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Single extracellular vesicles (EVs) carry molecular signatures from their cell of origin, making them a pivotal

non-invasive biomarker for cancer diagnosis and monitoring. However, analyzing the complex data

associated with single-EVs, such as fingerprints generated via Surface-enhanced Raman Spectroscopy

(SERS), remains challenging. To address this, a thorough comparison of machine learning models'

implementations and their accuracy classification optimization is presented. A comprehensive single-EV

spectral library collected with a SERS-assisted nanostructured platform including cell lines, healthy controls,

and cancer patient samples is used. The performance of different learning models (random forests, support

vector machines, convolutional neural networks, and linear regression as reference) was assessed for

cancer detection tasks: i) multi-cell line classification and ii) cancerous versus non-cancerous binary

classification. To improve their accuracy, we optimized spectra preprocessing, artificially increased the

dataset, and implemented feature-driven classification. In sum, these methods enabled more interpretable

models to perform on par with the complex one, increasing accuracy up to 12% percent-age points, even

with datasets reduced to 66% of the original size. Achieving accuracies of 83% and 91% for Task-i and

Task-ii, respectively.

Machine learning (ML) is a vast field encompassing various
statistical models and algorithms which enable
computational “learning” from large quantities of data,
allowing computers to make predictions on a variety of tasks.
ML models “learn” by iteratively adjusting their parameters in
response to data, this is known as “training”.1 Deep learning,
a subset of ML, comprises models which use many levels of
feature representation (deep models) to facilitate modeling of
highly complex systems.2 ML algorithms are capable of
analyzing large quantities of data with high dimensionality,
uncovering patterns that may be invisible to the human eye,
and allowing for more accurate modelling of complex non-
linearities.1–3

There has recently been increasing interest in the use of
ML models in medicine and biomedical research, where they
have a wide range of potential applications.4–6 Biosensors in

particular, would strongly benefit from this integration, as
ML can help overcome issues such as low signal-to-noise
ratio, overlapping analyte signals, and variability in samples
or operating conditions in point-of-care (POC) settings.3,7,8

ML capabilities have been applied in electrochemical and
fluorometric and colorimetric biosensor to replace complex
circuit models and image analysis at POC.3,9–13 For
biosensors with spectroscopic readout, such as Surface-
Enhanced Raman Spectroscopy (SERS), ML can facilitate
analysis of highly dimensional spectroscopic data and can
help compensate for variability inherent to SERS like the
varying orientation of molecules on the SERS surface.2,3,14

SERS specifically has emerged as a powerful diagnostics tool,
most recently showing potential for the diagnosis of cancer
through analysis of extracellular vesicles (EVs). EVs are
nanosized vesicles secreted by cells (including cancerous)
into bodily fluids. The potential to use EVs as cancer
biomarkers is due to their composition and contents being
signatures of their cell of origin.14 Their wide presence in
body fluids and longer-term stability, makes them an
attractive option for minimally-invasive cancer detection.
Liquid biopsy enables simple and minimally invasive sample
collection of EVs from biofluids, such as blood.15,16 Relative
to medical imaging, liquid biopsy can be performed routinely
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as part of regular patient care, facilitating early detection
which is key to improving patient survival and reducing the
need for invasive and costly treatments.15,17–19 Brain cancer
tumours, such as glioblastoma multiforme (GBM) and
medulloblastoma (MB), are classified by the World Health
Organization cerebral nervous system as grade 4 aggressive
malignant tumours.20,21 Given their location, GBM and MB
would particularly benefit from implementing liquid
biopsies, which avoids the risks of surgical tissue biopsy and
allows frequent sample collection and analysis. Studies
confirm the presence of GBM signatures in EVs.22 Similarly,
recent research on MB cerebrospinal fluid biopsies
confirmed the potential of biomarkers-based technology,
such as circulating tumour DNA,23 which motivates our
interest to study EVs originating from MB.

When using SERS technique for EVs characterization, this
generates a “fingerprint”. However, due to the heterogeneity of
EV samples, whereby cancerous patient liquid biopsy samples
will also contain EVs from non-cancerous cells, fingerprints will
also be heterogeneous and the differences between healthy and
cancerous sample fingerprints will be subtle. ML algorithms
can analyze highly dimensional spectral data and detect these
subtle differences.14,24,25 ML-assisted SERS-based EV
fingerprinting for cancer detection has already shown promise
for the detection of gastric cancer, early-stage lung cancer, and
the differentiation between various cancers using support vector
machine (SVM), deep learning, and multiple instance
approaches.26 While ML integration with SERS-based EV analysis
shows promise, scarcity of data remains a core obstacle. ML
models overfit and fail to generalize when trained with

Fig. 1 Schematic of study workflow. a) Healthy and patient biofluid samples are collected for isolation and fractionation of the target biomarker,
EVs from blood-derived plasma. The MoSERS microchip's patterned array of nanocavities was designed for single EV confinement and to leverage
the enhanced |E| field around the cavity edge to generate a high-resolution single EV spectral fingerprint. b) Data library characterization of EV
particle mode sizes (nm), optimization via preprocessing, feature selection, and augmentation approaches, and presentation of stacked average
spectra per data type for tasks of cancer classification using c) linear, kernel-based, and convolution-based machine learning models.
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insufficient data. Unfortunately, the acquisition of sufficiently
large spectral datasets poses numerous challenges.14 Data
augmentation, whereby existing data points are artificially altered
to produce new, unique, points,27 is a potential solution.
Alternatives are available to produce artificial Raman spectra and
augment datasets, such as generative adversarial networks
(GAN),28 augmentation based on SERS spectra
transformations29,30 or combinations.31 To the author's
knowledge, for ML-aided SERS-based EV analysis, the effects of
datasets artificial incrementation and pre-processing on classifier
performance have not been extensively reported, particularly for
spectral libraries at a single-EV level, where no prior studies were
identified. Moreover, there is a lack of systematic comparison
between different augmentation techniques in this context.

