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Electrochemical gas sensors have attracted significant attention due to their high sensitivity and selectivity

in detecting various gases. Recent advancements in microelectronics, materials science and computational

technologies have driven the development of smart electrochemical gas sensors, enhancing their

functionality with improved miniaturization, real-time data analysis, and remote monitoring capabilities.

Furthermore, the integration of the internet of things, self-powered technologies and machine learning has

expanded the potential of these sensors, enabling smart healthcare systems to adapt to complex and

dynamic environments just as humans do. This paper reviews the basic sensing mechanisms, detection

methods, recent developments of three types of electrochemical gas sensors and the related fabrication

techniques. In addition, we further review their applications in three fields including air monitoring, breath

analysis and microfluidic integration. Finally, current challenges, limitations, and future prospects are

addressed, emphasizing the need for improved stability, selectivity, and energy efficiency to develop the

next generation of electrochemical gas sensors.

1. Introduction

Human health is strongly affected by the quality of inhaled
air. Exposure to hazardous gases and air pollutants—such as
carbon monoxide (CO), nitrogen oxides (NO), sulfur dioxide,
and particulate matter—can directly damage the respiratory
and cardiovascular systems, and long-term exposure has been
associated with chronic respiratory diseases, cancer, and
neurological disorders.1 These risks emphasize the necessity
of precise and continuous monitoring of toxic gases in the
environment to safeguard public health.

Beyond exogenous contaminants, endogenous volatile
organic compounds (VOCs) generated by human metabolism
have emerged as promising non-invasive biomarkers for
disease diagnosis. More than 2000 VOCs have been identified
in exhaled breath, spanning aldehydes, ketones, alcohols,
hydrocarbons, and nitrogen- or sulfur-containing species.2

Their concentrations and profiles vary significantly with
pathological conditions. For instance, elevated fractional
exhaled nitric oxide (FeNO) is a clinically validated marker of
eosinophilic airway inflammation in asthma and chronic

obstructive pulmonary disease (COPD), while CO has been
used as an indicator of smoking exposure and oxidative
stress. In the context of cancer, oxidative stress–derived
aldehydes and hydrocarbons have been consistently reported
as potential markers of lipid peroxidation processes. Ketones
such as acetone have been associated with altered glucose
metabolism and may reflect systemic metabolic disorders.
Moreover, microbial infections give rise to characteristic
volatilomes, including sulfur-containing compounds,
alcohols, and ketones, which can serve as discriminatory
infection biomarkers.3 Collectively, these disease-specific
alterations in breath VOC profiles highlight the promise of
respiratory detection for non-invasive disease detection,
clinical monitoring, and personalized healthcare strategies.

Gas sensors mimic the human olfactory system and
provide a practical means to detect both environmental gases
and disease-related VOCs, thereby linking environmental
exposure and clinical diagnostics. While conventional
analytical tools such as gas chromatography-mass
spectrometry offer excellent sensitivity and selectivity, they
are constrained by high cost, bulky instrumentation, and
operational complexity.4 Optical gas sensors are also suitable
for trace gas detection but are limited by environmental
interferences and technological complexity.5,6 In contrast,
emerging gas sensor technologies combine portability, low
power consumption, and real-time detection, making them
highly suitable for healthcare applications. In particular,
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electrochemical sensors are highly attractive for integration
into compact and wearable platforms, as they enable
continuous monitoring of breath biomarkers through their
low power demand, miniaturized form factor, and direct
conversion of redox reactions into electrical signals.7 The
development of high-performance gas sensors optimized for
medical use therefore represents a critical step toward
advancing early disease screening, precision diagnostics, and
long-term health management.

In recent years, the concept of smart gas sensors has
attracted growing attention, particularly in response to the
increasing demand for precise, real-time, and personalized
healthcare monitoring.8–10 Smart gas sensors integrate
multiple technologies—such as the internet of things (IoT),

self-powered technologies, and machine learning (ML)—to
achieve advanced functionality. These technologies mirror
certain biological processes: IoT reflects the way neural
tissues transmit sensory signals to the brain, self-powered
technologies resemble the body's ability to generate and
sustain energy, and ML mimics the brain's capacity for
cognition and decision-making. Through such integration,
smart gas sensors move beyond simple detection to
intelligent systems capable of processing, interpreting, and
responding to complex gas information (Fig. 1). The rapid
advancement of these technologies is driving a paradigm
shift in gas sensing from traditional hardware-based devices
to multifunctional intelligent platforms. Importantly, smart
gas sensors have already shown promising results in

Hongyang Guo received his B.E. degree of Electronic Science and Technology from Nanjing University of Information Science &
Technology in 2024. Now he is a master student of biomedical engineering of Zhejiang University. His current research interests are
focused on electrochemical gas sensors and the development of intelligent systems.

Zhuoru Huang received her bachelor's degree in biomedical engineering from Zhejiang University, PR China in 2021. Now she is a
Ph.D. student of biomedical engineering at Zhejiang University. Her work includes the research of chemical sensors and electrochemical
gas sensors.

Xiaojing Zhang received her B.E. degree of biomedical engineering in Zhejiang University, PR China in 2021. Now she is a Ph.D.
student of biomedical engineering of Zhejiang University, PR China. Her research interests include surface acoustic wave sensors and
biosensor instrument establishing for disease biomarker detection.

Haoting Zhang received his B.S. degree in Intelligent Science and Technology from Northeast Electric Power University in 2019 and his
M.S. degree in Electronic Information from Northeastern University in Shenyang, China, in 2023. He is currently pursuing his Ph.D. degree
at the College of Biomedical Engineering and Instrument Science, Zhejiang University. His current research interests are focused on
flexible/stretchable electronic devices, as well as self-driven sensors and systems.

Jiaying Sun received her B.E. degree of biomedical engineering in Zhejiang University, PR China in 2022. Now she is a master student
of biomedical engineering of Zhejiang University, PR China. Her research interests are gas sensors and the detection of disease markers in
human exhaled gas.

Yuzi Zeng is now an undergraduate student at Zhejiang University, working on electrochemical gas sensors.

Yanjie Hu received her B.S. degree in internal medicine and Ph.D. degree in respiratory medicine from Zhejiang University, PR china in
2006, 2010, respectively. She is now the associate chief physician at the Run Run Shaw Hospital School of Medicine, Zhejiang University
School of Medicine.

Yong Zhou received his B.S. degree in clinical medicine and Ph.D. degree in respiratory medicine from Zhejiang University, PR china in
2001, 2007, respectively. Now he the chief physician of clinical medicine at Run Run Shaw Hospital, Zhejiang University School of
Medicine.

Hao Wan received his B.S. and Ph.D. degree in Biomedical Engineering from Huazhong University of Science and Technology, Wuhan,
China and Zhejiang University, Hangzhou, China in 2010 and 2015, respectively. From 2015 to 2017, he worked as a postdoc in Electrical
and Computer Engineering, Michigan State University, USA. Starting from 2017, he worked in the Department of Biomedical Engineering,
Zhejiang University, China. His research interests are sensor microfabrication, electrochemical sensing and instrument development in
environmental monitoring applications.

Ping Wang received his B.E. degree, M.S. degree and Ph.D. degree of electrical engineering in Harbin Institute of Technology, PR china
in1984, 1987, and 1992, respectively. Now he is a professor of Biosensors National Special Lab, Department of Biomedical Engineering of
Zhejiang University, PR China. His research interests include biomedical sensors, chemical sensors and measurement.

Sensors & Diagnostics Tutorial review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
6/

20
26

 9
:3

3:
37

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00077g


1062 | Sens. Diagn., 2025, 4, 1060–1085 © 2025 The Author(s). Published by the Royal Society of Chemistry

healthcare applications, such as monitoring exhaled breath
biomarkers and tracking physical signs in real time.11–13

Beyond healthcare, they are also being explored in air
pollution monitoring,14–16 mine safety,17–19 drug control,20–22

and food safety.23–25 This integration of sensing,
communication, and intelligence therefore represents a key
step toward establishing gas sensors as indispensable tools
for next-generation healthcare and environmental protection.

By integrating chemistry, electronics, and advanced
materials, electrochemical gas sensors can demonstrate high-
precision detection capabilities across a broad spectrum of
applications,26 which means that combining electrochemical
gas sensors with smart technologies can show strong
development potential. In recent years, several reviews have
been published on the topic of electrochemical sensors for
gas detection and smart sensor systems. Zhang et al.27

introduced an enzyme-based electrochemical gas sensor,
demonstrating how biomolecular recognition can be coupled
with electrochemical transduction to achieve high selectivity
in gas detection. From a system-level perspective, Zong
et al.10 emphasized the development and application of smart
gas sensors, focusing on how IoT integration, artificial
intelligence algorithms, and multifunctional system designs
are reshaping gas sensing into intelligent platforms capable
of real-time analysis and decision-making. In parallel, Atkare
et al.28 provided a perspective on 2D MXene-based materials
for self-powered smart gas sensors, underscoring their
potential for autonomous operation and stable performance
without external energy input. Complementarily, Cao et al.29

reviewed triboelectric nanogenerator (TENG)-based human–
machine interaction systems, exploring how the integration
of TENGs with IoT architectures offers a sustainable route
toward energy-autonomous sensing and interactive
healthcare technologies. Finally, Banga et al.30 critically
assessed advances in gas detection methodologies, including
electrochemical and spectroscopic techniques, with a special

focus on environmental and health-related monitoring, thus
setting a broad context for the healthcare-oriented discussion
of electrochemical gas sensors. While the above reviews have
provided valuable insights into electrochemical gas sensors
and smart sensing technologies, most remain limited in
scope. They tend to emphasize specific aspects—such as
individual sensing materials, isolated transduction
mechanisms, or the prospects of a single technology—
without offering a holistic view that integrates these
dimensions. Consequently, although these works enrich our
understanding of materials design, system integration, and
intelligent functionalities, they do not provide a
comprehensive overview of smart electrochemical gas sensors
from the perspective of healthcare applications. Furthermore,
even when applications are mentioned, the focus has largely
been on domains such as environmental monitoring, food
safety, or industrial detection, with only marginal attention
paid to healthcare-related contexts. What is still missing is a
multidimensional analysis that connects sensing principles,
material strategies, system-level intelligence, and microfluidic
integration, all framed explicitly around the needs of human
health monitoring and disease diagnostics. In this review, we
aim to fill this gap by systematically summarizing the
working principles, signal transduction pathways, detection
methods and related Fabrication techniques of smart
electrochemical gas sensors, with a particular emphasis on
their recent breakthroughs in healthcare-related scenarios.
We further highlight strategies for enhancing selectivity,
accuracy, and sensitivity through the integration of IoT, self-
powered technologies, and ML algorithms. Special attention
is given to emerging concepts such as remote and on-site gas
sensing, where wireless communication and artificial
intelligence enable air quality assessment, real-time breath
monitoring and microchannel control (Fig. 2). Finally, we
discuss the major challenges and limitations that remain in
this field, as well as potential future directions that may drive

Fig. 1 A human-like smart system.
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the development of next-generation smart electrochemical
gas sensors for healthcare.

