

At the heart of open access for the global chemistry community

Editor-in-chief

Russell J Cox

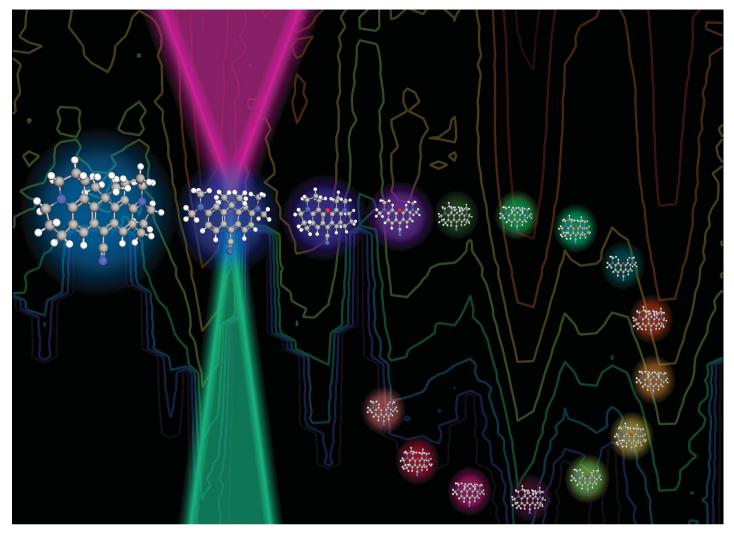
Leibniz Universität Hannover, Germany

We stand for:

Breadth We publish work in all areas of chemistry and reach a global readership

Quality Research to advance the chemical sciences undergoes rigorous peer review for a trusted, society-run journal

Affordability Low APCs, discounts and waivers make publishing open access achievable and sustainable



Community Led by active researchers, we publish quality work from scientists at every career stage, and all countries

Submit your work now

rsc.li/rsc-advances

@RSC_Adv

Showcasing research from Professor Lu Wei's laboratory, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Two-dimensional bond-selective fluorescence spectroscopy: violations of the resonance condition, vibrational cooling rate dispersion, and super-multiplex imaging

We describe two-dimensional bond-selective fluorescence-detected infrared-excited (2D-BonFIRE) spectro-microscopy: an ultrasensitive 2D vibrational spectroscopy and hyperspectral imaging technique. 2D-BonFIRE spectroscopy provides new insights into the nature of high-frequency vibrations in large organic dyes and reveals the inherent heterogeneity of vibrational relaxation. Further, the high specificity of 2D-BonFIRE allows for distinguishing between highly overlapped fluorophores, culminating in proof-of-concept demonstrations of single-shot 16-colour imaging and vibrational lifetime multiplex imaging, with high potential for further expansion.

Image reproduced by permission of Philip Kocheril from *Chem. Sci.*, 2025, **16**, 14905.