This work explores the classification of a data library
integrated by SERS spectra from single EVs derived from culture
media or blood plasma for cancer detection. The collection of
this library was enabled by the MoSERS platform previously
developed at Mahshid lab, MoSERS is a microchip with a
nanopatterned cavity array capable of confining a single EV and
generating its molecular fingerprint, which is enabled by the
cavities' enhanced electromagnetic field22,32 (Fig. 1a). Biofluid
samples included in the datasets were characterized using
nanoparticle tracking analysis (NTA) to confirm that particle
sizes corresponded to EVs (Fig. 1b). First, the preprocessing of
the raw datasets is optimized. Additional techniques are
implemented for dataset expansion and feature identification,
using data augmentation and generation, and PCA and SHAP,
respectively. Finally, the classification performance of the fitted
algorithms is evaluated using the accuracy metric (Fig. 1b).
Specifically, the optimized datasets are used to fit linear, kernel,
and convolutional algorithms: linear regression (LR), a random
forest (RF), a support vector machine (SVM) algorithm, and
convolutional neural network (CNN) models (Fig. 1c). The
algorithms were optimized and their performance evaluated for
the classification of single-EVs spectral library in three relevant
diagnostic tasks. Task-i is a multi-cell line classification, while
Task-ii and Task-iii are cancerous versus non-cancerous binary
classifications using datasets with only human samples (Task-ii)
or datasets combining human samples with cell lines (Task-iii).

Experimental section
Datasets

We use a library integrated by EV spectra, collected with a SERS-
assisted nanostructured platform with single EV resolution,
including 7 cell lines, 10 patient samples, and 10 healthy
controls. The cancers included in this library were 5
glioblastoma (GBM) and 5 medulloblastoma (MB). All datasets
were preprocessed prior to utilization by baseline subtraction,
normalization, and smoothing steps, which was optimized in
Fig. 2. The baseline subtraction is performed directly on the
WiRE 5.5 SERS collection software and the normalization is set
to [0,1]. GBM samples were provided by our collaborator Dr.
Petrecca and were collected under approval from the
Neurosciences Panel of the MUHC Research Ethics Board (REB:

IRB00010120). The MB samples and healthy controls were
obtained through our collaborators from a biobank (MP-37-
2017-3256). All methods were performed in accordance with the
relevant guidelines and regulations. All human samples were
collected with informed consent obtained from the subjects or
legal guardians.

Experiment design and models

First, we determined relevant tasks for cancer detection via EVs.
Task-i is a multi-cell classification, and Task-ii and Task-iii are
binary cancerous vs. non-cancerous classifications for only
human samples and for human samples combined with cell
lines. To ensure we do not overprocess our data we optimized
the smoothing factor applied in the preprocessing of the data.
In this work, we selected a CNN,22 LR, RF, and SVM to address
the three designed tasks (Fig. S1a). The algorithms selected were
intended to cover a range of model approaches and
complexities and had also been previously reported in the
literature to address spectral data tasks.14 Each specific sample
in the dataset used to fit the models was first randomly shuffled
and then divided into a training and a test dataset with a 70–
30% ratio. A note for Fig. 2's study, a random state was
employed for the data shuffling, so the same spectra IDs were
used for training across the different models, to make a robust
comparison of the performance. The best fit of the models was
enabled by using an Adam optimizer on the CNN and assessing
three hyperparameter optimization algorithms (Bayesian,
random, and grid search) for the LR, RF, and SVM. For these
three models, the hyperparameters that produced the highest
accuracies were used in the plots.

The RF hyperparameters search settings were as follows,
estimators from 10–10 000, features explored ‘sqrt’ and ‘log
2’, max depth between 3–100, minimum samples split
between 2–10, and minimum samples leaf between 1–10. The
SVM search parameters were set to C exponential distribution
with a scale of 100, and gamma exponential distribution had
a scale of 0.1, kernel tested was ‘linear’, ‘rbf’, and ‘poly’. LR
hyperparameters search was set for C a logarithmic
distribution sampling between 1 × 10−6, 1 × 106, and for the
solver ‘newton-cg’, ‘lbfgs’, ‘sag’, and ‘saga’. All models were
set with a 3-fold cross-validation. The CNN specifically (Fig.
S1b) has a convolutional layer continued by batch
normalization, residual layers (×2), which are integrated by
blocks of convolutional layers and batch normalization pairs,
and finally a fully connected layer. The LR, RF and SVM were
Scikit-learn implementations.

Smoothing factor

We employ a Savitzky–Golay filter of polynomial second
polynomial order, to optimize the smoothing factor used over
the spectral library. This filter utilizes a set number of points to
fit the polynomial function, in Fig. 2 we assessed 5 different
numbers of points: 10, 20, 30, 40, and 50. The smoothed
datasets, including a non-smoothed dataset directly used after
the normalization preprocessing step, are used at incrementing
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sample sizes to fit the four models studied here. Each sample
size subset was divided by 70% for training and 30% for testing.
To assess the models' performances, we calculated their
accuracy with eqn (1), where the accuracy corresponds to the
sum of the true values divided by the total number of samples
(TP: true positives, TN: true negatives, FP: false positives, FN:
false negative). The calculated accuracies were plotted to track
their performance. All data preprocessing was done using
OriginLab Pro 2022 functions.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(1)