2. Sensing mechanism of
electrochemical gas sensors
2.1 Basic principle

Electrochemical gas sensors operate by exploiting redox
reactions at the electrode–electrolyte interface, where target
gas molecules undergo oxidation or reduction, and the
resulting charge transfer is transduced into electrical signals
such as current, potential, or impedance. Owing to the direct
chemical interaction with analytes, these sensors inherently
exhibit high sensitivity and selectivity compared with many
other gas sensing mechanisms. In contrast, metal oxide
semiconductor (MOS) sensors detect gases through changes
in surface conductivity caused by gas adsorption and
desorption processes, which typically require elevated
operating temperatures (200–400 °C) to activate, leading to
higher power consumption and reduced stability.31 Optical
sensors, including utilizing light-induced acoustic/elastic
techniques, measure gases via light–matter interactions and
offer excellent accuracy and fast response. However, their
susceptibility to environmental conditions limit their wide
application.32 Gas chromatography-mass spectrometry (GC-
MS) achieves outstanding sensitivity and selectivity, yet its
size, cost, and need for specialized operation prevent real-
time or point-of-care deployment.33 These comparisons
highlight that electrochemical gas sensors uniquely combine
miniaturization, low energy demand, and direct signal
transduction, making them particularly advantageous for
healthcare-related applications.

Electrochemical sensors typically consist of an electrolyte
and a three-electrode system. Electrolytes are categorized as

liquid electrolyte,34,35 gel electrolyte36,37 and solid
electrolytes38,39 according to their physical state. The
electrolyte not only provides an ion-conducting pathway but
also significantly influences sensitivity, detection limit, and
stability. For example, Singh et al.35 demonstrated that
electrolyte engineering directly governs performance: adding
diols (ethylene glycol, 1,2- and 1,3-propanediol) to the RTIL
[C2mim][NTf2] increased NH3 solubility and reduced
viscosity, thereby enhancing amperometric sensing. Dong
et al.40 built an all-solid-state electrochemical sensing
platform using a Na4Zr2Si3O12 (NZS) solid electrolyte and
solid-state reference electrode; the device, prepared by high-
temperature solid-state synthesis (400 °C, 40 MPa), showed
robust operation in aqueous and simulated seawater with
strong linearity (R2 > 0.99), broad detection ranges, and low
detection thresholds for pH. Zhong et al.41 systematically
compared gel electrolytes—hydrogels, eutectogels, and
iongels—for OECTs and showed that a eutectogel
(poly(glycerol-1,3-diglycerolate diacrylate) + choline chloride/
1,3-propanediol DES) delivered the best transient and steady-
state performance and superior durability, giving higher ECG
signal amplitudes and SNR under continuous operation (5 h)
and in daily measurements over 30 days. Moreover, a typical
three-electrode system, including a working electrode (WE),
an opposing electrode (CE) and a reference electrode (RE).
The WE is where the target reaction occurs and is commonly
composed of materials such as glassy carbon or metal
electrodes. The CE is responsible for completing the electrical
circuit and is typically made from inert materials, such as
platinum or graphite, to ensure it does not directly affect the
measurement outcome. The RE provides a stable and known
reference potential, allowing for precise determination of the
WE potential, with common types including the saturated
calomel electrode and the silver/silver chloride (Ag/AgCl)
electrode.42 During electrochemical gas detection, the target
gas diffuses to the surface of the WE, where oxidation or
reduction reactions take place, leading to changes in the
electrical signal. Electrochemical gas sensors often employ
various sensing elements, including noble metal
nanomaterials (such as platinum and gold),43,44 conductive
polymers (such as polyaniline and polypyrrole),44,45 MOS
nanomaterials (such as ZnO and SnO2),

46,47 and carbon-
based materials (such as graphene oxide (GO) and carbon
nanotubes (CNT)).48,49 These sensing elements typically
exhibit advantages such as high specific surface area,
excellent catalytic activity, and good electrical conductivity,
facilitating gas molecule adsorption and reaction on the WE
surface, thereby enhancing the sensor's response and
recovery speed.50,51 Moreover, the sensing electrode consists
mainly of sensitive and three-electrode system including
transduction elements. The sensitive element directly
contacts and reacts with the target substance, providing
selective recognition and response capability for the
substance under test. The role of the transduction element is
to convert the non-electrical information generated by the
sensitive element into an electrical signal that is easy to

Fig. 2 Applications of smart electrochemistry gas sensor in
healthcare.

Sensors & Diagnostics Tutorial review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
6/

20
26

 9
:3

3:
37

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00077g


1064 | Sens. Diagn., 2025, 4, 1060–1085 © 2025 The Author(s). Published by the Royal Society of Chemistry

measure and process. By designing different sensitive
elements, the selectivity of different substances can be
improved, and the study of different conversion elements
helps to overcome the application obstacles of sensors. Fig. 3
is a schematic illustration of an electrochemical gas sensor
with a three-electrode configuration (WE, CE, RE). Gas
molecules diffuse to the working electrode, where redox
reactions occur. The resulting electrochemical signal is
transmitted through the electrolyte and recorded as a
measurable current or potential.

2.2 Electrochemical detection methods

Various electrochemical sensors employ different detection
techniques, with cyclic voltammetry (CV),
chronoamperometry (CA), and electrochemical impedance
spectroscopy (EIS) being the most commonly used methods.
Depending on the type of converted signal, electrochemical
sensors can be classified into amperometric, potentiometric,
and impedimetric types.

CV applies a triangular waveform linear potential scan
signal to the electrode surface while recording the current
response during the potential sweep. When the potential
reaches the oxidation or reduction potential of the target gas,
a corresponding electrochemical reaction occurs, generating
oxidation and reduction peaks.52 By analyzing parameters
such as peak current magnitude and peak potential position,
qualitative and quantitative analysis of the target gas can be
performed. Since different gases undergo redox reactions at
distinct potentials on the electrode surface, oxidation and
reduction peaks characteristic of each gas appear in the cyclic
voltammogram when gas molecules react on the WE. The
peak positions can be used for the qualitative identification
of gas species. Additionally, under specific conditions, the
oxidation or reduction peak current in the cyclic
voltammogram shows a proportional relationship with the
gas concentration, enabling the quantitative determination of
gas concentration from the peak current. CV is frequently
employed for screening and optimizing sensor-sensitive

materials, facilitating the evaluation of material modification
effectiveness. When developing new gas sensors, CV is used
to examine the response characteristics of various sensing
materials to the target gas, guiding the selection of the
optimal sensing material.

CA is classified as a constant voltage technique, where a
fixed potential is applied to the electrode, and the current
response is monitored over time.52 In a chronoamperometric
experiment, applying a potential step to the electrode triggers
an electrochemical reaction at the electrode surface, leading
to changes in the reactant concentration near the electrode
and establishing a concentration gradient that drives mass
diffusion. Under diffusion control, the measured current can
serve as a quantitative indicator of the target gas

concentration, following the Cottrell equation: i ¼ nFAc0j
ffiffiffiffi

D
p

ffiffiffiffiffi

πt
p ,

where i is the current (A), n is the number of electrons
transferred in the electrode reaction, F is the Faraday
constant, A is the electrode area (cm2), D is the diffusion
coefficient of the reactant, c0j is the bulk concentration of the
reactant (mol cm−3), and t is time (s). CA is particularly well-
suited for real-time and continuous monitoring due to its fast
response, straightforward data processing, and high
sensitivity, allowing the detection of subtle current variations
and facilitating the effective measurement of low-
concentration gases.

EIS involves applying a small-amplitude sinusoidal voltage
(or current) and measuring the response signal of the
electrode system, which follows an approximately linear
relationship. This method provides impedance information
while minimizing disturbances to the studied surface.53 After
obtaining the impedance data, impedance spectrum analysis
is performed. Common impedance spectra include the Bode
plot and the Nyquist plot. By analyzing these spectra, key
electrical parameters of the sensor, such as resistance,
capacitance, and inductance, can be determined, along with
critical information regarding electrode reaction kinetics and
diffusion processes. This analysis serves as a valuable basis
for a deeper understanding of the reaction mechanisms and
performance of electrochemical systems.

2.3 Electrochemical gas sensors

Amperometric electrochemical sensors represent the most
prevalent type of gas electrochemical sensors. Their operating
principle involves the diffusion of the target gas onto the WE
surface, where a redox reaction occurs, generating a current
that quantitatively correlates with the concentration of the
target analyte. CV and CA are the primary electrochemical
detection techniques used in amperometric gas sensors. Zhi
et al. developed an amperometric hydrogen sensor utilizing a
Pt/C/Nafion screen-printed carbon electrode (SPCE)
combined with a solid polymer electrolyte.54 CV and CA
were used to measure hydrogen concentration, with the
electrode structure and detection results illustrated in
(Fig. 4a). The sensor demonstrated a sensitivity of 0.1 nA

Fig. 3 Schematic illustration of the three-electrode system of the
electrochemical gas sensor.
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ppm−1, a limit of detection (LOD) of 6.3 ppm, and excellent
linearity. Klun et al. proposed a gaseous hydrogen peroxide
(H2O2) amperometric sensor based on a copper redox
mediator, utilizing an aqueous polyacrylate gel electrolyte
containing Cu(II) to enable rapid and sensitive detection of
gaseous H2O2.

55 This sensor features a wide linear range
(10–100 mg m−3), a low LOD (0.53 mg m−3), and a fast
response time within 2 minutes (Fig. 4b). Zuo et al.56

introduced an amperometric sensor incorporating one-
dimensional (1D) platinum nanotubes (Pt NTs) for ultra-
sensitive hydrogen sulfide (H2S) detection. The sensor
demonstrated outstanding performance, achieving an LOD
as low as 0.025 ppb, with response and recovery times
under 1 second. It also offers a wide detection range (100–
0.025 ppb), high selectivity, strong repeatability, and
excellent long-term stability, presenting a new strategy for

Fig. 4 (a) Schematic diagram of the hydrogen sensor modified with Pt/C/Nafion and the CV and CV detection results. Inset: Magnified cyclic
voltammetry region highlighting the oxidation (≈0.4 V) and reduction (≈0.17 V) peaks of hydrogen under anaerobic conditions, confirming the
quasi-reversible redox process. Reprinted with permission from ref. 54. Copyright 2022 Elsevier. (b) Schematic diagram of the H2O2 sensor based
on a copper redox mediator and the CV detection results. Reprinted with permission from ref. 55. Copyright 2023 Elsevier. (c) Schematic diagram
and detection results of the high-sensitivity H2S sensor based on 1D Pt NTs. Inset: Enlarged response/recovery segment of the amperometric curve
for 0.8 ppb H2S, showing ultrafast T90 (0.75 s) and T10 (0.86 s) behavior based on ultrathin Pt nanotube electrodes. Reprinted with permission
from ref. 56. Copyright 2021 Elsevier.
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real-time monitoring of trace-level ppb H2S gas at room
temperature (Fig. 4c).

