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Cas13-based lateral flow assay test results using
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CRISPR-Cas-based lateral flow assays (LFAs) have emerged as a promising diagnostic tool for ultrasensitive

detection of nucleic acids, offering improved speed, simplicity and cost-effectiveness compared to

polymerase chain reaction (PCR)-based assays. However, visual interpretation of CRISPR-Cas-based LFA

test results is prone to human error, potentially leading to false-positive or false-negative outcomes when

analyzing test/control lines. To address this limitation, we have developed two neural network models: one

based on a fully convolutional neural network and the other on a lightweight mobile-optimized neural

network for automated interpretation of CRISPR-Cas-based LFA test results. To demonstrate proof of

concept, these models were applied to interpret results from a CRISPR-Cas13-based LFA for the detection

of the SARS-CoV-2 N gene, a key marker for COVID-19 infection. The models were trained, evaluated, and

validated using smartphone-captured images of LFA devices in various orientations with different

backgrounds, lighting conditions, and image qualities. A total of 3146 images (1569 negative, 1577 positive)

captured using an iPhone 13 or Samsung Galaxy A52 Android smartphone were analyzed using the trained

models, which classified the LFA results within 0.2 s with 96.5% accuracy compared to the ground truth.

These results demonstrate the potential of machine learning to accurately interpret test results of CRISPR-

Cas-based LFAs using smartphone-captured images in real-world settings, enabling the practical use of

CRISPR-Cas-based diagnostic tools for self- and at-home testing.

1. Introduction

Lateral flow assays (LFAs) are important diagnostic devices that
offer a rapid, inexpensive, and straightforward method for
detecting analytes in biofluid samples. Due to their portability,
low cost, and ease of use, lateral flow-based serological tests are
commonly employed for rapid diagnostic testing, particularly in
detecting infectious diseases, such as malaria, HIV infection,
and SARS-CoV-2, making them one of the most widely used
diagnostic tools globally.1,2 Recently, CRISPR-Cas-based LFAs

have emerged as a promising diagnostic platform for
ultrasensitive nucleic acid detection,3–7 providing a faster and
simpler alternative to polymerase chain reaction (PCR)-based
assays, with minimal equipment required for field-based
diagnostic testing. Most LFAs employ a colorimetric readout,
where visible lines on the test strip indicate a positive or
negative result, allowing users to analyze the results without
specialized instrumentation or electricity. Despite these
advantages, visual interpretation of LFA test results is
challenging due to variability in the appearance of the test/
control lines (e.g., faint or nonuniform lines), individual
differences in vision, and human error, which can result in
false-positive or false-negative test results.8,9

To address these issues, electronic readers have been
developed to enhance the sensitivity, accuracy, and
reproducibility of LFAs.10 While effective, these devices are
expensive (over $1000) and add extra steps to the testing
process, limiting their use for at-home testing or in resource-
limited settings. Recently, machine learning (ML) algorithms
have been used for automated interpretation of LFA results,
enhancing accuracy and reproducibility without the need for
instrumentation.11–22 However, these methods often rely on
custom hardware (e.g., lateral flow strip holders/cradles,
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smartphone attachments), precise camera/lateral flow strip
positioning and ideal lighting conditions, which limit their
use in real-world environments.

In this work, we present a unique approach for rapid and
automated interpretation of CRISPR-Cas-based LFA test results
using ML. We employ a fully convolutional neural network (U-
Net) and a lightweight mobile-optimized neural network (MnUV3)
to accurately detect and classify test/control lines on CRISPR-Cas-
based LFA images as a positive or negative test result. While
lightweight neural networks have been used for ophthalmic
image analysis,23 hair segmentation,24 and spinal cord
segmentation25 applications, this is the first application for the
interpretation of LFA test results. Unlike the previous ML-based
methods, our approach accounts for variations in lighting,
backgrounds, and image resolution without requiring manual
image cropping or specific camera placement, all of which
simplify the testing process for real-world environments. We
demonstrate proof of concept by applying these models to analyze
images of a CRISPR-Cas13-based LFA for the detection of the
SARS-CoV-2 N gene. The trained models were validated using
3146 images (1569 negative, 1577 positive) of tested LFA devices
captured using an iPhone 13 or Samsung Galaxy A52 smartphone,
which revealed their ability to rapidly (within 0.2 s) classify them
as positive or negative with 96.5% accuracy. We envision that
these models can be applied to a wide range of CRISPR-Cas-
based LFAs, enabling the detection of nucleic acid targets for
various pathogens and genetic diseases, thus expanding the utility
of this platform for rapid, at-home diagnostic testing.