Extended multiplicative signal augmentation (EMSA)

The data augmentation based on transformations of the
spectra was conducted via EMSA following the work by
Blazhko.30 First, we used the extended multiplicative signal
correction (EMSC) to verify the correction of any physical and
instrumental distortions, related to light source, background,
scattering and instrumental effects, and even differences in
the sample's thicknesses. Briefly, a sample spectrum is
represented by EMSC as the sum of a reference spectrum and
parameters for numerous physical effects terms for baseline,
multiplicative linear, and higher polynomial. Moreover, an
error term is used to capture chemical variations free from
physical distortions. EMSC typically employs polynomial
terms up to the quadratic level to avoid affecting the
chemical absorption bands. EMSA introduces variation by
building upon EMSC. For every single spectrum of the
provided dataset, each parameter is calculated with EMSC,
then their respective standard deviations are computed.
EMSA will generate deviations by taking random values from
normal distributions with a mean of zero. The augmented
observation is a result of applying the new parameter values
after the deviations have been added to the original
measured spectrum. We intended to generate only
augmented observations consistent with the original data.
Therefore, to safeguard the correlation between parameters
and avoid introducing outliers, we self-imposed constraints
on our techniques to only include spectral transformations of
slope, multiplication, and offset, which kept the deviations
close to the original values. We use the EMSA of a second
polynomial order to increase 10-fold the training set of the
original cell line in Task-i spectral library. The augmentation
is controlled with a multiplicative factor of the standard
deviation. We tested different multiplicative factors (2, 1, 1/3,
and 1/6) and evaluated them with the selected models by
using both the original training set and the additional
augmented observation to train them. To explore the
possibility of using only the most important information of
the spectrum to fit the models we utilized principal
components analysis (PCA) to extract the PC with the
cumulative data variance of 99% and then augmented and
evaluated as described above.

Deep convolution-generative adversarial network (DC-GAN)

The complete DC-GAN structure is shown in Fig. S4. The
generator consists of 5 1D transpose convolution layers, the first
four being followed by batch normalization and leaky ReLU
activation, while the final is followed by Tanh activation. The
discriminator consists of 5 1D convolutional layers, with the
first four being followed by batch normalization and leaky ReLU
activation, while the final layer is followed by Sigmoid
activation. The generator is fed 1D random noise of length 100
and outputs a 1D vector of length 1245 corresponding to the
generated spectrum. The discriminator takes as input real and
generated spectra of length 1245 and outputs a real/fake
classification. The discriminator outputs on real and generated
spectra are used to compute and backpropagate losses for the
discriminator and generator and update their weights using
adaptive moment estimation (ADAM) optimizers for both
generator and discriminator. The proposed DC-GAN pipeline is
applied separately to each cell line to generate the synthetic
dataset. First, the real spectra were split into training and test
sets. Only the training set is used for training generators to
avoid overfitting in the final trained classifiers. After outlier
removal, DC-GAN is trained with a batch size of 16, for 500
epochs, with a learning rate of 0.0002 for both optimizers. The
generator weights were saved every 50 epochs. After training, a
custom evaluation metric (see below) was used to evaluate the
different generators over the training progression, the best
model was selected and used to generate a dataset for 10-fold
augmentation of the original training set. To account for the
possibility of generated outliers, the generated dataset was
subjected to further outlier removal based on the 95%
confidence ellipse of a two-dimensional PCA plot of the real
data. The generated spectra were transformed into the PCA plot,
and all the new data outside the confidence ellipse of PCA-
transformed real data were excluded.

DC-GAN evaluating metric

The proposed metric for GAN evaluation follows previous
reports,33 consisting of measuring distances between real
and fake data distributions, as well as within the
distributions themselves. Two types of distances are defined:
the intra-class distance (ICD), which is the n-dimensional
Euclidean distance between any two points in the same set,
and the between-class distance (BCD), which is the
n-dimensional Euclidean distance between points from
different sets. For the GAN evaluation, we consider ICD for
the real set (ICDreal), ICD for the generated set (ICDfake), and
BCD between the real and generated sets. For each of these,
we determine the distance distribution. That is, we compute
the distances between all possible pairs of points. Comparing
ICDreal, ICDfake, and BCD we can get a qualitative idea of the
quality of the generated spectra.

Three considerations have been proposed for the quality
of generated spectra: inheritance, creativity, and diversity.33

The generated spectra must inherit the characteristic features
of the real spectra. However, the generator must show
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creativity: the generated spectra should not be copies of the
real spectra. Finally, the generated spectra must be diverse,
the generator should mimic the full extent of the real data
distribution. Plotting histograms of ICDreal, ICDfake, and BCD
distributions facilitates visual evaluation of the inheritance,
creativity, and diversity of the generated spectra. Large
differences between the position of ICD real and BCD
distribution peaks indicate a lack of fidelity; for example,
BCD shifted to the right (larger distances) indicates a lack of
overlap between the real and generated data distributions.
Lack of diversity is shown by a mean of the ICD fake
distribution close to zero. Lack of creativity is shown by BCD
peaking close to zero, as the generated points will be too
similar to the real ones. While we can obtain a qualitative
idea of the DC-GAN performance, we sought a metric that
would allow for direct quantitative comparisons. Following
the report in the literature, the more similar BCD and ICD
fake are to ICD real, the higher the quality of our generated
output. Therefore, we can condense the differences between
the distributions into a single metric by summing the
squares of the differences between the means and the
standard deviations of BCD/ICD Fake relative to ICD real,
and taking the square root, we obtained the distribution
difference (DD):

DD ¼


μBCD − μICDreal

� �2
þ σBCD − σICDrealð Þ2 þ μICDfake

− μICDreal

� �2
þ σICDfake − σICDrealð Þ2

� �s

(2)

where lower values of this metric will indicate higher quality
of the generated spectra. Using the means and standard
deviations of the distributions, allows us to compare both the
position and shape.