Potentiometric electrochemical sensors typically measure
open-circuit voltage (OCV) to determine the concentration of
target gases by detecting variations in electrode potential.57

When the sensor is exposed to an environment containing
the target gas, the gas molecules diffuse to the WE surface
and reach equilibrium. The hydrogen (H2) between the WE
and the RE is then measured using a voltmeter, providing
information about the gas concentration.

The working principle of potentiometric sensors is based
on the Nernst equation:

E ¼ E0 þ RT
nF

ln
Oxidized species½ �
Reduced species½ � (1)

where:
• E is the electrode potential (V), representing the

potential value under specific conditions,
• E0 is the standard electrode potential (V), which is a

constant specific to the electrode reaction under standard
conditions (298.15 K, 1 mol L−1 concentration, 100 kPa gas
pressure),

• R is the gas constant,
• T is the absolute temperature (K),
• n is the number of electrons transferred in the electrode

reaction,
• F is the Faraday constant.
Molino et al.58 developed a novel potentiometric CO2

electrochemical sensor based on a composite membrane of
polymer of intrinsic microporosity (PIM-1) and 18-
diazabicyclo[5.4.0]undec-7-ene imidazolate (DBU-
imidazolate). The high surface area and gas permeability of
PIM-1, combined with the chemical affinity and ion-exchange
properties of DBU-imidazolate, significantly enhance the CO2

sensitivity and selectivity. Zhang et al.59 proposed a
potentiometric H2 sensor based on ZnO porous cages. By
controlling the amount of cetyltrimethylammonium bromide
(CTAB) added during the synthesis of ZnO porous cages, the
size and average pore diameter can be tuned to optimize the
gas-sensing performance. Under optimal conditions, the
sensor exhibited a response signal of 10.6 mV to 0.3 ppm H2

at 450 °C, demonstrating excellent selectivity and
reproducibility.

The working principle of impedance-based
electrochemical sensors relies on gas adsorption/desorption
and charge transfer processes. In this process, gas molecules
adsorb onto the sensing layer of the electrochemical gas
sensor, causing changes in the impedance of the sensing
layer. EIS is the most commonly used technique for detecting
impedance-based electrochemical gas sensors. The
interaction of different gases with the sensing material
results in varying changes in electrical parameters, allowing
for the detection of gas type and concentration through
impedance spectral shifts. An impedance-type nitrogen
dioxide (NO2) sensor based on a porous NiO–YSZ mixed
conductor layer was designed by Ma et al.60 By adjusting the

YSZ/NiO ratio within the porous layer, the morphology and
electron-ion conduction properties of the layer can be
optimized, thus improving the sensor's response
characteristics. Meng et al.61 developed an impedance-type
NH3 sensor using YSZ as a solid electrolyte and NiFe2O4 as
the sensing material. By modulating the NiFe2O4 loading
and calcination temperature, the sensing performance was
optimized. This special sensor, operating at 600 °C,
demonstrates advantages such as short recovery time, high
sensitivity, and good repeatability, while also exhibiting
excellent anti-interference capability against CO2, CH4, H2,
NO2, and NO. Zhang et al.62 reported a Pd-doped rGO/ZnO–

SnO2 nanocomposite hydrogen sensor that achieved
ultrafast response and recovery times in addition to a very
low detection limit. Specifically, the device responded to
100 ppm H2 within 4 s and recovered within 8 s at 380 °C,
with a detection limit as low as 50 ppb. The authors
attributed these short time constants to the synergistic
effects of reduced graphene oxide (rGO), ZnO–SnO2

heterostructures, and Pd nanoparticles, which together
enhanced charge transfer and surface reaction kinetics.
This case highlights that, beyond sensitivity and selectivity,
response and recovery times are critical parameters for
practical gas sensing, as they determine how quickly a
sensor can detect leaks, return to baseline, and be reused.
The study demonstrates how heterostructure engineering
and catalytic additives can substantially accelerate
adsorption–desorption dynamics, thereby underscoring the
importance of recovery time in sensor design for safety and
healthcare monitoring.

2.4 Fabrication techniques

The fabrication strategies of electrochemical gas sensors play
a decisive role in defining electrode geometry, surface
morphology, and material distribution, thereby influencing
mass transport, charge transfer, and catalytic activity. Beyond
simple deposition, these techniques also enable purposeful
electrode pattern design, which is increasingly recognized as
a key determinant of sensitivity, selectivity, and long-term
stability in healthcare-oriented sensors. Among the diverse
approaches, photolithography, screen printing, inkjet
printing, and spray coating are the most widely employed,
each offering unique advantages in resolution, scalability,
and compatibility with flexible substrates.

Photolithography provides sub-micrometer resolution and
wafer-level uniformity, making it indispensable for the
fabrication of interdigitated electrodes (IDEs) and
multiplexed sensing arrays. By integrating functional films
on lithographically defined IDEs, reproducible current paths
and low baseline drift can be achieved, which is crucial for
miniaturized electrochemical gas sensors. Belal et al.63

reported spray-printed ZnO thin films onto lithographic IDEs,
demonstrating a remarkable NO2 response of 5298% at 100
ppm and 150 °C. Similarly, functionalized MWCNTs@ZnO
composites deposited on lithographic IDEs exhibited room-
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temperature NO2 sensing with 80% response and fast
dynamics, underscoring the synergy between high-resolution
patterning and spray deposition.64

Screen printing is one of the most mature and scalable
approaches, widely used for printing working, counter, and
reference electrodes onto ceramic or polymer substrates. Its
main advantages include low cost, high throughput, and the
ability to handle a broad range of inks. Belal et al.65

systematically reviewed the progress of screen-printed gas
sensors, highlighting their integration with hybrid processes
such as spin coating, drop casting, and inkjet printing, and
discussing their potential coupling with IoT, AI, and self-
powered technologies to expand application fields. Despite
limitations in resolution, screen printing remains a key
technology for fabricating disposable and flexible
electrochemical sensors.

Inkjet printing offers maskless, digital deposition with
high spatial precision, enabling selective modification of
electrodes. Belal et al.66 developed a layer-by-layer inkjet-
printed δ-MnO2/graphene hybrid IDE platform, achieving
stable flexible micro-supercapacitors with controlled porosity
and conductivity. In another study, Bayoumy et al.67

employed microdrop inkjet printing of graphene/GO inks to
fabricate interdigitated supercapacitors, obtaining high areal
capacitance (195.1 F m−2) and long cycling stability, which
highlights the role of IDE finger dimensions in enhancing
ion transport. Taulo et al.68 further demonstrated that inkjet
printing of SnO2/NS-rGO nanocomposites onto flexible IDEs
enabled low-temperature CO detection (response 13.4 at 110
°C, compared to 1.88 for pristine SnO2 at 230 °C), with fast
response/recovery and mechanical robustness under bending,
illustrating its potential for wearable gas sensors.

Spray-printed methods are effective for rapidly producing
porous and large-area sensing layers on both rigid and
flexible substrates. Belal et al.63 fabricated ZnO nanosheet
films via spray printing on lithographic IDEs, which
exhibited high NO2 sensitivity and good reproducibility. In a
related work, functionalized MWCNTs@ZnO composites
deposited by spray printing demonstrated stable NO2

detection at room temperature with fast dynamics,
emphasizing the ability of spray coating to integrate
functional nanomaterials with patterned electrodes.64

Compared with other methods, spray printing is particularly
advantageous in forming hierarchical porous films that
promote gas diffusion and catalytic activity.

Importantly, the true impact of these fabrication routes
lies in their ability to engineer electrode patterns.
Interdigitated structures with optimized finger width and
spacing minimize diffusion barriers and reduce ohmic losses,
enabling faster response and higher sensitivity. Porous or 3D
microstructures achieved through spray or inkjet techniques
expand the electrochemically active surface area, thereby
lowering detection limits. Moreover, selective printing (e.g.,
depositing catalytic or selective membranes only on the WE)
enhances gas selectivity in complex mixtures. Recent
advances clearly show that purposeful electrode pattern

design, empowered by appropriate fabrication strategies, is
essential for translating electrochemical principles into
robust, miniaturized gas sensors for next-generation
healthcare and environmental monitoring.66,69

3. Development of smart
electrochemical gas sensors
3.1 Sensors with IoT

Devices developed based on IoT have been successfully
applied across various fields, yielding promising results.
Chen et al.70 reported a method for implementing a vital
signs health monitoring system using IoT technology. This
system was applicable in medical settings, including
hospitals, and had achieved an accuracy rate exceeding 99%
in health status assessments. Chakraborty et al.71 developed
an open-source, IoT-based detection system for asthma
patients, which consisted of two parts: the frontend
integrated harmful gas sensors with environmental monitors,
while the backend connected IoT technology with a software
database. The reliability of the system's performance was
confirmed by comparing its experimental data with that from
commercially available devices. As the digitalization era and
Industry 4.0 continue, monitoring technologies based on
sensors have become increasingly common in the mining
industry.72 In hazardous work environments, integrating
modules like toxic gas sensors into personal protective
equipment (e.g., helmets) offers a highly effective application
of smart sensors. These devices continuously collect real-time
environmental data and monitor workers' health,
transmitting the data via Bluetooth to a control module
outside the mining area. This facilitates timely hazard
warnings, allowing workers to take preventive measures and
avoid injuries.73 Ammonia (NH3), a hazardous and toxic
atmospheric pollutant, poses significant health risks when
exposed to high concentrations. Zhuang et al.74 proposed a
high-sensitivity flexible NH3 detection wireless system based
on polyaniline/multi-walled carbon nanotube composites,
designed for real-time monitoring in an IoT environment.
This method used a composite of polyaniline and multi-
walled CNT as the sensing material, coated onto silver
interdigitated electrodes, and placed on a polyethylene
terephthalate (PET) substrate. The system integrated a
microcontroller with Wi-Fi capability, forming a flexible
electronic system. This solution addressed the integration
challenges of flexible electronic systems.

Technological advances have enabled the mass production
of inexpensive electrochemical sensors capable of measuring
air pollution gas concentrations with relatively high accuracy.
IoT modules are ideal for integration into these low-cost
sensors, and deploying multiple sensor nodes in high-risk
environments or urban areas can facilitate large-scale gas
detection networks.75,76 However, traditional client–server
and cloud-based data management systems are vulnerable to
single points of failure, centralized data management issues,
and other system weaknesses. To address these challenges,
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Gao's team77 developed a new IoT-based monitoring system
(WG-IoT-MS) that effectively monitors and simulates CO2 and
N2O emissions in agricultural water bodies, reducing
monitoring costs by approximately 60%. This advancement
tackled the challenges of cost and portability in
simultaneously monitoring water quality and greenhouse gas
emissions in rice paddy fields.