2. Experimental
2.1 Expression and purification of LwaCas13a

The methods and procedures for the expression and
purification of LwaCas13a were identical to those used in our
prior work.26 E. coli BL21(DE3) competent cells were
electroporated with 20 ng of a protein expression vector and
grown on a lysogeny broth (LB)-agar plate (Fisher Scientific)
overnight. A single colony was picked and inoculated in 100
mL of starter culture and grown overnight, and 25 mL was
transferred to a 1 L flask of LB with ampicillin (GoldBio) to a
final concentration of 100 μg mL−1. The cultures were then
grown at 37 °C and 220 rpm until the OD600 reached 0.4–
0.6. The culture was cooled on ice, and the shaker was
lowered to 18 °C. Cells were induced with 500 μL of 1 M
isopropylthio-β-galactoside (IPTG) (GoldBio) for 16 h at 160
rpm. Cells were collected by centrifugation (Beckman Coulter
Avanti J-E) at 4000g for 40 min and stored at −80 °C or used
immediately. Five buffers were prepared: buffer A (20 mM
Tris-HCl pH 7.5, 1 M NaCl with 3 mM 2-mercaptoethanol
[BME]), buffer A1 (20 mM Tris-HCl pH 7.5, 1 M NaCl, 10 mM
imidazole, 3 mM BME), buffer A2 (20mM Tris-HCl pH 7.5, 1
M NaCl, 30 mM imidazole, 3 mM BME), buffer B (20 mM
Tris-HCl pH 7.5, 150 mM NaCl, 300 mM imidazole, 3 mM
BME), buffer C (20 mM Tris-HCl pH 7.5, 150 mM NaCl with 1
mM DTT), and buffer D (20 mM Tris-HCl pH 7.5, 1 M NaCl
with 1 mM dithiothreitol [DTT]). For every 10 mL of cells, 30

mL of buffer A and an EDTA-free protease inhibitor tablet
(Thermo Scientific, Cat. A32965) were added. Cells were
mixed until homogeneous by either rotation or vortex. Cells
were then sonicated (Branson SFX550) with a 3 s on/6 s off
interval for 2 min and 30 s total, with a 60% input.
Meanwhile, Ni-NTA agarose beads (Qiagen, Germany) were
then washed in buffer A and added to a gravity flow column
(Marvelgent Biosciences). After sonication, the disrupted cell
lysate was centrifuged (Beckman Coulter Optima L-90K
ultracentrifuge) at 18 000g for 45 min at 4 °C. Once complete,
the supernatant was transferred to the washed Ni-NTA beads.
After the first flowthrough, ∼20 mL of buffer A was used to
wash the column, then 10 mL of buffer A1, then 10 mL of
buffer A2. The column was then placed over a collection tube
and 10 mL of buffer B was used to elute the protein. Lab-
purified SUMO-protease was then used to remove the SUMO-
tag, with 200 μL of SUMO protease for every 10 mL of elution.
All fractions were collected and run on an SDS-Page gel for
verification. The collected, cleaved elute was then loaded
onto a MonoS cation exchange column (Cytiva) to then be
eluted by FPLC (AKTA PURE, GE Healthcare). The elution was
done over a salt gradient of buffer C to buffer D (150 mM
NaCl to 1 M NaCl). Pooled fractions of the protein from the
FPLC were concentrated into a storage buffer (50 mM Tris-
HCl, 600 mM NaCl, 5% glycerol, and 2 mM DTT, pH 7.5),
and concentrated to 1.0–1.5 mg mL−1 using an Amicon Ultra
centrifugal filter unit with 100 kDa cutoff (Millipore, Cat.
UFC910024). The final elute was aliquoted and flash-frozen
in liquid nitrogen before being stored at −80 °C.

2.2 Synthesis of the SARS-CoV-2 N gene target, crRNA, and
LFA reporter

The methods and procedures for synthesizing the SARS-CoV-
2 N gene target, crRNA, and LFA reporter were similar to
those used in our prior work26 (Table S1†). The RNA target
and crRNA were obtained by in vitro transcription (IVT) using
a HiScribe T7 Quick High Yield RNA Synthesis Kit (New
England Biolabs, E2050S). IVT templates for the SARS-CoV-2
N gene target were PCR-amplified from gBlock (IDT)
containing a T7 promoter sequence using Pr18 (GAAATTAAT
ACGACTCACTATAGGG) as the forward primer and Pr19
(CGCGCCCCACTGCGTTCTCC) as the reverse primer. PCR
products were gel-purified and eluted with nuclease-free
water. The concentration and purity of the templates were
measured using a NanoDrop spectrophotometer (Thermo
Scientific). At least 1 pmol of DNA was added to each IVT
reaction.

IVT templates for the SARS-CoV-2 N gene crRNA were
obtained by annealing the top primer (IDT synthesized
oligomer of top strand) with the bottom primer (IDT
synthesized oligomer of bottom strand). Briefly, 10 μM top
and bottom primers were added to a 10 μL reaction solution
containing 1 μL of 10× standard Taq buffer (New England
Biolabs, B9014S). Annealing was performed in a thermocycler
by heating the oligonucleotides to 95 °C and cooling them
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down to room temperature at 1 °C min−1. The 10 μL
annealing reactions were directly used as IVT templates.