PCA and SHAP

The library for Task-i was analyzed with PCA. This dataset fit
the model and was transformed; next we sorted eigenvalues
and examined their cumulative variance to determine the
number of PCs needed to account for 90% of the dataset
variance. We extracted the top 24 PCs and generated a new
database containing only these PCs for each of the samples
in the library. The feature extraction using SHAP analysis
starts with the models for the highest number of samples in
Fig. 2 after the optimized number of points for smoothing
was selected. LR and RF models are explained directly using
SHAP's linear and tree explainer, respectively. After the
features' importances are computed, we normalized them to
calculate the percentage of importance each feature has. We
can then proceed to sort them and select the top features
whose sum accounts for 90% of the importance of the
model's classification. The total number of features selected
was 757 for LR and 686 for RF, respectively. In the case of the
CNN and SVM models, we trained surrogate tree models with
the predictions from the original models. Next, the
surrogates were explained with the tree SHAP explainer and
followed the procedure described above. The selected

features for CNN were 637 and 756 for the SVM. All the
selected features of the models were compared, and we
pooled together the ones that were repeated at least once.
The original Task-i library was reduced to only those features
from the pooled list. The next step was to study the
performance of the newly reduced datasets with the four
models used in this work. The PCA and SHAP studies were
conducted in python 3.9.13 with scikit learn and shap
packages, respectively.

Results and discussion

Currently, available EV analytical assays rely primarily on bulk
analysis for molecular characterization, an ineffective strategy
given the heterogeneous nature of EVs, which include
characteristics such as crucial disease-indicating biomarkers
vastly outnumbering irrelevant healthy EVs.34 One solution that
addresses assay sensitivity and specificity are single-vesicle
analysis techniques that exclusively characterize individual EVs,
particularly, single-EV confinement coupled with Raman
spectroscopy.34 Raman characterization of EVs enables the
collection of a spectroscopic database integrated with EVs that
are specific to each sample of origin. Spectra obtained from
human and cell line single-EVs contain indicative peaks of

information that can be linked to the presence of surface
proteins, receptors, and potentially cancerous mutations
present on the EV.22,34

MoSERS microchip

To achieve a size-specific EV database, samples such as healthy
cell line, cancerous cell lines, and blood-derived healthy and
cancer patient plasma are filtered using commercially available
size exclusion chromatography (SEC) columns with the fractions
corresponding to the target EV particle size used for MoSERS
characterization (Fig. 1a-left). The MoSERS microchip,
previously reported by our group, offers a label-free, non-
invasive approach utilizing Raman microscopy for single-
particle resolution molecular fingerprinting of EVs. The
MoSERS microchip is composed of a silver patterned nanocavity
array built on top a Si/SiO2 substrate with a MoS2 monolayer,
using e-beam lithography and deposition techniques. The cavity
array pitch, exposed MoS2 monolayer floor, and precise cavity
diameter enhances EV interactions to ensure single-EV (150–200
nm mean size) confinement and scanning. The design of the
plasmonic nanocavity array (Fig. 1a-right) enhances the EM field
at individual nanocavity edges when excited by a laser focus,
producing a high-resolution Raman-enhanced spectrum of light
interactions specific to single confined EVs. Further information
on MoSERS ability to achieve single-EV confinement have been
previously detailed.22 Confirmation of EV-sized particles in
fractioned samples was obtained through nanoparticle tracking
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analysis (NTA), a size distribution technique for measuring
nanoparticles in a liquid suspension. Presented in Fig. 1b-left is
the mode particle sizes for cell line and human plasma samples,
indicating the majority of present nanoparticles are in the EV
size range.

The proper optimization of spectra in the data library is
crucial to highlight and improve spectra signal-to-noise ratio
and identify features common to certain data types.
Optimization includes preprocessing, feature selection, and
augmentation of spectral data in healthy cell line, cancerous cell
lines, healthy human controls, and cancer patient data types
(Fig. 1b-centre), which enables their use in classification
algorithms (Fig. 1b-right). Notably, the compiled spectra sample
database contains complex disease-state information not readily
accessible through ordinary analytical techniques. As previously
stated, novel ML tools and algorithms can provide multiple
comprehensive interpretations and analyses of large quantities
of data, offering exciting new insights previously unattainable
in the clinical landscape.

The implementation of ML for cancer diagnosis has the
potential to improve healthcare areas of diagnosis and
therapeutics. An increasing number of studies are exploring
these avenues for cancer detection, stage-classification, and
even specific-mutation tracking.22 The spectral library
available for this study is integrated by EVs derived from cell
lines, patients with confirmed cancer diagnosis, and healthy
human controls. The EVs fingerprints were collected at a
single-level resolution with the MoSERS nanopatterned cavity
array chip previously thoroughly characterized.22 The cancer
samples included are from glioblastoma multiforme and
medulloblastoma patients (see experimental section for
details). In this work, we designed three tasks relevant to
cancer diagnosis that are important for research and
translational application purposes. These tasks allow us to
study popular models, their performance, and the relevance
of data collected: Task-i: cell-line multi-classification. Task-ii:
binary classification of cancerous versus healthy only using
human samples. Task-iii: binary, cancerous versus healthy
using both cell lines and human samples. Onwards, we will
refer to the studies as Task-i, Task-ii, and Task-iii. These
tasks are the framework for the study of the data
preprocessing optimization, artificial increment of the
dataset, and feature-specific model evaluation.

