

0.994) was found between the two sets of values with a fixed
intercept through 0 and a slope of 1.647 (Fig. 5A). Using this
relationship, measurement of a raw saliva sample can be used
to predict the lipid fraction of the corresponding pelleted
sample. To account for processing, sampling, and other
unknown sources of variability that may occur between
samples, a range of acceptable values for this prediction was set
using the 95% prediction interval of the linear fit. As seen in
Fig. 5B, when this range is compared to the results of the
bacteria-spiked pellets, all samples containing M. tuberculosis
were found to exceed the upper bounds of the prediction
interval. In contrast, the samples containing S. mutans
remained within the normally expected bounds. This suggests
that the upper bounds of the prediction interval can serve as a
detection threshold that scales with the initial composition of
the saliva.

Fig. 4 Comparison of the Raman mapping results for the negative
control and bacteria-spiked saliva pellets. M. tuberculosis presence
significantly increased the Raman lipid fraction of both (A) fasting (F)
and (B) non-fasting (NF) saliva samples. (C) Inclusion of S. mutans did
not significantly alter the relative lipid concentration. (n.s. p > 0.05, *p
< 0.05, ***p < 0.001).
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Using a leave-one-sample-out cross-validation approach,
the accuracy of the proposed detection method was assessed.
As can be seen from the resulting confusion matrix (Fig. 5C),
the accuracy in detecting the presence M. tuberculosis was
maintained at 100% for both the negative controls and the
bacteria-spiked samples. This showcases that the observed
linear relationship is robust enough that it is maintained
despite the removal of a sample. However, it was observed
that not being trained on certain samples resulted in small,
but noticeable, shifts in the linear fit and the bounds of the
prediction interval. While these shifts did not result in
classification errors for the test samples, an assessment of
the model's training accuracy, made using the measurements
of the bacteria-spiked samples paired to the training data

(Fig. 5D), found that the differences in the linear model
caused some of the samples containing S. mutans to be
inaccurately categorized as containing M. tuberculosis. This
decrease in performance occurred when samples with higher
lipid fractions were withheld from training, as their relative
scarcity gave them more weight in the overall fit. As this
relationship between raw and concentrated saliva becomes
better characterized through an increased sample size, the
potential impact that a single sample has on the model will
be minimized. Additionally, increasing the confidence level
of the prediction interval would help prevent false positives
at the risk of increased false negatives.

Despite this, however, the overall training accuracy of the
model still displayed a strong performance with an average
accuracy of 98.5%, positive predictive value of 97.8%, and
sensitivity of 100% and the worst performing fold maintaining
a training accuracy of 81.8%, a positive predictive value of 80%,
and a sensitivity of 100%. Taken together, it can be concluded
that a combination of spectral unmixing analysis and linear
regression is capable of detecting the presence of M. tuberculosis
in human saliva, showcasing the potential of diagnostic
approaches leveraging high-wavenumber Raman spectroscopy.

However, there are a number of limitations that will need
to be overcome to better establish the feasibility of using
high-wavenumber Raman spectroscopy as a diagnostic tool
for TB infection. The first limitation of this study centers on
the type of samples used in this work. While spiking bacteria
into human saliva mimics the complex fluid matrix that
would be found in a clinical sample, it does not account for
any changes that can be expected to occur due to an active
TB infection. The cellular and biochemical composition of
both the saliva and the M. tuberculosis are known to change
in response to the immune response. While this work did
account for variability in saliva composition between patients
and fasting states, future work using confirmed clinical
samples will be required to fully evaluate the effectiveness of
the proposed technique. Second, before clinical samples can
be effectively tested, the overall sensitivity of this high-
wavenumber Raman approach will need to be determined.
While this work demonstrated the potential to achieve high
detection accuracies, the use of a concentration at the top of
the reported range is not enough to draw conclusions about
clinical viability as concentrations of M. tuberculosis in saliva
have been reported to range down to as low as between 102

and 103 CFU mL−1.17,18 As such, future work will be required
to fully determine the potential limit of detection. Third,
current clinical tools for TB detection, such as the Xpert
MTB/RIF assay and loop-mediated isothermal amplification
for TB (LAMP-TB), can reach limits of detections between 10
and 102 CFU mL−1.56,57 To realize these sensitivities using
HWRS, future optimizations will be needed. These could
include utilizing more effective methods of concentrating the
saliva samples, improving the substrate's ability to better
localize the bacteria within the measurement samples, and
using larger laser spot sizes, potentially using a cheaper
portable Raman spectrometer, to reduce the number of

Fig. 5 (A) Linear regression model used to predict the Raman lipid
fraction of a pelleted saliva sample from a measurement of the raw
saliva. (B) Comparing the bacteria-spiked pellets to the linear model
found that samples containing M. tuberculosis exceeded the 95%
prediction interval while those containing S. mutans remained within. A
leave-one-sample-out cross-validation of the model found (C) high
classification accuracies and (D) high training accuracies when using
the upper prediction interval as a classification threshold.
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measurements that need to be taken on each sample.
Alternatively, single-cell localization and measurement
techniques using higher magnification objectives could be
integrated into this approach to further improve the
sensitivity and enable the determination of antibiotic
resistance status, at the cost of requiring more complex
instrumentation than the current approach.58–60 Despite
these limitations, this work is the first to demonstrate the
feasibility of using high-wavenumber Raman spectroscopy as
a reagent-free and culture-free method of detecting M.
tuberculosis directly in human saliva samples.

Conclusion

This study aimed to determine the feasibility of using high-
wavenumber Raman spectroscopy to detect the presence of M.
tuberculosis in human saliva. To achieve this, six fasting and six
non-fasting saliva samples were collected from healthy human
participants and used to create a series of measurement
samples including raw saliva, negative control saliva pellets,
and bacteria-spiked saliva pellets. Using spectral unmixing
analysis, it was found that the presence of M. tuberculosis
caused the bacteria-spiked saliva pellets to have a significantly
greater Raman lipid fraction than the paired negative control.
Additionally, substituting M. tuberculosis with the common oral
bacterial species S. mutans eliminated this difference, indicating
the specificity of this measurement. However, due to the
inherent variability in the lipid content between saliva samples,
a single threshold value to detect the presence of M. tuberculosis
could not be found. Instead, a linear regression model was used
to predict the Raman lipid fraction of a control pellet given the
lipid fraction of its corresponding raw saliva. When compared
to the bacteria-spiked samples, it was found that only samples
containing M. tuberculosis had lipid fractions exceeding the 95%
prediction interval. Using the upper bounds of this interval as a
classification threshold, leave-one-sample-out cross-validation
found that the model was able to accurately determine the
presence of M. tuberculosis in all of the samples tested. Overall,
this work showcases the potential of using high-wavenumber
Raman spectroscopy as a point-of-care method of detecting M.
tuberculosis in human saliva without the need for reagents or
complex sample preparations.
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