Open Access Article. Published on 23 October 2025. Downloaded on 2/3/2026 9:53:18 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

ROYAL SOCIETY

: oy
Chemical
P OF CHEMISTRY

Science

View Article Online
View Journal | View Issue

EDGE ARTICLE

Physically interpretable descriptors drive the
materials design of metal hydrides for hydrogen
storage

{ ") Check for updates ‘

Cite this: Chem. Sci., 2025, 16, 23111

All publication charges for this article
have been paid for by the Royal Society

of Chemistry *2 Di Zhang, (®2 Hung Ba Tran,

¢ Shin-ichi Orimo

@ Xue Jia, 2@
*ad 3nd Hao Li2 *@

Seong-Hoon Jang,
Kiyoe Konno, {23 Ryuhei Sato,

Designing metal hydrides for hydrogen storage remains a longstanding challenge due to the vast compositional
space and complex structure—property relationships. Herein, for the first time, we present physically
interpretable models for predicting two key performance metrics, gravimetric hydrogen density w and
equilibrium pressure Peqrr at room temperature, based on a minimal set of chemically meaningful
descriptors. Using a rigorously curated dataset of 5089 metal hydride compositions from our recently
developed Digital Hydrogen Platform (DigHyd) based on large-scale data mining from available experimental
literature of solid-state hydrogen storage materials, we systematically constructed over 1.6 million candidate
models using combinations of scalar transformations and nonlinear link functions. The final closed-form
models, derived from 2-3 descriptors each (e.g., atomic mass, electronegativity, molar density, and ionic
filling factor), achieve predictive accuracies on par with state-of-the-art machine learning methods, while
maintaining full physical transparency. Strikingly, descriptor-based design maps generated from these
models reveal a fundamental trade-off between w and Peqgrr: saline-type hydrides, composed of light
electropositive elements, offer high w but low Peqrr, Whereas interstitial-type hydrides based on heavier
electronegative transition metals show the opposite trend. Notably, beryllium (Be)-based systems, such as
Be—Na alloys, emerge as rare candidates that simultaneously satisfy both performance metrics, attributed to
the unique combination of light mass and high molar density for Be. Our models indicate that, while there

remains room for improvement between the current state of solid-state hydrogen storage materials and the
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Accepted 22nd October 2025 US-DOE targets, Be-based systems may offer renewed prospects for approaching these benchmarks. These

results provide chemically intuitive guidelines for materials design and establish a scalable framework for the
DOI: 10.1039/d55c07296d rational discovery of materials in complex chemical spaces. The methodology is broadly applicable and

rsc.li/chemical-science could serve as a template for data-driven exploration across other energy-relevant materials domains.

Introduction

Hydrogen is a leading candidate for enabling carbon-neutral
energy technologies due to its high specific energy and clean
combustion profile.” However, its practical deployment in fuel
cells and energy systems is constrained by the lack of compact,
safe, and reversible storage solutions.* Among various strate-
gies, solid-state hydrogen storage using metal hydrides has
received significant attention owing to their high volumetric
density, cyclability, and integrability into engineered systems.*®

Metal hydrides, such as MgH,, Mg,NiH,, FeTiH,, PdH,,
and LaNisHg, have long served as prototypical systems.”™ These
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materials span a wide thermodynamic range: saline hydrides,
based on light metal atoms (e.g., MgH,) provide high gravi-
metric capacities but suffer from high decomposition temper-
atures,® while interstitial hydrides, based on transition or heavy
metal atoms (e.g., LaNisHg) offer excellent kinetics and
hydrogen equilibrium pressures but limited capacity.” Signifi-
cant efforts have focused on modifying these systems through
compositional tuning, nanostructuring, and catalysis to
improve hydrogenation performance for the target metrics.**®
Yet despite decades of study, the compositional landscape of
hydride-forming alloys remains largely underexplored. Thou-
sands of binary and multinary combinations are theoretically
possible, yet only a small subset has been synthesized and
evaluated. This data sparsity is compounded by the lack of
predictive, physically grounded frameworks that can guide
rational materials discovery. While recent machine learning
(ML) efforts have shown potential in accelerating property
prediction,'>"” they often rely on relatively small scale of data,
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poorly curated datasets, and opaque modeling strategies that
limit interpretability and chemical insight.