Smoothing factor

Data preprocessing is a conventional step taken when
working with spectroscopy data, this can be critical for the
learning models-based analysis as information can be lost in
the process. An example is over-smoothing the spectrum,
which will result in losing features that can be important for
classification; hence we use the popular filter Savitzky–Golay
which allows us to preserve important features. The Savitzky–
Golay is a lowpass filter that smooths the data by fitting an
approximation using a local least-squares of polynomial
order.35 This local smoothness is achieved by fitting adjacent

points to low polynomial degrees, in our case of the order of
2.36 We modified the number of points to be used for this
fitting from 10 to 50 at 10 points per step and as reference,
we also evaluated the data after normalization prior to the
smoothing step, (Fig. 2a). As observed the higher the
numbers of points used for fitting, the smoother the lines of
the spectrum are. Additionally, as described previously,
sample size is a fundamental aspect of a successful
classification given the amount of data that is needed to train
learning models. In an initial experiment, Fig. 2b–d shows
the accuracy of these models in function of the sample size
for each of the smoothing points tested, for Task-i, Task-iii,
and Task-iii respectively. The models' hyperparameters were
optimized for each run to ensure their best performance (see
methods for full description and the evaluating metric
equation). The minimum sample size required depends on
the model used and the minimum acceptable accuracy,
which was set to 80%. For Task-i, where only cell lines are
involved, a minimum of 400–500 spectra is needed. In
contrast, Task-ii, using only human samples, the minimum
is raised to 900–1100 spectra. This increase is expected and
reasonable, given the greater heterogeneity and variability of
real biological samples compared to the more controlled cell
line models. By only adjusting the number of points used for
smoothing, Task-i, the cell line multi-classification, achieved
an 83% accuracy while Task-iii, the binary classification
using cells and human spectra, achieved a 91% accuracy at
the highest sample size. A closer look into the confusion
matrix for Task-i and receiving operating curves (ROC) for the
highest performance classifiers is found in Fig. S2. The
highest accuracies for both tasks were achieved using 30
points in the smoothing filter, hence moving forward this is
the dataset used in the rest of the manuscript.

Artificial dataset increment

Certain learning models need larger datasets to achieve
higher performance as datasets must encompass a broad
range of variations, ensuring that the model can handle
discrepancies in sample characteristics and occasional noise.
However, the number of available samples is often restricted
in real-life studies. Insufficient data across various categories
can limit the model's effectiveness, as missing attributes may
impact its predictive accuracy.37,38 To address this challenge,
recent studies have ventured into artificially increasing the
number of training samples. Either through transformations
of existing data or by generating new data, these can enhance
the diversity of the dataset to achieve optimal performance.
Data augmentation techniques have been widely applied in
image generation, with a few common techniques being
cropping, transforming, or adjusting the intensity of the
image areas of interest.30,39 However, relatively less studies
focused on spectral data. The primary concept involves
increasing the quantity of training data by generating
additional samples that reflect anticipated variations in the
dataset, starting from a limited set of labeled examples. In
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the case of spectral data, these techniques are especially
convenient when the data to integrate a reference library is
limited, which can be the case for studying EVs derived from
patients' liquid biopsy samples. In this study we focused only
on Task-i, cell line library collected with MoSERS
nanostructured device, as compared to the EVs derived from
human samples, their heterogeneity is not as high and hence
allows us to study the impact of artificially increasing the
spectral datasets via different techniques. To the best of the

author's knowledge, this is the first report to compare data
augmentation techniques for single-EVs SERS spectra.

The two techniques selected for the expansion of Task-i
library were: extended multiplicative signal augmentation
(EMSA)30 and deep convolutional generative adversarial
network (DC-GAN). The original cell line spectral library is
divided into a train set and a separate test set. The train set
is transformed with the EMSA to produce a new augmented
dataset, simultaneously the train set is also used to train a