3.2 Sensors with self-powered technologies

With the advancement of flexible electronics, the
miniaturization and lightweight nature of wearable gas
sensors have opened new possibilities for portable gas
detection and health monitoring systems, focusing on
integration and smart functionalities. However, the reliance
on external power sources limits their portability and
wearability. Moreover, the rapid expansion of IoT has
resulted in sensor networks that are numerous,
decentralized, and operate independently, leading to
challenges such as high energy consumption and
maintenance difficulties in traditional battery-powered
systems. To address these issues, integrating self-powered/
self-driven technologies into sensors offers a promising
solution. By harnessing abundant environmental energy
sources—such as mechanical, solar, thermal, wind, and
ocean energy—these systems enable autonomous detection
of target gases, eliminating the need for external power. This
approach paves the way for the development of efficient,
energy-saving, and sustainable gas sensors. The core of self-
powered devices lies in energy harvesting technologies, which
convert ambient energy into electrical power. Significant
advancements have been made in various energy harvesting
methods, including photovoltaic generation,78 thermoelectric
generators,79,80 mechanical energy harvesters,81,82 biofuel
cells (BFCs)83,84 and radio frequency energy harvesters.85,86

Among these, the invention of TENGs has provided a
breakthrough for the development of next-generation self-
powered gas sensors.87 Based on the coupling effect of
triboelectric charging and electrostatic induction, TENGs can
convert mechanical energy into electrical signals. When
positive and negative triboelectric materials come into
contact and then separate, TENGs generate an alternating
current (AC) flow from one electrode to another through an
external circuit. There are four fundamental working modes
of TENGs, as shown in (Fig. 5a).88 Currently, self-powered gas
detection systems utilizing TENGs can be categorized into
two types based on the role of the TENG. The first type is a
separated gas sensor driven by TENG, which uses the load
matching effect of the TENG, where the TENG and gas sensor
function as the power and sensing units, respectively. The
second type involves a TENG serving both as an energy
generator and a gas sensor, achieved by employing a sensing
functional film with both gas-sensing and triboelectric
properties. When target gas molecules adsorb onto the film,
the chemical potential on the surface changes, directly

altering the surface charge density of the triboelectric
material. Consequently, the output electrical signal of the
TENG varies in response to the type and concentration of the
detected gas.

Polymers such as PTFE, nylon, and latex are commonly
used as triboelectric film materials. For example, in the
TENG-powered NH3 sensor proposed by Wang et al.,89 PTFE
and nylon were used as the two triboelectric films (Fig. 5b).
Another NH3 sensor was powered by a TENG based on PTFE
and latex.90 Su et al.91 developed a self-powered gas sensor
array driven by a Maxwell displacement current (Fig. 5c),
designed for wireless, passive respiratory analysis and
exhaust emission monitoring. The relative rotation between
PTFE rotator and nylon stator generates a time-varying
electric potential in the entire space with a period of π/2,
resembling the displacement effect. Due to their softness and
flexibility, nanofiber materials are also commonly used as
triboelectric layers in wearable gas sensors. Sardana et al.92

synthesized an electrospun TENG using highly
electronegative and conducting MXene nanofibers (NFs)
paired with biodegradable cellulose acetate NFs (CA-NFs) as
triboelectric layers, achieving a sufficient power density
(∼1361 mW m−2 MΩ−1). By embedding a triboelectric pair in
the smart insole, the TENG harvests kinetic energy from
footfall motion to power an MXene/TiO2/cellulose-NFs
heterojunction-based sensor and LED indicators for NH3

leakage detection (Fig. 5d). Wang et al.93 fabricated a wind-
driven TENG based on poly(vinyl alcohol)/Ag nanofiber films
for human respiration and movement stimulation
monitoring (Fig. 5e). By integrating four TENGs with a high-
performance Ti3C2Tx MXene/tungsten oxide nanofiber-based
NO2 gas sensor, this multifunctional self-powered detection
system can trace the source of harmful gases. Additionally,
Wang et al.94 constructed a liquid–solid TENG with ECTFE
film and ionic hydrogel electrodes to harvest wave energy for
marine environmental monitoring, derived from the contact
electrification between water and ECTFE (Fig. 5f).

For a self-powered active gas sensor that functions both
as an energy generator and a gas sensor, at least one of
the triboelectric layer materials or electrode materials must
possess gas-sensing properties. Wang et al.95 introduced a
respiration-driven TENG using Ti3C2Tx MXene/NH2-
MWCNTs for self-powered detection of exhaled gas and
disease diagnosis. The MXene/NH2-MWCNTs composite,
serving as both the friction layer and electrode of the
TENG, is sensitive to formaldehyde (HCHO) gas, resulting
in varying output voltages when exposed to different HCHO
concentrations (Fig. 5g). To improve the output sensitivity
of triboelectric respiration sensors (TRSs), Liu et al.96

designed a lever-type TRS (Fig. 5h). By adjusting the length
ratio of the power arm to the resistance arm, they
modulated the contact-separation distances between
dielectrics, resulting in a TRS that exhibits flow sensitivity
during oral/nasal respiration. Additionally, an in situ self-
assembled Fe2+ doped polypyrrole (FPPy) sensing film was
selected as one of the back electrodes of the triboelectric
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layers due to its selective reaction between Fe2+ and H2S.
Consequently, the developed TRS is also capable of
detecting H2S in exhaled gases. Su et al.97 developed an
alveolus-inspired membrane sensor (AIMS) that converts the
mechanical inflating and deflating of gases in a latex film
into electrical signals (Fig. 5i). When combined with gas-
sensing materials, it enables both NO2 detection and

continuous monitoring of breathing behavior. Another
example is the TENG-based wireless gas sensor system
(TWGSS)98 used for food quality evaluation (Fig. 5j). The
NH3-sensing conductive wood, chemically modified and
incorporated with CNTs, exhibits excellent mechanical
flexibility and gas adsorption capacity due to its porous
structure.

Fig. 5 (a) Four working modes of TENG. Reprinted with permission from ref. 88. Copyright 2022 Wiley. (b) and (c) TENGs utilizing PTFE and nylon
as triboelectric films. Reprinted with permission from ref. 89 and 91. Copyright 2021, 2023 Elsevier. (d) Mxene Nfs and CA-NFs based TENG
integrated into a smart shoe insole. Reprinted with permission from ref. 92. Copyright 2022 American Chemical Society. (e) PVA/AG NFs based
wind-driven TENG. Reprinted with permission from ref. 93. Copyright 2021 Elsevier. (f) Wave-driven TENG with ECTFE film and ionic hydrogel
electrodes. Parts (i)–(viii) show the charge transfer mechanism of TENG. Reprinted with permission from ref. 94. Copyright 2022 Elsevier. (g)
Respiration-driven TENG using Ti3C2Tx MXene/NH2-MWCNTs. Reprinted with permission from ref. 95 Copyright 2022 Elsevier. (h) Lever-type
triboelectric respiration sensors. Reprinted with permission from ref. 96. Copyright 2023 Elsevier. (i) Alveolus-inspired membrane sensor. Reprinted
with permission from ref. 97. Copyright 2020 American Chemical Society. (j) TENG-based wireless gas sensor system reprinted with permission
from ref. 98. Copyright 2021 Elsevier.
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Similar to TENGs, piezoelectric nanogenerators (PENGs)
are widely used technologies for converting mechanical
energy into electrical energy. PENG relies on the property
of piezoelectric materials to generate electric fields upon
deformation. This piezoelectric effect is suitable for self-
powered sensor applications in dynamic environments
with vibrations or human motion. To optimize energy
harvesting, piezoelectric materials are often integrated with
flexible substrates to form microelectromechanical systems
(MEMS). In the study by Zhang et al.,99 a flexible
piezoelectric nanogenerator was developed using a 2D
single-layer MoS2 flake on PET. The Au-MoSe2 composite-
based ammonia sensor with the MoS2 PENG exhibited an
enhanced response (Va/Vg = 29 at 100 ppm NH3).
Furthermore, the sensor demonstrated a rapid response
and recovery time of 18 s and 16 s, respectively, when
exposed to 20 ppm NH3. Photovoltaic energy harvesting
converts light into electrical energy via the photoelectric
effect, where light generates electron–hole pairs in a
photoelectric semiconductor material that are separated by
an internal electric field, producing current. In low-light
environments, the generated energy is typically stored in
supercapacitors or batteries to ensure continuous sensor
operation. In the work of Niu et al.,100 a photovoltaic self-
powered NO2 gas sensor was developed using a vertical
MoS2 (n-type)/GaSe (p-type) heterojunction. The sensor
demonstrated outstanding performance in detecting NO2,
including rapid response and recovery times and high
selectivity in both biased and self-powered modes. Notably,
the limit of detection (LOD) for NO2 was as low as 20
ppb in the fabricated photovoltaic self-powered gas sensor.
Thermoelectric energy harvesting is based on the Seebeck
effect, where a temperature gradient across a
thermoelectric material drives charge carriers from the hot
end to the cold end, creating a potential difference that
results in current generation.

3.3 Sensors with machine learning

ML has emerged as one of the fastest-growing technologies
in recent years, typically comprising four stages: data
collection, model building, training, and evaluation. ML
models can be classified into supervised and unsupervised
categories, based on whether the model relies on labeled data
during the learning process. In supervised learning, training
data is used to model and train classifiers, allowing them to
recognize feature labels associated with the objects of
interest. Common classification models include support
vector machines (SVM),101,102 decision trees (DF),103,104

k-nearest neighbors (KNN),105,106 artificial neural networks
(ANN),107,108 random forests (RF),109,110 and others.
Unsupervised learning, on the other hand, involves training
the model without labeled data or target outputs. The goal is
to uncover hidden structures, patterns, distributions, or
relationships within the data, without relying on label
information. Common unsupervised learning algorithms

include K-means,111,112 hierarchical clustering,113 Gaussian
mixture models (GMM),114,115 principal component analysis
(PCA),116,117 and others.

Current commercial VOC detectors suffer from cross-
sensitivity and low repeatability. The introduction of ML
methods allows for feature extraction from the data to
classify different types of VOCs and their mixtures. Huang
et al.118 proposed a species-selective detection method for
VOCs using electrochemical cells based on ionic liquid (IL)
electrolytes. Linear discriminant analysis (LDA) was used to
extract and classify the measured voltammograms. Zhang's
team119 developed a wearable mask for detecting and
identifying VOCs. During the analysis and identification
steps, PCA and KNN were employed for dimensionality
reduction, feature extraction, VOC recognition, and
concentration prediction, with results demonstrating high
accuracy (Fig. 6a). Tombel et al.120 applied five supervised
ML algorithms to predict VOC classification using an initial
dataset: KNN, RF, SVM, logistic regression (LR), and ANN.
They found that RF and KNN models showed higher
accuracy, and that selecting the simplest features from the
steady-state stage was sufficient for gas classification.
Similarly, Gupta et al.121 found that RF and KNN models
demonstrated better accuracy in predicting normal
breathing versus respiratory failure across multiple model
comparisons.