A 40 μL IVT reaction was performed by mixing the DNA
template with 2.5 mM nucleoside triphosphates (New
England Biolabs), 2 μL of T7 polymerase (New England
Biolabs), and 1 U μL−1 Murine RNase Inhibitor (New England
Biolabs, M0314L), followed by incubation at 37 °C for 4 h.
The IVT products were treated with DNase I and purified by
urea-PAGE gel electrophoresis followed by acid phenol–
chloroform extraction. Briefly, bands were excised, crushed,
and suspended in five volumes of 0.3 M NaOAc (pH 5.2,
Thermo Scientific, R1181), and subjected to four repeated
cycles of 15 min freezing at −80 °C and quick thawing at
room temperature. The elute was filtered and mixed with an
equal volume of phenol : chloroform : isoamyl alcohol (125 :
24 : 1, pH 4.5; Sigma-Aldrich, P1944), then centrifuged at
13 000g and 4 °C for 10 min. The upper aqueous phase was
re-extracted with an equal volume of chloroform : isoamyl
alcohol (24 : 1; Sigma-Aldrich, C0549) twice. For every 400 μL
of washed upper phase, 1 μL of RNA-grade glycogen (Thermo
Scientific, R0551) was added as an inert carrier of RNAs, and
then mixed thoroughly with 400 μL of isopropanol to
precipitate at −20 °C for 1 h. The resulting RNA pellet was
washed with 70% ice-cold ethanol twice, air-dried, and
redissolved in nuclease-free water. The RNA concentration
and purity were measured using NanoDrop and the identity
was confirmed by denaturing gel electrophoresis.

2.3 Design and fabrication of the LFA device

The LFA device consists of a HybriDetect lateral flow test strip
(Milenia Biotec) which is housed inside a custom cassette
(Fig. S1†). The cassette was designed using Fusion360
software (Autodesk) and fabricated from PLA filament
(OVERTURE) using an Original Prusa MINI+ 3D printer. The
bottom of the test strip extends outside of the cassette
allowing the sample pad to be dipped into a tube containing
the Cas reaction mixture. “T” and “C” labels are located next
to the test result window to indicate the location of the test
and control lines, respectively.

2.4 Detection of the SARS-CoV-2 N gene using a CRISPR-
Cas13a-based LFA

2 μL of the target was added to a 1.5 mL tube containing the
Cas13 detection reaction components: 2 μL of LwaCas13a
(63.3 μg mL−1), 1 μL of RNase inhibitor (40 U μL−1, Lucigen),
0.6 μL of T7 RNA polymerase (50 U μL−1, Lucigen), 1 μL of
crRNA for the SARS-CoV-2 N gene (10 ng μL−1), 1 μL of MgCl2
(120 mM), 0.8 μL of ribonucleoside triphosphate (RTP)
mixture (25 mM), 2 μL of cleavage buffer (400 mM Tris pH
7.4) and 1 μL of biotin–FAM ssRNA reporter (20 μM, IDT).
The Cas13 detection reaction mixture was incubated at 37 °C
for 30 min. 80 μL of HybriDetect assay buffer (Milenia Biotec)
was added to the Cas reaction tube and mixed thoroughly. A
HybriDetect test strip was dipped into the reaction tube, and

after 5 min, images of the LFA device were captured using a
smartphone.

2.5 Design of the neural network model architecture

The neural network models consist of a segmentation
module and a classification module. The segmentation
module automatically detects the test/control line(s) in the
LFA device images and converts them into black and white
binary label images (termed binary labels) to identify the
lines' location. We evaluated two different neural network
architectures, U-Net and MnUV3, for the segmentation
module. The binary labels are then fed into the classification
module which classifies them as a positive or negative test
result.

2.5.1 Segmentation module
U-Net. U-Net is a network architecture initially proposed

by Ronneberger, Fischer, and Brox for cell nuclei
segmentation.27 U-Net follows an encoder–decoder network
and is a fully convolutional network that utilizes a large
number of trainable parameters to achieve accurate
segmentation results. Additionally, it maintains the image
size from the input to the output. The contracting path of the
network has repeated application of unpadded convolutions,
a ReLU operation, and a max pooling operation for down-
sampling. The expansive path up-samples the feature map
and eventually maps the feature vector to a binary output
with the same first two dimensions as the input. Due to its
fully convolutional feature, the U-Net architecture has 30 M
parameters, limiting its use on mobile devices. In this work,
we modified the input dimension so that three-channel (R,
G, B) images can be directly fed into the network.