Fig. 2 Preprocessing optimization. a) Various smoothing factors are applied to clean the data. We used the smoothed datasets at different sample
sizes to train the models for the three tasks. To assess the performance, their accuracy was calculated by dividing the sum of true positives (TP)
and true negatives (TN) values by the total number of samples. The accuracy of these models in function of the sample size for each of the
smoothing factors is shown in b) for Task-i: multiclass cell line classification, in c) for Task-ii: human samples binary classification into cancerous
and non-cancerous class; and in d) for Task-iii: binary classification where the dataset includes human samples and cell lines.
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Fig. 3 Dataset augmentation via EMSA and DC-GAN. a) Task-i library is divided into training and test sets. The first is augmented 10-fold via EMSA which
incurs in spectra transformation (offset, slope change, and multiplication). Simultaneously, the training set is used to train a DC-GAN model, taking
Gaussian noise as input and modifying it to generate a spectrum similar to the original data. The newly increased datasets are evaluated with the models
selected. b) EMSA augmented data compared to the original data (one cell line visualization). c) Different structures of the DC-GAN were tested and
evaluated with the distribution difference (DD) metric. d) The selected structure is closely monitored through its training epochs, and the differences
between the 0 epoch and the best-performing epoch (200) are visible in the PCAs and the histograms. The inter-class difference (ICD) real is a histogram
of the original data, and the ICD fake is the one generated by the DC-GAN, the between-class distribution (BCD) showing the difference between them
allows tracking the quality of the generated data. e) The different epochs of the selected structure are evaluated. f) The new larger training libraries were
used to train our models and evaluated with the original Task-i test dataset in two conditions: a) all augmented observations and generated data are used
and b) the new artificial data is used to balance the classes perfectly. The accuracy metric is calculated as previously described. Error bars represent ±1
standard deviation (SD) across 20 bootstrapping iterations of the test set, with replacement.
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DC-GAN to generate spectra. The two new datasets are used to
train our preselected models CNN, LR, RF, and SVM and their
performance was evaluated with the test set and compared to
the results in the previous figure (Fig. 3a). Notably, spectral data
can be treated similarly to a one-dimensional image, where each
data point integrating the SERS spectrum represents a unique
feature. Given its inherent properties, augmentation for spectral
data typically involves applying random adjustments to the
offset, slope, and scaling factors, which mimic variations in
baseline, slope, and intensity found in spectral
measurements.40 First, we corrected any additional spectral data
for physical and instrumental distortion followed by applying
the extended multiplicative signal augmentation (EMSA)
method30 to our spectral library using common operations for
spectral augmentation like multiplication, slope change, and
offset addition (Fig. 2a-top). To simulate variation, a set of
deviations was generated for each parameter by drawing
random values from normal distributions with a mean of zero
and their respective standard deviations. These deviations were
then added to the original parameters, resulting in new
parameter values. By keeping the deviations close to the original
values, this method ensures that the correlations between
parameters are preserved, avoiding the creation of unrealistic or
independent spectra. Consequently, this approach generates
augmented spectra that remain physically consistent with the
original data. The total number of original cell lines collected is
∼700 spectra. The augmentation was set to produce 10 times
augmented observations compared to the original set (Fig. 3b).
As mentioned above, only the training set was augmented, the
models were trained with both the original training set and the
augmented library. The trained model was tested with the
original testing set to assess its performance when dealing with
real-life samples. We tested various multiplicative factors for the
deviation generations and evaluated them with our selected
models (Fig. S3a). To explore the possibility of directing the
models to the most relevant information of the spectrum, we
also used a principal components analysis (PCA) to select the
features that sum up to 99% of the cumulative variance of the
data. A total of 50 PCs integrating the reduced dataset were
augmented 10-fold with EMSA and evaluated with the models.
The overall performance when including the PCA pre-step
dropped compared to when using the complete features for
EMSA augmentation, especially for the LR model, see Fig. S3b.
The factor that rendered the highest performance for 3 out of 4
models was 1/6, which will be compared to the next technique
tested.

A different approach to the problem is the generation of
completely new data by generative adversarial networks (GANs).
GANs consist of a pair of generative and discriminative models,
usually neural networks, pitted against each other in training,
with the generator learning the data distribution while the
discriminator predicts whether a sample is real or generated.41

The discriminator and generator compete against each other,
driving the generator to create better fakes to fool the
discriminator, while the discriminator learns to better
differentiate between real and fake samples. Usually used in

image-related tasks, the probability of a real image being
classified as real by the discriminator is denoted as D(x), while
the probability of a generated image being classified as real is
denoted as D(G(z)). The discriminator is trained by maximizing
log(D(x)) + log(1 − D(G(z))), effectively increasing the chance that
real samples and fakes are accurately detected. The generator is
trained by maximizing log(D(G(z)), increasing the chance that
fake samples are classified as real. The binary cross-entropy loss
formula is used to compute loss for the generator and
discriminator. A variant of GAN, a deep convolutional GANs
(DC-GAN) has transposed convolutional layers are used in the
generator and in the discriminator and include batch
normalization for each. Fully connected layers are removed for
deeper architectures.42 The DC-GAN architecture has been
successfully used for a variety of tasks, including image
generation, text-to-image generation, and fingerprint image
generation.43–45 Studies using GANs and variants for spectral
data generation are limited, but have been tested to generate
synthetic Near-Infrared (NIR) spectra to train ML models46 and
Raman spectra.28 GANs show promise for improving spectral
classification and given the suitability of convolutional neural
networks for analysis of spectral data,47–50 DC-GAN are explored
for artificial spectral dataset incrementation.

The proposed DC-GAN pipeline Fig. S4 is described in
methods. Briefly, both the generator and discriminator consist
of 5-1D transpose convolution layers, batch normalization and
different activation functions for the first 4 layers and the final
one. The generator is fed 1D random noise and outputs a vector
of 1245 length that is then taken by the discriminator, along the
real data to produce a classification (real or fake). The output of
the generator and discriminator are used to compute the losses
and used as feedback for their models to adapt their weights.
The artificial spectra were generated as follows. For each cell
line, the original spectra were split into training and test sets.
The latter was set aside, and the training set was used for
training the generators. The DC-GAN is trained for 500 epochs,
with weights saved every 50 epochs. We used a custom
evaluation metric distribution difference (DD) to evaluate the
different generators over the training progression, the best
model was selected and used to generate a dataset for 10-fold
augmentation of the original training set (see experimental
section for more details). The optimal network structure was
studied using U87 cell line as a model for the identification of
the optimal structure. The depth of the generator and
discriminator networks, and the number of channels in each
convolutional layers were the biggest factors in determining the
quality of the generated spectra. Increasing the depth of the
generator and discriminator resulted in higher quality of
generated spectra. A shallower network with more channels (3
layer 128 channels) was found generate spectra of lower quality
than a deeper network with less channels (5 layers 32 channels).
For a 5-layer network, structures using 64 channels in all layers,
or 256 to 32 channels (in order from in to out, 256–128–64–32
for generator, and 32–64–128–256 for discriminator) were found
to generate spectra of slightly lower quality than a 5-layer
network with 32 channels throughout. The various generator
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and discriminator structures were compared in terms of the
performance metrics: inter-classes distributions (ICD),
differences between classes-distributions (BCD), and DD (see
methods). Two-dimensional PCA visualizations and histograms
showing the class distribution were also used for evaluation (Fig.
S5). In Fig. 3c, we compare the structures using the DD metric
where the lowest value refers to better performance, hence, we
selected the 5L-32ch moving forward. At a closer look at the
training process for the 5-layers, 32-channels we observed how
the generated data is transformed from gaussian noise input at
epoch 0 to creative and diverse data at epoch 200, the newly
generated data in comparison with the original is shown in the
PCA plots and histograms of class distributions where the IDC
real and IDC fake go from being completely distinct to
overlapping distributions (Fig. 3d). The DD metric at different
epochs of the selected structure is plotted in Fig. 3e, where 200
epochs show a higher performance. The generated data is
cleaned of outliers by removing the points that are outside the
95% confidence circle of the PCA, once this step is completed
the new data is appended to the original training library. Finally,
the remaining classes use the same structure (5L-32Ch) to
generate new data, for each the epoch selection was personalized
to achieve the best results.