ANNs are a ML approach that enables the learning and
classification of data patterns. The multi-layer perceptron
(MLP) is a type of feedforward neural network model that
maps multiple input datasets to a single output dataset.
Chen et al.122 developed an electronic nose system for online
breath analysis based on a graphene sensor array and the
MLP model. This system used the MLP model to perform
pattern recognition of the responses of different gases on the
graphene array, demonstrating that the method could
effectively detect and analyze volatile compounds in exhaled
breath. Li et al.123 designed a collaborative strategy based on
sensor integration and ML algorithms for the precise
detection of NH3 and NO2 gases. They employed the BP-NN
algorithm for qualitative gas analysis and used partial least
squares (PLS) regression analysis for quantitative prediction
(Fig. 6b). Besides, Sun et al.124 conducted an analysis and
comparison of various artificial intelligence algorithms for
the real-time monitoring of volatile compounds in urine.
They found that the convolutional neural network (CNN)
model performed best in extracting local features, mining
global training features, and classifying spatial vectors. Liu
et al.125 proposed a feasible approach for selectively detecting
chemical mixtures using a single non-selective sensor. By
applying ML models, specifically a recurrent neural network
(RNN) with gated recurrent units (GRU), the study
successfully learned the response signals of a C2H2–C2H4

mixture, enabling the prediction of mixture composition
from overlapping signals, thus providing new ideas for
intelligent detection.126–128 Heng et al.129 designed an
artificial intelligence-assisted sensor system for detecting
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Fig. 6 (a) Parallel coordinate plots of 12 parameters extracted from all VOC gas response measurements. Reprinted with permission from ref. 119.
Copyright 2024 Wiley. (b) Safety monitoring system and the BP-NN network architecture.123 (c) Schematic of the hybrid sensor detector combined
with ML algorithms. Reprinted with permission from ref. 132. Copyright 2024 Elsevier.
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acetone and ethanol. The sensor array, consisting of various
metal oxide (MOx) sensors, was exposed to acetone and ethanol
to generate a dataset for training and testing a multi-input
CNN. This study confirmed that the deep learning model CNN
is more effective at capturing dynamic interactions between
sensors and acetone and ethanol compared to traditional ML
methods such as LDA, KNN, and SVM.

ML techniques can be applied not only in the data post-
processing stage to compensate for sensor performance
deficiencies and improve the selectivity of target gases, but
also in the pre-processing stage to address interference
caused by environmental factors. The performance of GO-
based VOC sensors, for example, is influenced by changes in
relative humidity (RH) in the surrounding environment. To
mitigate RH interference, Lim et al.130 compared two deep
learning networks, transformer and LSTM, and found that
both models could accurately predict a 1% change in relative
humidity, with the transformer model performing better.
This technology helps calibrate gas sensors developed in the
laboratory within a typical humidity range. Additionally,
detecting target gases in open environments requires careful
consideration of the measurement environment, as the
physical properties of gas molecules are highly influenced by
external factors such as wind speed. To address the multi-
condition gas classification problem, Lee et al.131 designed a
novel deep learning network called ‘MCGCN’, which uses a
shared feature extraction module (SFEM) for efficient feature
extraction and a new loss function consisting of combined
classification loss and individual condition loss for training.
It achieves high accuracy (99.15% ± 0.41) while reducing the
model parameters by a factor of 15 compared to previous
methods. In another study, gas sensor arrays combined with
ML models show significant development potential. Ku
et al.132 proposed combining three different sensor
principles: semiconductor metal oxide (SMO) sensors,
electrochemical (EC) sensors, and photoionization detection
(PID) sensors to create a hybrid sensor array. By integrating
ML, this array can rapidly respond to and identify hazardous
gas leakage environments in chemical plants. This research
highlights the deep integration of sensor technology and ML,
offering new ideas for the development of intelligent sensing
systems. It is significant for advancing sensor technology and
promoting the application of artificial intelligence in various
fields (Fig. 6c).

4. Applications of smart
electrochemical gas sensors
4.1 Air monitoring

Air pollution presents a significant threat to both the
environment and public health. Traditional air quality
monitoring stations, due to their costly equipment, are
typically limited to small areas and lack high-density spatial
resolution. Recent advances in low-cost sensors and IoT have
enabled the large-scale deployment of sensor networks.
Additionally, the integration of lightweight algorithm models

can mitigate sensor aging, allowing for real-time and long-
term air pollution monitoring.

Nitrogen dioxide (NO2) is a major component of air
pollution, primarily resulting from industrial emissions,
transportation, and residential combustion processes. Long-
term exposure to NO2 can lead to respiratory diseases such
as bronchitis, pulmonary edema, and asthma. Therefore,
highly sensitive and selective NO2 sensors are crucial for air
quality monitoring. Zhang et al.39 presented an ultra-
sensitive NO2 sensor that operates at room temperature
(RT), based on K2Fe4O7 solid electrolyte and Ni-MOF|N2

sensing electrode (SE). The sensor operates on the mixed
potential principle (MPSE), where the potential signal is
determined by the electrochemical reaction of the target
gas. By controlling O2 vacancies and the unsaturated
coordination state of Ni ions, the sensor's selectivity for
NO2 is enhanced, providing a 31-fold improvement over NO.
The sensor is integrated into an IoT terminal, enabling
remote monitoring and information sharing. Ali et al.133

proposed a low-cost sensor node based on LoRaWAN,
capable of measuring CO, NO2, and particulate matter (PM),
calibrated using ML to improve accuracy. The development
of such low-cost electrochemical sensors offers new
possibilities for air quality monitoring. While these sensors
may not match the accuracy of traditional devices, their low
cost and potential for large-scale deployment make them
valuable complements to conventional monitoring systems.
However, low-cost sensors are not only limited by inherent
sensing accuracy but also affected by environmental factors
(such as temperature and humidity) and sensor drift over
time, leading to a decline in measurement accuracy. As a
result, research on various calibration methods has become
a key research focus in recent years.30,134 Christakis and
colleagues75 investigated the effect of sensor aging on
measurement accuracy and proposed a correction formula
to address this issue. The team set up a wireless sensor
network (WSN) consisting of three sensor nodes in
downtown Athens, Greece, with each node equipped with
electrochemical sensors for monitoring NO2 and ozone (O3)
concentrations. The sensor data were compared with official
monitoring stations to assess accuracy. The team continued
to focus on optimizing low-cost electrochemical air quality
sensors for measuring O3 and NO2, proposing a new
correction method based on quadratic polynomial
regression the following year. The corrected data showed
better alignment with official reference instrument data,
enhancing the feasibility of low-cost sensors in real-world
applications.135 Interestingly, portable environmental
sensors can also serve as diagnostic tools for patients with
COPD.136 COPD is a chronic disease that affects the
respiratory system, and its symptoms can be exacerbated by
environmental factors such as air pollution. Timely
prediction of COPD symptom deterioration can help doctors
make more accurate diagnoses. A prediction model
combining probabilistic latent component analysis (PLCA)
and linear dynamic systems (LDS), known as PLCA-LDS, was
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proposed by the Kolozali team to predict changes in patient
symptoms. Experimental results showed that the new model
achieved a 4–20% improvement in accuracy over the RF
model in predicting COPD symptoms. This study is the first
to demonstrate the feasibility of using personal air pollution
exposure data to predict COPD symptoms and highlights

the potential of portable sensors and ML technologies in
remote health monitoring. In addition, chemical plants,
underground mines, waste treatment facilities and other
places are often accompanied by various toxic and harmful
gases. Fazio et al.137 proposed and developed a self-powered
smart shirt, which integrates multiple wearable sensors

Fig. 7 (a) The deployed monitoring system relying on the proposed wearable device.137 (b) The transient all-MXene NO2 and pressure sensors and
the photo of the pressure sensor on the skin. Inset: Photograph of the wearable sensor attached to the human wrist during measurement.138 (c)
The vanadium carbide MXene based flexible and room temperature toluene gas sensor. Reprinted with permission from ref. 139. Copyright 2024
American Chemical Society. (d) Non-working state and working state of the composite device. Reprinted with permission from ref. 143. Copyright
2023 Elsevier.
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capable of monitoring workers' physiological indicators. The
smart shirt transmits data to a smartphone via BLE
modules, with the smartphone acting as an IoT gateway to
upload data to the IBM Cloud platform for storage,
processing, and visualization (Fig. 7a).

In order to better distinguish and quantitatively detect
toxic gases, it is necessary to pay attention to the progress of
sensitive materials in recent years, such as graphene/GO-
based materials, CNTs, MOFs, and conducting polymers.
Particularly, MXene-based gas sensors have demonstrated
outstanding gas sensing performance owing to their unique
two-dimensional structure and abundant surface functional
groups. MXene-based gas sensors can exhibit excellent
performance at room temperature. For example, Yang
et al.138 developed a full MXene transient NO2 sensor based
on three-dimensional porous wrinkled MXene spheres,
which showed a response of up to 12.11% for 5 ppm of
NO2 at room temperature, with a detection limit as low as
50 ppb and excellent reproducibility and selectivity.
Furthermore, the flexible properties of MXene materials
offer broad application prospects in wearable gas sensors
(Fig. 7b). Karmakar et al.139 reported a flexible toluene gas
sensor based on V2C MXene, which showed a 77.5%
response to 200 ppm of toluene at room temperature. This
flexible sensor can be integrated into wearable devices to
monitor harmful gas concentrations in real-time, thereby
protecting human health. The lightweight nature and high
mechanical strength of MXene materials make them ideal
for portable gas sensors, enabling real-time monitoring in
complex environments. Lastly, the multifunctionality and
tunability of MXene materials offer new directions for
developing multifunctional gas sensors (Fig. 7c). Gorbounov
et al.140 introduced an outdoor mine atmospheric
monitoring system based on LoRa wireless technology,
using MEMS gas sensors for real-time monitoring of
harmful gases such as NO, NO2 and CO. By integrating
MXene materials with wireless communication technology,
remote and real-time gas monitoring can be realized,
significantly improving the portability and practicality of
the monitoring system.

Trimethylamine (TMA) is a VOC with a strong fishy odor.
Prolonged exposure can irritate the eyes, nasal cavity, and
skin, and may affect the nervous system.141,142 However,
current TMA sensors often require high-temperature heating
to improve sensitivity, presenting challenges in energy
consumption and safety. Li et al.143 designed a passive near-
field communication (NFC) tag-type TMA gas sensor based
on WO3/MXene composite materials, achieving high-
sensitivity detection at room temperature. The research team
utilized the MXene layered structure to increase the reactive
active sites of WO3 nanoparticles and form Schottky
junctions, thereby enhancing the selectivity and response
speed of WO3 to TMA. NFC technology is used to develop a
non-contact gas detection device that does not require an
external power supply, improving the safety and convenience
of detection (Fig. 7d).