MnUV3. We created MnUV3, a lightweight network, in an
attempt to reduce the computational load of the model. MnUV3
combines features from the MobilenetV328 and U-Net
architectures, making it suitable for implementation on mobile
devices. The primary modifications involved changing the
building blocks of the U-Net architecture. We kept the
symmetric U-Net structure but removed the fully convolutional
blocks to reduce the parameter count. MnUV3 integrates
MobilenetV3 in the encoder section with U-Net in the decoder
section. The encoder of the network consists of multiple
MobilenetV3 blocks, which were built with subblocks for
expansion convolution, depth-wise convolution, squeeze-and-
excite module, and a pointwise convolution. MobilenetV3
blocks added a new h-swish function that is an approximation
function with ReLU instead of sigmoid to significantly reduce
the calculation time. The decoder of the network consists of the
original expansive path from the U-Net architecture and
upsamples the feature map multiple times to reach the same
dimension as the input. The MnUV3 architecture has 18 M
parameters, making it suitable for mobile applications.

2.5.2 Classification module. A simple classification
module (named ClassNet) was built consisting of a series of
convolution and max pooling layers, followed by a softmax
classifier that maps the features to an output of continuous
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probability scores ranging from 0 to 1. We applied a
convolution layer followed by a ReLU activation function;
then, we applied a max pooling layer with a kernel size of 2 ×
2. The operation is applied four times, and the number of
output channels in the convolution layer doubles the number
of input channels each time the operation is applied. We
then integrated a dropout layer with a dropout probability of
0.1 that randomly drops nodes within the network.

2.6 Data generation, model training, and model validation

The data used to train, evaluate and validate the neural
network models consisted of LFA device photos, cropped
images of LFA device photos and binary labels generated
from the cropped images.

LFA device photos. Photos of tested LFA devices were
captured using an iPhone 13 or Samsung Galaxy A52 Android
smartphone. LFA devices were tested using 28 samples
spiked with varying concentrations of the SARS-CoV-2 N gene,
of which 14 were classified as true positives and 14 were

classified as true negatives. Photos of LFA devices were
captured using different phone orientations and LFA device-
to-phone positions on various objects and surfaces, including
a sofa, chair, coffee table, kitchen countertop, carpet, and
bed, under various lighting conditions. This resulted in a
highly diverse dataset that included images with suboptimal
characteristics, such as overexposure, underexposure, and
blurriness. The resulting dataset consisted of 637 unique LFA
device photos (Fig. 1A), consisting of 294 photos tested on
negative samples (Fig. 1B) and 343 photos tested on positive
samples (Fig. 1C).

Human-annotated labels. The location of the test/control
line(s) in the LFA device photos was manually annotated by
finding the point coordinates and transforming the pixels
into binary labels with 0s and 1s using MATLAB. For LFA
device photos with only the control line appearing, three
pairs of point coordinates were recorded (blue dotted points
1–3) and a fourth coordinate (red dotted point 4) was
generated to form a parallelogram representing the line
(Fig. 1D). For LFA device photos with both test and control

Fig. 1 Smartphone-captured photos of tested LFA devices used to train and validate the ML models. (A) Collage of LFA device photos captured in
real-world environments. Representative photos of an LFA device tested on a (B) negative sample and (C) positive sample. The process for
manually annotating photos of LFA devices tested on a (D) negative sample and (E) positive sample.
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lines appearing, a fourth pair of point coordinates (blue
dotted point 5) was recorded and the distance was calculated
between points 2 and 5. This allowed the location of the
remaining coordinates (red dotted points 6, 7, and 8) to be
determined based on the translation of points 1, 3, and 4
(Fig. 1E). Each image was then manually annotated with
three or four recorded points, and binary labels were created
where test/control line regions were labeled as 1, and all
other areas were labeled as 0. CRISPR-Cas-based LFAs
commonly produce a faint test line even when testing a
negative sample that does not contain the nucleic acid
target,29 which can lead to a false-positive test result based
on visual interpretation. Therefore, all photos of LFA devices
tested on negative samples, including those presenting a
faint test line, were manually labeled as a single (control) line
so that the ML models would classify these images as a
negative test result.

Image preprocessing. LFA device photos and corresponding
binary labels were preprocessed to facilitate the training and
evaluation of the segmentation module. A schematic illustration
of the workflow for preprocessing the photos and binary labels
is shown in Fig. 2A. To reduce the computational load and
prevent predictable patterns, high-resolution photos of LFA
devices were randomly sampled and cropped into smaller

images. High-resolution iPhone 13 photos (1536 × 2048 pixels)
were cropped to 512 × 512 pixels and high-resolution Samsung
Galaxy A52 photos (3468 × 4624 pixels) were cropped to 1156 ×
1156 pixels to make the proportion ratio match. The
corresponding binary labels were also cropped to obtain an
image-binary label pair for each cropped image. 150 subregions
were sampled from LFA device photos of a positive result and
60 subregions were sampled from LFA device photos of a
negative result. During subregion sampling, we set a specific
threshold for the cropped LFA device images where the image-
binary label pair was discarded if the sum of pixel values in the
binary label was smaller than the threshold. This criterion
ensures that LFA device photos with no or extremely small
amounts of test/control line(s) appearing are not sampled and
excluded from the dataset. For LFA device photos of a positive
result, the threshold was empirically set to 100 pixels, and for
LFA device photos of a negative result, the threshold was
empirically set to 70 pixels. This preprocessing procedure
resulted in a total dataset of 8125 image-binary label pairs, with
4253 image-binary label pairs generated from images of LFA
devices tested on negative samples and 3872 image-binary label
pairs generated from images of devices tested on positive
samples. The total dataset was split into a 50/20/30 ratio for
training and evaluating the models and validating the trained