Both EMSA augmentation and DC-GAN techniques
implementation generated new augmented data sets that were
used to train our models and evaluated with the original test
sets. Two conditions of Task-i were tested: a) all augmented
observations and generated data are used and b) the new
artificial data for each of the different classes is only used to
balance the number of spectra in the training dataset (Fig. 3f,
Table S2). We compared the results to the original performance
of the models seen in Fig. 2. In the results for the first
condition, when using all the 10-fold generated data for training
(Fig. 3f-“All”), the RF presented a significant increase from
∼70% to ∼80% for the EMSA technique, while there is a
decrease in performance when using all the GAN generated
data. However, the LR had a 2% percentage point (% pt.)
accuracy decrease when using either technique. The SVM
accuracy increased using the EMSA, reaching 83% to match the
original CNN model. Yet it had a 1% pt. decrease when using
the DC-GAN. Finally, the CNN decreased 2% pt. in accuracy
when using the EMSA but remained stable with the Generating
approach. For the second condition (Fig. 3f-“Balanced”), RF
showed a mean 6% pt. increase in accuracy when using EMSA.
The SVM presented an increase of 2% pt. for both techniques.
LR performance dropped 2–3% pt. when using either technique.
Similarly, the CNN dropped 5 and 11% pt. using EMSA and DC-
GAN techniques, respectively. Overall, EMSA augmentation
outperformed the DC-GAN when evaluated with the SVM and
RF model while the CNN trained with all DC-GAN generated
data maintained the original accuracy.

Feature-specific classification

Task-ii is based on only using human samples for a cancerous
versus healthy binary classification. In the assessment in Fig. 2c

only 2 models achieved accuracies above 80%. Next, we explore
a scenario where Task-iii (Fig. 2d) is not an option, because no
cell lines are available to increase the binary classification
performance. The approach in this study is to focus only on
Task-ii library, identifying the data that is most relevant in the
classification, aiming to reduce non-relevant information fed to
the models, and thus, driving the accuracy up. We designed two
pathways to do so, the first one using Shapely additive
explanations (SHAP) (Fig. 4a-top) analysis and the second using
PCA (Fig. 4a-bottom), which will generate 2 new datasets to be
evaluated by the 4 models.

Principal component analysis (PCA) is a multivariate
technique largely used across numerous scientific fields with
many applications such as feature extraction, dimensionality
reduction, and data compression and visualization.51 PCA takes
inter-correlated observations, that include noise, described
through dependent variables and extracts the most important
information to present them in the form of principal
components (PC).51,52 Visually, one can also present on a map
the observations and variables to look for patterns.52 This
technique aims to identify the most valuable information from
the observations provided while introducing variables that not
only have the most valuable extracted information but also
simplify and enable the analysis of the similarity between
observations and variables.52 The PCs variables encompass the
variance of the dataset provided, with the first component
having the largest variance. The subsequent components have
the largest variance possible while being constrained to be
orthogonal to the previous PC.52 There are various forms to
decide the number of components to keep that cover the most
important information contained in the dataset, like the “scree”
test or comparing particular eigenvalues against the average.
The implementation of PCA in this study is straightforward.
First, we used PCA to analyze the library for Task-ii and plotted
the first two PC in Fig. 4b to show the complexity of the dataset.
To accommodate this complexity, we looked at the sorted
eigenvalues of the PCs and their cumulative variance. Then we
proceed to extract the top 24 PCs for a new dataset, which
represents 90% of the cumulative variance.

Understanding which features are driving the decision-
making in the model enables us to isolate them from the
dataset and create a more focused set of features for
classification tasks. To achieve this, we sought a method for
feature attribution. SHAP is a recently popularized approach
based on using the model as a coalitional game.53 The goal is
to define the importance of a spectrum feature, when present
or absent, in other words, the contribution (or SHAP value) to
the overall model's prediction. The outputs generated can
provide insights into the feature's role. SHAP values can be
calculated in a general and model-specific way. The latter is
less flexible, but as a trade-off, they are faster. However, a
challenge faced when using SHAP is that the computational
complexity is directly related to the number of features the
input data contains. Despite having the model-specific
approach, it is complex and costly to explain CNN and SVM
models. A possible way to address this is using surrogate
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models to explain the original model. Surrogate models
attempt to learn the conditional expectation of the original
model, given the set observed features. These models are
trained using the predictions generated by the original
model, which has been found to satisfactorily approximate
the original models. Furthermore, other advantages

include easy surrogate training and low requirements,
making them more efficient regarding computational
resource demands.53

For the SHAP approach, we used the models fitted with
the largest sample size from the study of Task-ii in Fig. 2 and
used explainers to produce SHAP values and their importance