Indoor air pollution is now ranked among the top five
environmental public health risks that contribute to
morbidity and mortality globally, particularly since indoor
pollutant concentrations can be several times higher than
those found outdoors.134,144,145 Consequently, monitoring
indoor environments is a vital application for intelligent
gas sensors. Traditional air quality monitoring methods
typically rely on expensive instruments and complex
laboratory analysis, which cannot meet the demands for
portability, low cost, and low power consumption. To
address these challenges, González et al.146 proposed a
LoRa-based sensor network that integrates commercial gas
sensors and graphene-based chemical resistive sensors to
detect VOCs, CO, and NO2, providing real-time air quality
monitoring. The commercial sensor (BME680) computes the
indoor air quality index using built-in algorithms, although
it cannot accurately detect oxidizing gases like NO2. The
graphene sensor, on the other hand, rapidly responds to
changes in NO2 concentrations, making it suitable for
detecting gas leaks. Furthermore, the LoRa network offers
excellent scalability and communication performance,
allowing for the easy addition of new nodes to the network
without modifying gateway configurations. These sensor
networks are ideal for indoor air quality monitoring and
early gas leak detection.

HCHO is another significant indoor pollutant that raises
health concern. The World Health Organization classifies it
as a carcinogen when individuals are exposed to
concentrations above 0.08 ppm over an extended period.147

Zhang et al.148 proposed a Cr-doped Pd-based
electrochemical HCHO sensor, which exhibits a detection
range one order of magnitude higher and significantly
better anti-interference capabilities compared to
conventional sensors. Most importantly, this HCHO sensor
is suitable for both indoor and outdoor environmental
monitoring when integrated into WSNs or handheld
devices. Wang et al.95 designed a multifunctional self-
powered system based on TENG. The team prepared a
composite based on amino-functionalized multi-wall carbon
nanotubes (NH2-MWCNTs). The composite material is used
as both a friction layer and an electrode to improve the
sensitivity of the sensor to formaldehyde. Experiments have
compared the response of a variety of gases (such as
methanol, acetone, ammonia, benzene), showing a higher
selectivity for formaldehyde. It provides innovative design
scheme and experimental evidence for self-powered gas
sensor and respiratory behavior monitoring. The use of
visible light assisted strategy is an innovative idea. Based
on this method, Liu decorated Pd on titanium dioxide to
enhance its photocatalytic performance.149 The sensor
showed good linear response in the concentration range
from 80 × 10−9 to 50 × 10−6. Under visible light irradiation,
the sensor not only doubled the response to formaldehyde,
but also changed little in response to other interfering
gases (such as NH3, acetone, benzene, etc.), thus improving
the gas selectivity. Additionally, several studies aim to

Sensors & DiagnosticsTutorial review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
6/

20
26

 9
:3

3:
37

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sd00077g


Sens. Diagn., 2025, 4, 1060–1085 | 1075© 2025 The Author(s). Published by the Royal Society of Chemistry

integrate individual gas sensors into a network for
comprehensive indoor air quality monitoring in smart
homes. Marques and Pitarma150 presented an IoT system
for real-time indoor air quality monitoring called iAir. This
system features a hardware prototype for environmental
sensing and a web/smartphone interface for data access.
The collected data is transmitted to an open-source IoT
platform that provides an API for cloud storage and
retrieval.

4.2 Breath analysis

In recent years, the rapid development of breath detection
technologies has brought exhaled breath to the forefront as a
novel and promising biological sample, gaining increasing
recognition as a valuable tool for the early diagnosis and
monitoring of diseases. Over 2000 VOCs have been found in
exhaled gases, providing a wealth of information about
overall health.2 This offers great potential for disease
biomarkers to be sampled non-invasively through respiratory
biopsy.151 Moreover, a growing body of evidence indicates
that the relationship between diseases and exhaled VOCs is
highly complex. Most diseases are not characterized by a
single compound, but rather by a complex of multiple VOCs,
many of which may overlap across different pathological
conditions. Moura et al.152,153 summarized representative
examples of diseases and their related VOCs, highlighting the
diversity of VOCs and the challenges of overlapping labeling.
A summary of their key findings is presented in Table 1. This
overlap poses a significant challenge for establishing disease-
specific diagnostic markers, as relying on a single VOC is
often insufficient for accurate discrimination. To overcome
this limitation, researchers increasingly focus on identifying
unique VOC patterns or multi-marker signatures that, when

combined with advanced data analysis, can provide improved
specificity.

Recent studies employ sensor arrays combined with
machine learning and statistical modeling to capture these
complex patterns, thereby improving specificity and reducing
diagnostic ambiguity. Recent advances have demonstrated
the potential of combining multi-sensor arrays with machine
learning algorithms to improve the accuracy of VOC-based
disease detection. Lee et al.11 developed a breath analysis
system for the early diagnosis of lung cancer, integrating a
gas sensor array with deep learning models. The platform
employed nine electrochemical sensors, a semiconductor
metal oxide sensor, and a photoionization detector to
simultaneously monitor multiple VOCs in exhaled breath.
Clinical validation on 181 breath samples (107 lung cancer
patients and 74 healthy controls) showed that the system,
when coupled with a 1D CNN, achieved an accuracy of 97.8%
in distinguishing lung cancer patients from healthy
individuals. Importantly, the comparison of different neural
architectures (multilayer perceptron, recurrent neural
network, and CNN) demonstrated the superiority of CNN for
handling high-dimensional VOC data. This study underscores
how multi-marker VOC signatures, when analyzed through
deep learning, can overcome the limitations of single-
compound analysis and significantly enhance the specificity
of breath-based diagnostics. The novel electronic nose (e-
nose) system developed by Vadera and Dhanekar154

represents a promising technology for non-invasive
diagnostic applications, particularly in the analysis of exhaled
breath. By combining sensor arrays with advanced machine
learning (ML) algorithms, e-nose systems can classify and
predict the presence of specific VOCs, which act as
biomarkers for various diseases. Additionally, the use of IoT-
enabled prototypes, such as those incorporating Raspberry Pi

Table 1 Exhaled breath biomarkers of VOCs corresponding to five diseases152

Disease Volatile organic compounds as exhaled breath biomarkers

Asthma Acetone, biphenyl, decane, 1,4-dichlorobenzene, 3,6-dimethyldecane, 2,4-dimethylheptane, 1,7-dimethylnaphtalene,
2,4-dimethylpentane, dodecane, 2-ethenylnaphtalene, ethylbenzene, 2-ethyl-4-methylpentanol, hexane, 2-hexanone,
1-isopropyl-3-methylbenzene, 2-methylhexane, 3-methylpentane, 1-(methylsulphonyl)propane, 4,6,9-nonadecatriene,
nonanal, nonane, octadecyne, octane, 2-octenal, 2,2,4,6,6-pentamethylheptane, phenylbutene, propanol, tetradecane,
2,6,10-trimethyldodecane, 2,2,4-trimethylheptane, 2,3,6-trimethyloctane, 2-undecanal, p-xylene

Chronic
kidney
disease

Acetone, ammonia, aniline, bicyclo[4.1.0]hepta-1,3,5-triene, 2-butanone, 2-chloroethylester-carbonochloridic acid,
3-chloropropanoylchloride, o-cymene, dichloronitromethane, 2,4-dimethylheptane, dimethyl sulphide, ethanol,
ethenesulfonyl chloride, m-ethylmethylbenzene, 2-ethylpentane, 3-ethylpentane, heptanal, hexanal, iodide
cycloheptatrienylium, isoprene, limonene, methane sulfonyl chloride, methanethiol, methylamine, methylene chloride,
2-methylhexane, 3-methylpentane, 6-nitro-2-picoline, nonanal, pentanal, 4-(1-phenyl-2-propenyloxy)-benzaldehyde,
1H-pyrazole-4-carbonitrile, 2-pyridinecarbonitrile, 1H-pyrrole-3-carbonitrile, silicon tetrafluoride, styrene, toluene,
4H-1,2,4-triazol-4-amine, trichloromethane, trimethylamine, 2,2,3-trimethylhexane, 2,2,6-trimethyloctane

Chronic
liver
disease

Acetaldehyde, acetone, acetophenone, ammonia, 2-butanone, caryophyllene, decene, dimethyl selenide, dimethyl sulphide, ethanol,
heptene, indole, isoprene, isopropanol, limonene, methanol, 3-methylbutanonitrile, 2-methylhexane,
3-methylhexane, 2-methylpropene, 1-(methylthio)propane, nonane, (E)-2-nonene, octane, octene, pentane, 2-pentanone,
3-pentanone, 2-pentylfuran, phenol, α-pinene, β-pinene, propanol, styrene, α-terpinene, γ-terpinene, tetradecane,
tridecane, trimethylamine

Diabetes Acetone, dimethyl sulphide, ethanol, isoprene, isopropanol, methanol
Malaria Acetone, allylmethylsulphide, benzene, 3-carene, cyclohexanone, 2,2-dimethyldecane, 3,6-dimethyldecane, 3,7-dimethyldecane,

ethylbenzene, ethylcyclohexane, 2-ethylhexanol, hexanal, 4-hydroxy-4-methylpentan-2-one, isoprene, 1-(methylthio)propane,
methylthiopropene, methylundecane, nonanal, α-pinene, propylcyclohexane, toluene, tridecane, 2,2,3-trimethylhexane,
2,3,5-trimethylhexane
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systems, facilitates data storage and cloud-based analysis,
providing a seamless interface for remote monitoring. These
advancements pave the way for non-invasive, portable
diagnostic tools that could greatly enhance chronic disease
management and early detection. Type 2 diabetes mellitus
(T2DM) is a prevalent chronic metabolic disease that requires
continuous monitoring of blood glucose levels. Currently,
diabetes diagnosis methods are invasive and may cause
discomfort to patients, such as fingertip blood sampling
tests. Kapur et al.155 designed a portable, non-invasive
diabetes detection device called ‘DiabeticSense’. The device
used cutting-edge MOS electrochemical sensors to detect
acetone levels in the patient's breath. Since commercial MOS
sensors perform non-specific detection of acetone, the
researchers trained a ML model to diagnose diabetes. The
device also uses IoT technology for cloud-based management
of test data and a user-friendly human-machine interface.
Widanaarachchige et al.156 reported the development of a
ferrocene-encapsulated zeolitic imidazolate framework
integrated into a ZeNose platform for the simultaneous
detection of four breath biomarkers—ethanol, isopropanol,
acetic acid, and acetone. Utilizing chronoamperometry as the
transduction principle, the system demonstrated high
sensitivity, linear response characteristics, and reliable
detection capabilities across the tested VOCs. Importantly,
the authors validated the sensor's accuracy through spike-
and-recovery experiments, achieving recovery rates within the
CLSI guideline range of 80–120%. Such results highlight not
only the feasibility of detecting multiple low-concentration
biomarkers in exhaled breath but also the potential of metal–
organic framework-based architectures to improve stability
and reproducibility. This work exemplifies the transition
from single-gas to multi-marker platforms, aligning with the
trend of using VOC-patterns rather than individual
compounds for disease detection.