Fig. 2 Overview of the workflows for image preprocessing, model training and model validation. (A) Image preprocessing consisted of random
sampling and cropping of high-resolution LFA device photos, cropping corresponding binary labels and discarding image-binary label pairs with
label areas below the threshold. (B) The segmentation module was trained by inputting cropped LFA device images and corresponding cropped
human-annotated binary labels, and the classification module was trained by inputting cropped human-annotated labels and corresponding binary
classification records. (C) The trained models were validated by inputting unseen cropped images and comparing the model-generated
classification decisions with the ground truth.
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models (Fig. S2†). The training dataset was comprised of 3980
image-binary label pairs (1852 negatives and 2128 positives) and
the evaluation dataset was comprised of 1707 image-binary
label pairs (846 negatives and 861 positives). The validation
dataset was comprised of 3146 image-binary label pairs (1569
negatives and 1577 positives) and was unseen during the
training sessions and used only to validate the trained models.
The cropped images captured using the Samsung Galaxy A52
smartphone were only included in the validation dataset.

Binary classification records. The number of connected
components (clusters of white pixels in a black and white
image) in the binary labels generated from the cropped
images during image preprocessing was calculated using the
bwconncomp function in MATLAB. This function identifies
and records the number of connected components and their
locations within an image. The results were recorded in a
spreadsheet, where a binary label with two connected
components was classified as 1 and a binary label with one
connected component was classified as 0. Since the image-
binary label pairs were only used to train and evaluate the
models, binary classification records and corresponding
binary labels were not generated for high-resolution LFA
device photos.

Image augmentation. Cropped images were augmented to
further diversify the dataset in order to generate more robust
models. When training the segmentation module, a variety of
methods were used to augment the images. Horizontal and
vertical flips of images and rotation of images within 10°
with respect to the horizontal and vertical directions were
performed with a 50% probability of occurrence. The image
quality was also degraded using various methods, including
random brightness and contrast changes, defocusing (adding
Gaussian blur), downscaling, and adding Gaussian noise,
each having a 50% probability of occurrence. All of the image
augmentation methods were performed using the open
source Albumentations library.30 Empirical limits were set to
prevent excessive image degradation. Brightness and contrast
changes were set to be <20%, which was the default setting.
Gaussian blur parameters were also set to the default setting
(3 pixels < rglur < 10 pixels, 0.1 < σgblur < 0.5). Downscaling
scales were set between 0.3 and 0.55, and the Gaussian noise
was set to a variance of up to 0.4. Augmented images were
resized to 256 × 256 pixels and converted to tensor data
before segmentation module training. During model training
and evaluation, we investigated three different cases
involving the use of degraded images: 1) degraded images
were incorporated into the training dataset only, 2) degraded
images were incorporated into both the training and
evaluation datasets, and 3) degraded images were not
incorporated in the datasets. When training the classification
module, human-annotated binary labels were transformed
with horizontal and vertical flips, and horizontal and vertical
rotations within 10°. Each of these transformations had a
50% probability of occurrence.

Model training, evaluation and validation. The segmentation
and classification modules were trained separately, as

illustrated in Fig. 2B. The segmentation module was trained by
inputting cropped LFA device images and corresponding
cropped human-annotated binary labels. The classification
module was trained by inputting cropped human-annotated
labels and corresponding binary classification records. The
classification module outputted probability scores ranging from
0 to 1, which were subsequently converted into binary
classification decisions based on a threshold value.
Corresponding pairs of predicted probability scores and ground
truth binary classification records were used to generate receiver
operating characteristic (ROC) curves, and the closest point to
coordinate (0, 1) of the ROC space and its corresponding
threshold was determined for transforming probability scores
to binary classifications. Probability scores above this threshold
value were classified as a positive result and probability scores
below the threshold value were classified as a negative result.
For all training sessions, ten trials were run for each model
using different combinations of datasets with and without
degraded images. Consistent hyperparameters were used to
train the segmentation modules with 300 epochs, a batch size
of 16, and a learning rate of 0.0001 with the Adam optimizer.
The classification module was trained with the ClassNet
architecture with 300 epochs, a batch size of 128, and a two-step
learning rate with the Adam optimizer. Within the first 20
epochs, the learning rate was set to 0.001 and 0.0001 thereafter.