Fig. 4 Feature identification-based dataset reduction of Task-ii dataset. a) The human sample dataset is used in parallel for fitting our evaluating
models (top) and for a PCA analysis (bottom). In the former, SHAP analysis is used to explain the model's classification. For each model we extract
the features that sum up to 90% of importance, pool them, and create new datasets with the features present 2 or more times across the models.
The bottom approach uses PCA and selects a number of PCs corresponding to 90% of the cumulative variance, a new dataset was created using
the selected PCs. These new datasets are evaluated with the learning models and compared to their original performance. b) The PCA of the data
binary is shown in and c) the SHAP features for the top first 15 features for the CNN model. d) The accuracy of the newly trained models is
compared to the original performance. The accuracy metric is calculated as previously described. The e) ROC and f) and precision-recall curves
for the best performance models show the adequate performance of the reduced datasets. Error bars represent ±1 SD across 20 bootstrapping
iterations of the test set, with replacement.
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for each feature. The LR and RF models were computed
directly, while for the SVM and CNN, we used surrogate
models that were trained with the predictions produced with
the original models. These surrogate models approximate
how the CNN and SVM models use the data features to
generate their predictions. The surrogate models can then be
explained and their SHAP values and feature importance
calculated, as seen in Fig. 4c. which shows the top 15 most
important features from the CNN surrogate model. For each
model, we extracted the most important features that sum to
90% of the importance between 630–760 features per model.
Then we proceeded to pool the features from the 4 models
and identify the ones that were repeated, a new dataset was
created containing only these features. In Fig. 4d and Table
S3 we fit the models with these new Task-ii datasets and
compared their performance to the original results. We
observed that for both the PCA and the SHAP Task-ii reduced
datasets the CNN model has a significant increment in
accuracy achieving 84%. The SVM presents only a small
variation and achieves the highest accuracy of 85% across all
models and all conditions with the SHAP dataset. The RF
reduced 2 pt%. when trained with the PCA dataset but
remained stable with the SHAP dataset. LR performances
present a ±1% pt. accuracy variation when using the reduced
datasets. Additionally, we compare the receiver-operator curve
(ROC) (Fig. 4e) and the precision-recall curve (Fig. 4f) for the
best classifier of each dataset: original, PCA, and SHAP. Here,
we observe that while the original SVM classifier performs
slightly better according to these metrics, the best classifier
of the SHAP datasets performance is almost the same and
reached the same high accuracy.

Notably, the SHAP and PCA datasets are significantly
reduced in size compared to the original 1245 points per
spectrum. The SHAP dataset includes 824 features, a 34%
reduction, while the PCA dataset comprises 24 PCs,
corresponding to a 98% reduction of the original data. This
results in a significant reduction of the computational power
needs and time to results, which opens a discussion on whether
a 2% accuracy reduction could be considered an acceptable
compromise for faster performance and the use of models that
are simpler to explain.

Conclusion

Optimal model performance can be achieved when the training
dataset encompasses a broad range of variations, ensuring the
model can handle discrepancies in sample characteristics and
occasional noise. However, the number of available samples is
often restricted in real-life studies, particularly in cases
involving rare diseases or limited data access. While this is a
limitation for studies using samples such as the brain cancers
presented here, promising results have still been reported in
studies with as few as 8 to 12 disease-positive samples.22,54

Generally, there is a positive relationship between the size of
the training data and the performance of learning models, as
the model's ability to generalize to unseen data is closely tied to

the size, diversity, and representativeness of the training
dataset. In this work, we use our EV-SERS library (including cell
lines, cancer-diagnosed patients, and healthy control human
samples) to test different approaches to maximize the
performance of 4 different learning models. First, we optimized
the smoothing step of the spectra preprocessing pipeline.
Adjusting the preprocessing enabled an 83% accuracy in cell
line classification and 91% in binary classification. Next, we
explored two methods to artificially increment datasets, EMSA
data augmentation and DC-GAN data generation. Insufficient
data across various categories can limit the model's
effectiveness, as missing attributes may impact its predictive
accuracy. Artificially increasing the dataset can also reduce the
need for highly complex model architectures, allowing simpler
models to achieve strong generalization capabilities. A ten-fold
data augmentation increased the accuracy of a model by ∼10%
pts. Finally, to address the increasing demand to explain the
model's black box mystery, methods such as SHAP have
emerged. SHAP defined the impact of each feature used in the
model by being present or not. We compared featured-based
classifications with PCA and SHAP approaches. These allowed
us to reduce the features used to the most important to the
models for classification. SHAP feature-based accuracies mostly
remained stable across all models or increased by up to 11%
pt., using a 34% reduced dataset compared to the original, in
turn reducing computational requirements. Overall, our work
demonstrates the use of various methods to optimize learning
models' performance for libraries with limited sample
availability. Following ML modelling optimization, the next step
would ideally involve testing the selected model in a clinical
study with blind samples, with results thoroughly compared
against gold-standard tools.

Currently, from the reception of isolated EVs, the spectral
data collection for a single sample takes over an hour. The
increments in accuracy and the reduction of features enhance
the potential to use simpler models for analyzing complex
biological data as is single EV-SERS data. In our case, this allows
the highly precise single-EV spectral library, acquired using the
MoSERS nanostructured device, to be applied to cancer
diagnostics-related tasks. Once throughput limitations are
addressed, this approach could be validated on par with clinical
standards using a larger dataset and eventually implemented in
clinical settings as a same-day testing method, delivering results
within a few hours. Ultimately, this contributes to the
advancement of AI-companion tools to assist the practicing
health care professional in tasks such as cancer diagnostics and
monitoring.
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