To address these challenges, herein, we present a data-
driven but physically interpretable approach to the design of
metal hydrides. Using a rigorously curated dataset, our recently
developed Digital Hydrogen Platform (DigHyd: https://
www.dighyd.org) via large-scale data mining from available
experimental literature on solid-state hydrogen storage mate-
rials, we construct regression models that accurately predict two
key metrics: gravimetric hydrogen density (w) and equilibrium
pressure (Peqrr) at room temperature (298.15 K). Our models
utilize a minimal set of intuitive descriptors (i.e., atomic mass
(M), electronegativity (x), molar density (pmo1), and ionic filling
factor (ng) and achieve predictive accuracy comparable to
modern black-box ML algorithms. Importantly, these models
enable the generation of compositional design maps, which
reveal fundamental structure-property relationships and iden-
tify promising candidate systems—particularly beryllium (Be)-
based alloys—for high-performance hydrogen storage. In
doing so, they also highlight the challenges that remain in
bridging the difference between the current performance of
solid-state hydrogen storage materials and the ambitious
targets set by the US-DOE, while indicating that Be-based
systems may offer a viable pathway toward bridging this
divide. This work provides a transparent and scalable frame-
work for accelerating the rational discovery of solid-state
hydrogen storage materials.

Results and discussion

A schematic overview of our descriptor-based approach to
hydrogen storage materials discovery is presented in Fig. 1. The
workflow begins with the construction of a curated database,
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followed by regression modeling using physically meaningful
descriptors, and culminates in compositional mapping for
rational materials design. The database component is based on
the DigHyd platform, which consolidates 5089 pressure-
composition isotherm (PCI) data points specifically for metal
hydrides. These entries were initially identified from 910 liter-
ature sources using large language model assisted mining and
then subjected to rigorous manual review. During this curation
process, entries lacking clearly defined chemical formulae were
excluded to ensure compositional consistency. For Peq rr, We
included values either directly reported in the literature or
indirectly estimated using the van't Hoff equation when ther-
modynamic parameters, namely enthalpy (AH) and entropy
(AS), were available from multi-temperature PCI data. After
removing duplicate compositions, the final dataset comprised
1967 and 1078 unique entries for w and Peqrr, respectively,
spanning a broad range of metal hydride chemistries.

While both DigHyd database and the previously developed
ML_Hydpark' database represent valuable data resources for
hydrogen storage research, DigHyd, which serves as a superset
of ML_Hydpark, offers several distinct advantages for data-
driven modeling. Most importantly, DigHyd includes an order
of magnitude more PCI entries for metal hydrides (DigHyd: 5089
vs. ML_Hydpark: 430)*° and additionally encompasses covalent
organic frameworks (COFs) and metal-organic frameworks
(MOFs), which were not used in the present study but are
available within the platform. Furthermore, DigHyd is struc-
tured in JavaScript Object Notation (JSON) format and includes
full reference traceability via Digital Object Identifiers (DOIs),
significantly improving data transparency and reproducibility.
By contrast, ML_Hydpark is distributed in flat CSV format and
lacks consistent bibliographic metadata, which limits its utility
for model interpretation and downstream analysis. These
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Fig.1 Workflow for descriptor-based modeling and design of metal hydrides for hydrogen storage. This workflow encompasses three stages:

database construction, regression modeling, and materials design.
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attributes made DigHyd a more scalable and reliable foundation
for building physically interpretable models in this work.

To develop low-cost, transparent predictive models, we
found a set of effective descriptors that capture essential phys-
ical and chemical characteristics of metal hydride systems
among the candidate features: M, X, pmol, and 7s. These vari-
ables serve as proxies for key mechanisms influencing hydrogen
storage capacity and thermodynamic behavior: lattice weight,
bond polarity, structural density, and steric occupancy. Closed-
form regression models constructed from these descriptors
were able to predict w and Pqrr with high accuracy, while
maintaining physical transparency, an essential attribute for
guiding materials design beyond black-box ML prediction.