Various metrics were used to evaluate the performance of
the segmentation module during the training process. Binary
cross entropy (BCE) loss31 was used to assess the
segmentation loss:

BCE loss ¼ − 1
N

X
yi logp yi

� �þ
X

1 − yi
� �

logp 1 − yi
� �� �

where yi is the binary classification (0 or 1), p is the

probability of yi and N is the size of the dataset.
The Dice score32 was used to assess the segmentation

accuracy:

Dice score ¼
2 ytrue ∩ ypred

���
���

ytrue
�� ��þ ypred

���
���

where ytrue is the set of pixel values of the human-annotated

labels and ypred is the set of pixel values of the model-
predicted labels.

The performance of the classification module was
assessed using the classification accuracy:

Classification accuracy ¼ 1 −
P

ytrue − ypred
���

���
N

To validate the functionality of the trained models, unseen
cropped images from the validation dataset were fed into the
models (Fig. 2C). When evaluating the performance of the
models, the predicted classification decisions were compared
with the ground truth, and the results were classified into
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four groups: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). Three metrics were
used to assess the model's performance: accuracy, sensitivity
and specificity, which were calculated using the following
equations:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
TNþ FP

All computational experiments and analyses were
conducted on a Linux-based computing server with two AMD
Ryzen Threadripper PRO 3975WX 32-Core CPUs and four
NVIDIA GeForce RTX 4090 Ti GPUs. Each individual
experiment required one GPU at a time, though multiple
GPUs were available. MATLAB 2023a was used to curate the
dataset and manually annotate the binary labels. All
subsequent investigations and analyses were conducted using
Python 3.11.0 with Visual Studio Code 1.82. A list of Python
packages used in this work is presented in Table S2.† All deep
learning network-based experiments were implemented with
the open-source Pytorch library using CUDA version 11.5.

3. Results and discussion
3.1 Evaluation of cropped images and human-annotated
binary labels

In our approach, LFA device photos and corresponding
binary labels were cropped into smaller images to reduce the
computational load. To evaluate the suitability of using
cropped images and binary labels, we assessed the
distribution of the average image intensity from a dataset of
355 high-resolution photos and 8125 cropped images as well
as the distribution of the average labeled area of binary labels
corresponding to the high-resolution photos and cropped
images. These distributions were transformed into a density
plot where the total area under each curve was set equal to
one. We also estimated the probability density distribution
by calculating the kernel density function to better identify
the peak location and overall pattern of the distribution of
the data.33

The average image intensity of the high-resolution photos
(positives and negatives) was ∼120 with a normal
distribution between 0 and 200 [the image intensity ranges
from 0 (black) to 255 (white)], indicating that most of the
images in this dataset had optimal lighting (Fig. S3A†). The
average image intensity of the cropped images was
marginally higher (∼140) with a slightly wider normal
distribution ranging from 0 to 240. Thus, cropping the high-
resolution photos helped to remove extremely low and high-

intensity pixels corresponding to dark (e.g., shadows) or
overly bright regions in the photos. Additionally, test/control
lines appeared in all of the cropped images due to the binary
label pixel area threshold criterion that was implemented
during image preprocessing. We also examined the
distribution of the average labeled area density in human-
annotated binary labels corresponding to high-resolution
photos and cropped images. The average labeled area in the
binary labels corresponding to high-resolution photos of LFA
devices tested on positive samples ranged from 1 to 2829
pixels and the average labeled area in the binary labels
corresponding to photos of LFA devices tested on negative
samples ranged from 1 to 1984 pixels (Fig. S3B†). The
distribution of the average labeled area in the binary labels
corresponding to the cropped images from positive and
negative samples was narrower, ranging from 1 to 2139 pixels
and 1 to 1620 pixels, respectively.

3.2 Segmentation performance of the ML models

We first evaluated the accuracy and loss of the U-Net- and
MnUV3-based models using the training and evaluation
datasets with and without degraded images. For both models,
the accuracy rapidly increased within 50 epochs, with the
maximum accuracy being achieved at ∼290–300 epochs (Fig.
S4†). The inclusion of degraded images in the training and
evaluation datasets for U-Net- and MnUV3-based models
resulted in a 6.8% and 8.3% drop, respectively, in the
training accuracy compared to the use of datasets without
degraded images. The mean and max accuracies of both
models at the best performing epoch using different
combinations of datasets are summarized in Table S3.† The
U-Net- and MnUV3-based models both offered high
segmentation performance with a mean accuracy ranging
from 90.1–97.2% and 88.8–97.2% using the training dataset
and 88.7–92.9% and 87.8–96.1% using the evaluation dataset,
respectively, regardless of whether degraded images were
included in the datasets. Similarly, the U-Net- and MnUV3-
based models exhibited low losses (using datasets with and
without degraded images). These results indicate that the U-
Net- and MnUV3-based models offer a similar learning ability
during the training process and a similar ability to identify
the test/control line(s) in LFA device images using the
evaluation dataset. Furthermore, both models performed
exceptionally well in identifying the test/control line(s) when
the training and evaluation datasets included degraded
images.