While pattern-recognition strategies have significantly
improved the specificity of VOC-based diagnostics, their
successful translation into clinical practice also depends on
overcoming the challenge of low analyte concentrations.
Exhaled biomarkers such as aldehydes, ketones, or NO are
often present in sub-ppm to ppb levels, requiring either pre-
concentration steps or the development of highly sensitive
sensing architectures. Strategies such as adsorption-based
enrichment, solid-phase microextraction, and cryogenic
trapping have been employed to increase VOCs availability,
while advanced electrode materials with hierarchical
nanostructures, catalytic additives, and heterojunction
engineering have been designed to directly detect VOCs at
ultra-low concentrations. These approaches represent
complementary routes to overcoming the low-concentration
barrier and advancing VOC-based breath diagnostics toward
clinical translation.

In the overall framework of breath analysis technology,
although traditional gas sensors mainly focus on the
detection of VOCs, this only reveals part of the chemical
information in the breath. EBC, collected from condensed

water vapor produced during human respiration, capturing a
range of biomarkers from within the body. This non-invasive
sample offers a fresh perspective on disease detection and
epidemiological research, particularly in the context of
inflammatory diseases.157,158 EBC contains numerous
inflammatory markers, including cytokines, enzymes, and
oxidative stress products, all of which are closely associated
with the onset and progression of respiratory diseases. This
capability is especially valuable in monitoring chronic
respiratory diseases, infectious diseases, and respiratory
inflammation,159–161 including conditions such as
asthma,162,163 COVID-19,164,165 and COPD.166,167 Especially in
the application of smart mask technology, the combination
of EBC detection and traditional gas sensors can not only
achieve real-time and portable VOCs monitoring, but also
provide a more comprehensive physiological status
assessment and disease risk warning through the detection
of liquid phase components. Therefore, discussing the
application of EBC detection in smart masks not only
enriches the diversity of breath analysis technology, but also
provides a new idea for the future development of cross-
mode sensors.

Smart masks, as a new type of wearable device, have
attracted considerable attention. These masks typically use
the condensation principle to efficiently collect EBC.162,164,168

The mask is internally designed with efficient airflow
channels to capture water vapor from exhaled air via a
condensation mechanism. When the user exhales, the water
vapor in the breath condenses into liquid upon contact with
the cooled surface, facilitating the collection of EBC. This
condensation process effectively concentrates the biomarkers
in the breath, making subsequent analysis more sensitive
and accurate. Cao et al. proposed a real-time, continuous
wearable mask for monitoring H2O2 in exhaled breath
condensate.162 The condensation device was designed using
computational fluid dynamics, incorporating microchannels
with a secondary flow structure to reduce the size of the
exhaled breath condensate device and improve condensation
efficiency. The condensation chip, miniaturized three-
electrode detection circuit, and real-time display were
integrated into the N95 mask for wearable detection. This
wearable sensor can be extended to the detection of ions,
glucose, nucleic acids, and other substances in exhaled
breath condensate (Fig. 8a). Integrating biosensing
technology, Daniels et al.164 offered a convenient and
efficient COVID-19 rapid screening solution. The mask-based
EBC collection system uses a commercial face mask fitted
with an engineered EBC collector system based on a Teflon-
coated cooling trap. Real-time detection of COVID-19
biomarkers in breath is achieved through an embedded
biosensor. These sensors are based on immune response
principles, with electrodes pre-modified with a specific
aptamer, a nucleic acid sequence with high affinity for the
SARS-CoV-2 virus S1 protein. When the aptamer on the
electrode binds to the virus, it causes a change in current,
which can be measured by the electrochemical biosensor
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(Fig. 8b). Heng et al. designed the ‘EBCare’ smart mask
based on a cooling strategy, automated microfluidics, highly
selective electrochemical biosensors, and wireless reading
circuits.168 EBCare integrates multiple electrochemical
sensors for real-time analysis of key biomarkers in EBC, such
as NO2

−, alcohol, NH4
+, pH, and temperature sensors. EBCare

transmits the collected data in real-time via a wireless
module to smart devices or the cloud, allowing users to view
analysis results instantly, assisting in health management or
disease monitoring (Fig. 8c).

The development of smart mask platforms such as EBCare
illustrates the potential of integrating electrochemical
sensing with wearable technologies for continuous and non-
invasive health monitoring. While such systems demonstrate
the feasibility of real-time breath analysis, they also highlight
the need to evaluate electrochemical gas sensors in disease
detection relative to conventional biosensing approaches.

Electrochemical gas sensors analyze VOCs and inorganic
gases in exhaled breath, providing non-invasive insights into
metabolic and pathological states. For instance, acetone
levels in exhaled breath have been reported as potential
biomarkers for diabetes, reflecting altered fat metabolism,169

while aldehydes such as hexanal are linked to lipid
peroxidation in lung cancer, and NO serves as a well-
recognized marker for asthma. However, these analytes are
typically present at ppb–ppt levels, making their detection
highly dependent on advanced electrode materials and
signal-processing strategies. In contrast, conventional
electrochemical biosensors are designed to detect biomarkers
in blood, saliva, or urine, such as glucose, lactate,
cholesterol, DNA, or proteins, usually present at μM–mM
concentrations. A classic example is the electrochemical
glucose biosensor (blood glucose meter), which employs

glucose oxidase as a recognition element to achieve rapid
and specific quantification, revolutionizing diabetes
management.170 Similarly, lactate biosensors are widely used
in sports medicine and critical care to monitor tissue
hypoxia.171 These biosensors exhibit high specificity through
the use of enzymes, antibodies, or nucleic acid probes, and
have already achieved extensive clinical translation. To bridge
the gap between these two paradigms, bioinspired platforms
such as the electronic nose and electronic tongue have been
developed.172 The electronic nose employs sensor arrays to
mimic olfactory detection of complex gas mixtures, while the
electronic tongue replicates gustatory sensing to analyze
liquid-phase biomarkers. Together, these technologies enable
cross-modal sensing of both gaseous and liquid analytes,
offering a more holistic assessment of physiological states.

Comparison between the two sensor types highlights both
complementarity and divergence. Gas sensors offer
portability, real-time detection, and the unique advantage of
non-invasive breath sampling, but they face challenges in
selectivity, low analyte concentrations, and baseline drift.
Biosensors, on the other hand, are more established and
benefit from well-validated recognition elements, yet they
require invasive sample collection and may not be suitable
for continuous monitoring. The integration of these two
paradigms—combining breath VOC analysis with
biochemical sensing of body fluids—could provide a more
comprehensive diagnostic framework, enabling both rapid
screening and precise confirmation of disease states.

4.3 Microfluidic integration

Microfluidics has increasingly been recognized as a
transformative platform for gas sensing because it offers

Fig. 8 (a) Illustration of wearable condensation mask for electrochemical monitoring of H2O2 in EBC. Reprinted with permission from ref. 162.
Copyright 2023 Elsevier. (b) EBC-based diagnostic strategy for SARS-CoV-2 infectivity. Reprinted with permission from ref. 164. Copyright 2021
Elsevier. (c) A smart EBCare mask for efficient harvesting and continuous analysis of exhaled breath condensate. Reprinted with permission from
ref. 168. Copyright 2024 AAAS.
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precise fluid manipulation, scalable fabrication, and
seamless integration with electrochemical and other
transduction systems. Yeganegi et al.173 provided a
comprehensive review of microfluidic-based gas sensors,
outlining how the field has progressed from simple flow-
guiding devices to multifunctional analytical platforms
capable of sampling, conditioning, and detecting trace
analytes. Their analysis emphasized that microchannels
provide not only a miniaturized conduit for gas transport but
also a controllable microenvironment where factors such as
residence time, diffusion length, and adsorption dynamics
can be systematically engineered to improve sensitivity and
selectivity. Importantly, they highlighted the translation of
these devices from environmental and industrial monitoring
toward biomedical and healthcare applications, reflecting a
broader trend in lab-on-chip research. In parallel, Ramya
et al.174 examined the synergy between microfluidics and
advanced nanomaterial synthesis for gas sensing. They
reported that both continuous-flow and droplet-based
microfluidic strategies are increasingly used to fabricate
nanostructured sensing elements with improved
reproducibility, surface area, and catalytic activity. Such
microfluidic-assisted material synthesis not only supports
high-performance sensing at the device level but also reduces
variability compared to bulk preparation methods.
Furthermore, they emphasized that microfluidics provides an
inherently scalable route to integrate novel sensing materials
—such as MOFs, 2D materials, and hybrid composites—into
compact sensor architectures. By combining material
innovation with the geometric and fluidic control of
microchannels, Ramya et al. positioned microfluidic gas
sensors as a promising bridge between nanoscale design and
system-level healthcare applications. Both approaches
converge on the vision of portable, integrated platforms
capable of addressing the unique challenges of breath
analysis and disease monitoring, thereby establishing a
foundation for the next generation of electrochemical gas
sensors.

Recent work has increasingly emphasized how
microchannel design and electrode architecture directly
influence the performance of integrated electrochemical gas
sensors. Kaaliveetil et al.34 demonstrated that the use of ionic
liquid electrolytes combined with non-planar microelectrodes
in microfluidic channels provides an efficient route toward
miniaturized gas sensors with improved stability and
selectivity. Their study highlighted how the geometry of the
electrodes within the microchannel affects diffusion
pathways, charge transport, and overall sensitivity, thereby
underscoring the interplay between microfluidic structure
and electrochemical transduction. The adoption of ionic
liquids was particularly important for enabling wide
electrochemical windows and enhanced gas solubility,
features that are crucial for detecting trace analytes under
variable environmental conditions. Bonnema et al.175

investigated how the surface properties of microchannels,
including metal coatings and applied surface charges, can be

used to tune analyte selectivity in microfluidic-based gas
analyzers. By systematically varying the channel coatings (Au,
Cu, Ag) and introducing controlled electric fields, they
showed that the transient response patterns of alcohols and
ketones could be deliberately altered. This revealed that even
without changing the sensing element itself, microchannel
surface engineering could introduce a new dimension of
selectivity through controlled adsorption and desorption
processes. Their findings confirm that microchannels should
be viewed not merely as passive conduits but as active
selectivity elements, capable of shaping the analyte-specific
time-domain signatures that reach the detector.

