

Showcasing research from the "Nonheme iron-oxo oxidants" team: Guo lab (Carnegie Mellon Univ.), Que lab (Univ. Minnesota) and Swart lab (ICREA and Univ. Girona).

Mimicking sMMOH chemistry: trapping the Sc^{3+} -bound nonheme Fe^{III} -O-O-Fe III adduct prior to its conversion into an $Fe^{IV}_2(\mu$ -O) $_2$ core

Di-iron systems that activate O_2 to form high-valent, oxo-bridged Fe^{IV}_2 or $Fe^{III}Fe^{IV}$ products are of great interest to bio-inorganic chemists due to their relevance to the chemistry of soluble methane mono-oxygenase (sMMOH). In this study, the $[Fe^{III}_2(Me_3NTB)_2(\mu-O)(\mu-O_2)]^{2+}$ adduct $(Me_3NTB = tris((1-methyl-1H-benzo[d]imidazol-2-yl)methyl)amine)$ reacts with two Sc^{3+} to break the O-O bond that in turn forms the target $Fe^{IV}(\mu-O)_2Fe^{IV}$ product. This study provides the first evidence that a Lewis acid can interact directly with a diferric-peroxo complex to initiate O-O bond cleavage, as evidenced via vibrational and X-ray absorption spectroscopy.

Image reproduced by permission of Marcel Swart from, *Chem. Sci.*, 2025, **16**, 19608.