Next, we evaluated the segmentation performance of the
trained models using the validation dataset. We assessed the
segmentation accuracy by calculating the Dice score between
the model-predicted binary labels and human-annotated
binary labels based on the ground truth. We first studied the
relationship between the amount of the test/control line(s)
appearing in the cropped images and the segmentation
accuracy, quantified by the Dice score, using datasets with
and without image degradation. The U-Net- and MnUV3-
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based models resulted in more clustered and overall higher
Dice scores, where >95% of the scores exceeded 0.9 when the
training dataset did not include degraded images (Fig. S5A†).
Among the three different cases where image degradation
was used during the model training, >95% of the tests
resulted in Dice scores ≥0.8. The majority of the tests
resulting in low (<0.6) Dice scores are due to very small
amounts of the test/control line(s) appearing in the image
(corresponding to a labeled area <100 pixels in the binary
labels). We also evaluated the segmentation performance of
the models in analyzing images of LFA devices tested on
positive vs. negative samples. For both models, a wider Dice
score distribution was observed when analyzing images of
devices tested on negative samples compared to those tested
on positive samples (Fig. S5B†). Additionally, by using
datasets with and without image degradation, the U-Net- and
MnUV3-based models performed similarly where the lowest
Dice scores were >0.4 when compared to the ground truth.

We further analyzed the segmentation performance by
testing the trained models using the validation dataset and
comparing the model-predicted binary labels with the
human-annotated binary labels for different amounts of the
test/control line(s) appearing in the cropped image (label area
< 50 pixels, 50 ≤ label area ≤ 300 pixels, or label area > 300
pixels). The MnUV3-based model identified the test/control

line(s) with high accuracy (Dice scores > 0.9) when compared
to human-annotated binary labels when analyzing cropped
LFA device images with corresponding binary label areas ≥
50 pixels (Fig. 3). However, for images with corresponding
binary label areas < 50 pixels, the MnUV3-based model
exhibited significantly lower segmentation performance (Dice
scores = ∼0.6–0.8) compared to the human-annotated binary
labels, either producing inaccurate segmentation or
identifying only one line even when both the test and control
lines appeared in the image. Additionally, incorporating
image degradation in both the training and evaluation
datasets or only in the training dataset during the model
training did not significantly improve the segmentation
performance, as indicated by similarities in the Dice score
for datasets with and without degraded images.

We assessed the relationship between the labeled area in the
model-predicted binary label to the labeled area in the human-
annotated binary labels by plotting the labeled area determined
by both methods in a scatter plot and performing linear
regression analysis. The results of this analysis showed that the
labeled area predicted by the models were highly correlated (R2

= 0.86–0.96) with those determined by human annotations for
labeled areas from 0 to 300 pixels (Fig. S6†). Additionally,
Bland–Altman analysis was performed on this data, which
revealed that there was minimal bias (<2.5%), expressed as the

Fig. 3 Segmentation performance of the ML models based on the amount of test/control lines appearing in the cropped image. Presented
cropped and degraded images, corresponding human-annotated binary labels and model-predicted binary labels generated by the U-Net- and
MnUV3-based models for images of LFA devices tested on positive and negative samples. Dice scores (calculated from the human-annotated
binary labels and the model-predicted binary labels) are located in the lower right corner of model-predicted binary labels.
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percentage difference between the model-predicted binary label
areas and the human-annotated binary label areas for the U-
Net- and MnUV3-based models (Fig. S7†).

3.3 Performance of the classification module

We assessed the performance of the classification module by
analyzing the accuracy and loss from 0 to 300 epochs. The
model achieved >95% mean accuracy during model training
and evaluation within the first 50 epochs (Fig. S8†). The
highest performance was achieved at epoch 294 where the
model achieved a mean accuracy of 96.7% (Table S4†) with
mean losses of 5.6% and 5.9% during training and
evaluation, respectively. The close agreement between the
training and evaluation accuracy/loss curves indicates that
the model generalized well to new data.

Studies were performed to determine the optimal probability
score threshold value used to generate binary classification
decisions. Since the use of datasets with degraded images did
not significantly improve the segmentation performance of the
model, these studies were performed using training datasets
that did not include degraded images. Given the ability of the
classification module to converge quickly (within 50 epochs), we
evaluated threshold values at three different epochs (9, 149, and
299). The classification module was tested by inputting model-
predicted binary labels generated from the validation dataset
using the U-Net- and MnUV3-based models. The optimal
threshold value was determined by calculating the nearest point
to coordinate (0, 1) in the ROC curves (representing 100%
sensitivity and 100% specificity), which was selected as the
optimal value for that specific trial. The optimal threshold
values are presented in Table S5.† We assessed three different
performance metrics (accuracy, sensitivity and specificity) of the
classification module using the optimal classification threshold
values at epochs 9, 129 and 299. For this analysis, we selected
the parameters that yielded the highest segmentation accuracy
for each model. The accuracy and sensitivity of both models at
epoch 9 was significantly lower than those at epochs 149 and
299 (Fig. 4). Excellent classification performance was achieved

with both the U-Net and MnUV3-based models, with mean
accuracies of 96.0% and 95.9%, mean sensitivities of 95.5% and
95.2% and mean specificities of 96.8% and 96.3%, respectively.