Microfluidic platforms have also begun to establish
themselves as enabling technologies for healthcare, where
controlled fluid handling and integration with sensing units
are critical for reliable biomarker detection. Abouali et al.176

presented a continuous, high-throughput plasma separation
device designed to support downstream biosensing. Their
system employed hydrodynamic effects within a carefully
engineered microchannel to achieve label-free separation of
plasma from whole blood, thus providing a stable and clog-
resistant source of biofluid for subsequent electrochemical
assays. This approach underscores how microchannels can
act not only as sample preparation modules but also as
reliability-enhancing components in integrated biosensing
systems.

Wearable sensing represents another frontier where
microfluidics has demonstrated clear advantages. Jiang
et al.177 reported a skin-interfaced, flexible microfluidic
device capable of long-term and reliable monitoring of uric
acid and pH in sweat. By embedding microchannels into a
soft substrate that conforms to skin, the device ensured
consistent sweat collection and guided analyte flow toward
embedded electrochemical sensors. The authors showed that
this architecture minimized evaporation losses and
mechanical instabilities, which are common problems in
wearable biochemical sensing. Their findings illustrate how
microchannels can bridge human physiology with sensor
electronics, creating stable platforms for personalized
healthcare. Menon et al.178 developed a fully automated
microfluidic–electrochemical biosensing platform that
integrates fluidic control, impedance spectroscopy, and real-
time pressure sensing, achieving high sensitivity and
sequence specificity for nucleic acid detection. Together,
these studies highlight how microfluidic–electrochemical
integration enables robust, automated, and versatile
biosensing solutions with direct relevance to healthcare
diagnostics. In another contribution, Kaaliveetil et al.179

emphasized that microfluidic integration enhances not only
the precision of liquid-phase assays but also supports multi-
analyte detection, a capability increasingly demanded in both
clinical and environmental surveillance. Li et al.180 developed
a high-frequency ultrasound-assisted microfluidic chip that
integrates surface acoustic waves (SAWs) with a three-
electrode electrochemical sensor for rapid biosensing. The
acoustic streaming generated near the electrode enhanced
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mass transport, improving diffusion by 41%, while boosting
sensitivity up to 17-fold for glucose detection. This work
demonstrates the potential of SAW-driven microfluidics to
achieve highly sensitive, fast, and biocompatible point-of-care
electrochemical diagnostics. These studies collectively
demonstrate that the value of microfluidic integration
extends well beyond sample delivery: it provides robustness,
multiplexing capacity, and adaptability across diverse
biosensing contexts. These capabilities pave the way for their
more extensive integration with electrochemical gas sensors,
particularly in breath analysis and organ-on-chip studies
where gases serve as key indicators of health and disease.

In conclusion, we believe that opportunities exist in
several directions. First, cross-modal integration of
microfluidic gas sensors with liquid-phase biosensors—akin
to the “electronic nose” and “electronic tongue” concepts—
could enable holistic physiological monitoring through
simultaneous analysis of VOCs, electrolytes, and
metabolites. Second, the incorporation of machine learning
into transient microfluidic fingerprints offers a route toward
robust analyte recognition and adaptive drift correction in
real time. Third, advances in flexible substrates and
wearable designs, as demonstrated by Jiang et al.,177 suggest
that microfluidics can be embedded directly into skin-
mounted or mask-based health monitors. Finally, clinical
translation will require standardized fabrication and
validation protocols, ensuring reproducibility across
populations and deployment conditions. Collectively, these
developments set the stage for deeper integration of
microfluidics with electrochemical gas sensors. By
combining structural engineering, material innovation, and
healthcare-focused design, microchannels can transform
traditional sensors into multifunctional diagnostic
platforms. This provides a natural transition to the next
section of this review, where the coupling of electrochemical
gas sensing principles with microfluidic architectures is
explored in detail to address the challenges of disease
detection through volatile biomarkers.

5. Challenges, limitations and
perspective

Nowadays, smart electrochemical gas sensor has made
remarkable progress with the support of technologies such as
the IoT, ML, and self-powered. Through the integration of
these advanced technologies, traditional gas sensor
equipment is gradually transforming from large, heavy, rigid
devices into small, portable, and efficient smart sensor
systems. These advances provide more flexible and reliable
solutions for human health management. Although smart
gas sensors are expected to play a significant role in more
complex and diverse scenarios in the future, they still face
considerable challenges, as they remain in the early stages of
development. This section discusses the challenges and
future prospects of smart gas sensors based on
electrochemical principles.

Electrochemical gas sensors are known for their high
sensitivity and selectivity in gas detection, but they still face
significant constraints in terms of cross-interference, limited
operational lifespan, response times and sensitivity to
environmental conditions. The selectivity of electrochemical
gas sensor is mainly determined by the characteristics of
electrode material and electrolyte. Due to the large
differences in the characteristics of gas molecules, gas
sensors are usually able to selectively identify different gases,
but they are also susceptible to cross interference from other
gases. In real-world conditions, exhaled breath and ambient
air contain complex mixtures of interfering gases with
overlapping redox potentials, making it difficult for sensors
to discriminate target biomarkers. Although advances in
catalytic modification, molecular sieving membranes, and
nanostructured materials have partially improved selectivity,
further innovations in material design and hybrid systems
are still required. Another important challenge is the
response and recovery dynamics of electrochemical gas
sensors. While high sensitivity is crucial, many sensing
materials suffer from slow recovery after gas exposure due to
strong adsorption or sluggish desorption kinetics, leading to
incomplete baseline return. This limitation restricts their use
in real-time monitoring scenarios such as breath analysis
and air quality surveillance. In parallel, selectivity remains a
long-standing challenge, as interfering gases with similar
redox potentials and environmental factors such as humidity
can significantly affect sensor accuracy. Addressing these
issues requires rational material design (e.g., surface
functionalization,181 hierarchical nanostructures182) to
accelerate gas desorption and enhance molecular
recognition. Besides, the working principle of electrochemical
sensors relies on the reaction between electrodes and
electrolytes, both of which are prone to corrosion. Over time,
the electrode material may corrode or degrade, resulting in
unstable sensor output or reduced accuracy, ultimately
affecting the reliability and service life of the sensor. Because
these reactions take time to complete, electrochemical
sensors tend to have relatively long response times, especially
when detecting low concentrations of gases, which makes
rapid, real-time monitoring difficult to achieve. Furthermore,
the performance of electrochemical gas sensors is
significantly affected by environmental factors. Temperature
fluctuations will change the reaction rate of the electrode
surface, and humidity will affect the conductivity of the
electrolyte, resulting in a deviation of the sensor output
signal.183 Therefore, compensation and calibration methods,
such as the calibration formula,135 are necessary to ensure
accurate measurements under different environmental
conditions. Algorithms such as baseline subtraction,184

adaptive filtering, and drift-compensating neural networks185

show promise for enabling continuous monitoring without
frequent recalibration.

IoT technology is the backbone of intelligent system
development and application, but common issues persist.
IoT systems require real-time data collection, storage, and
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analysis, placing higher demands on the processing power,
storage capacity, and computational resources of
electrochemical gas sensors. Over-reliance on cloud
computing solutions can cause delays in certain scenarios,
affecting real-time sensor responsiveness. Additionally, the
hardware aspect of IoT systems should focus on
miniaturization and low power consumption to meet the
demands of portable and wearable devices (such as smart
masks164,168 and smart shirts137). While IoT technology
allows for remote monitoring of gas sensors, network
connections may be unstable in some remote areas or harsh
environmental conditions, which can affect data
transmission and real-time feedback. In large-scale
deployments, ensuring stable communication between
sensors and the cloud platform remains a challenge.
Furthermore, with the widespread use of IoT devices, data
security and privacy protection have become urgent issues.
Given that gas sensors involve sensitive data such as health
tracking, ensuring that this data is not tampered with or
leaked is a key challenge for IoT systems.

One of the core challenges in self-powered technology is
efficiently storing and managing the generated electrical
energy. While TENGs and PENGs can collect energy from
the environment, the key to large-scale application lies in
how to stabilize and manage this energy using efficient
energy storage devices (such as supercapacitors,186,187

rechargeable batteries,188,189 etc.), due to their unstable or
intermittent output. Furthermore, the performance of
TENGs and PENGs is closely related to environmental
conditions. External factors such as temperature, humidity,
and air pollution can negatively affect the performance of
friction or piezoelectric materials, reducing energy
transduction efficiency. In extreme environments, ensuring
the stability and reliability of these self-powered systems
remains a critical issue. Research should focus on
improving energy efficiency and reducing energy
consumption by optimizing sensor design. In summary,
while TENGs and PENGs show potential as self-powered
technologies, they face numerous technical challenges.
Future research must address these limitations by
optimizing material selection, designing more efficient
energy management systems, and exploring new energy
harvesting methods to facilitate the widespread use of
TENGs and PENGs in practical applications.

ML is a rapidly evolving technology, but it still faces
limitations and challenges in real-world applications. On the
one hand, although ML performs well in different gas
monitoring tasks, ensuring that the sensor remains well-
adapted in dynamic environments is still a problem, on the
other hand, ML models can appear overfitting, resulting in
poor performance in new environments, affecting the
reliability and accuracy of the sensor. Moreover, the output
data of electrochemical gas sensors are often affected by
environmental factors190 (such as temperature and humidity
changes), and if the data are insufficient or unrepresentative
of the target scenario, the model's accuracy and

generalization ability will deteriorate. For gas sensitivity of
rare gases or complex ambient gases, there are often
problems of data collection difficulties and data bias.
Additionally, deep learning training typically requires
extended computation times and high-performance hardware
(such as GPUs,191 TPUs, etc.). This makes deploying deep
learning models difficult in certain edge devices or resource-
constrained environments, limiting their application in small
devices like embedded gas sensors. Future research will need
to achieve breakthroughs in improving data processing
capabilities, computational efficiency, and solving overfitting
issues.

6. Challenges, limitations and
perspective

In this review, we first summarize the principles and
technical methods of electrochemical sensing, and also
present three different operating modes of electrochemical
gas sensors with related fabrication techniques. Next, we
introduce the developments in IoT, self-powered technologies
and ML in recent years, as well as the changes and
development trends they bring to smart electrochemical gas
sensors. Then, we proceed to introduce the applications in
three fields: air monitoring, breath detection and
microfluidic integration. Finally, we discuss and summarize
the limitations of the development of smart electrochemical
gas sensors, and provide an outlook on their future
development.

We are fully confident that smart electrochemical gas
sensors will bring revolutionary progress not only in
healthcare but also in environmental monitoring, public
safety, and industrial control. The limitations of current
technologies, such as sensitivity, selectivity, stability, and
self-powered capabilities, will be addressed through
innovations in new materials, micro-nano fabrication,
intelligent signal processing, and integrated energy
management. Notably, the combination of the IoT and ML
enables electrochemical gas sensors to deliver more efficient
and accurate real-time analysis, providing strong support for
personalized healthcare. Additionally, future sensing systems
will expand their application areas, merging with multimodal
sensing technologies to create adaptive and predictive smart
monitoring networks, thereby offering greater value in fields
such as smart healthcare, smart cities, and sustainable
development.
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