3.4 Validation of the ML models

We validated the trained U-Net- and MnUV3-based models by
testing 3146 unseen cropped images (1569 negative, 1577
positive). Both the U-Net- and MnUV3-based models classified
the images with excellent accuracy (96.4% and 96.5%,
respectively), sensitivity (96.0% and 94.8%, respectively), and
specificity (96.8% and 98.3%, respectively) based on the ground
truth (Fig. 5). The performance of these models is comparable
to what was reported in prior studies employing ML for the
interpretation of smartphone-captured images of LFA test

Fig. 4 Classification performance of the ML models using the optimal classification threshold values. Plots of accuracy, sensitivity and specificity
for the U-Net- and MnUV3-based models at epochs 9, 149 and 299. Each bar represents the mean ± standard deviation of ten trials.

Fig. 5 Confusion matrices showing the performance of the ML
models in analyzing images of tested CRISPR-Cas13-based LFA devices
for the detection of the SARS-CoV-2 N gene. The results from one trial
for the (A) U-Net-based model and (B) MnUV3-based model are
presented.
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results while our method does not require the images to be
standardized (Table S6†). To identify sources of error and better
understand the limitations of these models, we analyzed several
cases where the models generated incorrect outcomes. One
source of error involved instances where extra pixels were
generated in the binary label during segmentation (e.g., a faint
test line was incorrectly classified as a positive result) (Fig. 6A).
Another source of error involved instances of missing pixels in
the binary label generated during segmentation due to the test/
control line(s) being too close to the edge of the image (Fig. 6B)
or if the image was too blurry (Fig. 6C). Improvements in the
model training process and/or the development of more robust
algorithms would help to resolve these issues and increase the
accuracy of the models. In this work, true positives were
generated by testing samples spiked with the SARS-CoV-2 N
gene at concentrations ranging from 1 nM to 100 nM, where 1
nM was the lower limit of detection (LOD) of the assay. Based
on this LOD, the models were trained to distinguish faint test
lines generated for positive samples containing the SARS-CoV-2
N gene at concentrations as low as 1 nM from faint test lines
generated for true negative samples. Samples containing the
SARS-CoV-2 N gene at concentrations lower than 1 nM could
potentially produce a faint test line, resulting in a false negative
result. To resolve this issue, optimization of the CRISPR-Cas
assay can be performed to enhance its analytical sensitivity,
which would result in a lower LOD and reduce the likelihood of
a false negative result.

4. Conclusion

We have developed two ML algorithms (one based on U-Net
and the other based on MnUV3) for rapid and automated
interpretation of CRISPR-Cas-based LFA test results. Using
smartphone-captured images of LFA devices tested on
samples spiked with various concentrations of the SARS-CoV-
2 N gene, we demonstrate the ability of these models to
classify the results as positive or negative within 0.2 s with
96.5% accuracy. This high accuracy was achieved using
images of LFA devices captured in various orientations, under
different lighting conditions, and with different backgrounds
and image qualities, demonstrating the robustness of these
ML models and their potential to be used in real-world
environments. All of the images used in this work were
captured indoors and additional studies using images
captured outdoors would be useful in determining the
capability of these models to operate in less controlled
environments. One potential limitation of this work was the
use of only two different smartphone models (iPhone 13 and
Samsung Galaxy A52) for capturing images of LFA devices
and further studies are needed to evaluate the performance
of the ML models using other smartphone models with
different cameras. While this work was focused on
interpreting test results of a CRISPR-Cas-based LFA for the
detection of the SARS-CoV-2 N gene, we envision that these
models can be adapted for other CRISPR-Cas-based LFAs
designed to detect other nucleic acid targets or other LFA
formats by retraining them with photos of these types of LFA
devices and formats. These efforts would expand the
versatility of these models and advance progress in the use of
ML to interpret CRISPR-Cas-based diagnostic tools for self-
and at-home testing.
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Fig. 6 Representative cropped images, corresponding model-
predicted binary labels and human-annotated binary labels for
incorrect outcomes. (A) Extra pixels generated in the binary label
during segmentation. Missing pixels in the binary label generated
during segmentation due to (B) the test/control line(s) being too close
to the edge of the image or (C) the image being too blurry. The label
area (pixels) is indicated at the top of the binary labels, the
classification decision is indicated at the bottom left corners of the
binary labels and the Dice score is indicated at the bottom right
corners of the human-annotated labels.
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