Finally, the model outputs were used to generate materials
design maps that visualize hydrogen storage performance
across a wide compositional space. Strikingly, these maps
highlight an intrinsic trade-off between w and P.q ry: saline-type
hydrides, such as Mg-based systems, tend to exhibit high w but
low Pq rt, Whereas interstitial-type hydrides, such as Ni-based
systems, display the opposite trend. Notably, Be-based
systems emerge as rare candidates that potentially circumvent
this trade-off, achieving high w and high P.qgr. While the
broader implications of this trend are explored in detail later,
the present figure serves to frame the conceptual structure of
this study: from curated data to interpretable modeling, to
chemically meaningful design guidance (Fig. 1).

To gain insights into the composition and diversity of the
curated dataset, we analyzed the distribution of elements and
key performance metrics within the DigHyd database. As shown
in Fig. 2a, certain metal elements appear more frequently than
others, reflecting historical research focus and experimental
accessibility. Ni (2588 entries) and Mg (2263 entries) dominate
the dataset, consistent with the prevalence of interstitial- and
saline-type hydrides, respectively. Ti, Cr, Mn, La, V, Zr, Fe, and
Al also appear prominently, representing a range of composi-
tional classes, which ensures that the dataset captures both
conventional and less-explored regions of the hydride design
space.

The distributions of the two target properties, w and Peq rr,
are shown in Fig. 2b and c, respectively. The histogram of w
exhibits a right-skewed distribution, with most compositions
clustering below 5%, and a long tail extending toward higher-
capacity systems. While MgH,, a classic saline-type hydride,
lies on the higher-capacity end, LaNisHs, a representative
interstitial-type compound, sits near the modal value. Mean-
while, the distribution of P.qrr spans a wide range, high-
lighting the vast thermodynamic diversity of metal hydrides.
Notably, MgH, and LaNisHs again serve as instructive refer-
ences, occupying opposite extremes of the pressure-capacity
landscape. The statistical summaries are also annotated
beneath each plot, including the minimum, average, maximum,
standard deviation, and skewness.

In addition to the elemental distributions and property
histograms, Fig. 2d provides a direct visualization of the rela-
tionship between w and P.q rt. For the full dataset (Fig. 2d, left),
a weak trade-off relationship between w and Py rr can be di-
scerned. When focusing on Ni-containing but Mg-free systems,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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which are representative of interstitial-type hydrides (Fig. 2d,
middle), the trend shifts toward high P.qrr but low w. In
contrast, Mg-containing but Ni-free systems, corresponding to
saline-type hydrides (Fig. 2d, right), display the opposite
behavior, namely low P.qrr and high w. Notably, in all cases,
the data points have not yet reached the US-DOE target region,
outlined by red boxes, underscoring the substantial perfor-
mance gap that persists in the current hydride landscape.

As represented in Fig. 3a, to enable physically interpretable
modeling with low computational cost, we selected seven
primary elemental features: the average atomic mass (M), the
average electronegativity respect to hydrogen's (x — xu), the
average density (p),"® the average molar density (pmol), the
average valence (C), the average Shannon ionic radius assuming
sixfold coordination (ry;)," and the average ionic filling factor
(ng), of metal atoms (excluding hydrogen). More details can be
found in the Methods section, SI. The interrelationships among
the 7 features are illustrated by a Pearson correlation heatmap
(Fig. S2). Furthermore, to capture the distributional character-
istics of each feature, we included both the standard deviation
o(x) and the skewness r(x) for each descriptor, where x repre-
sents any of the following properties: x = M, X — Xu, £, Pmol; C,
v, and 7.

To comprehensively explore possible regression models
from the pool of 21 candidate descriptors, 1 625 400 regression
models in total were constructed and assessed by using multi-
variate linear regression modeling and multivariate beta
regression modeling, which also enables nonlinear fitting.>*>*
More details can be found in the Methods section, SI. The final
models for w (in the unit of %) and P.q rr (MPa) were selected
based on those exhibiting the highest coefficient-of-
determination R*> values on test datasets, which were
randomly sampled to comprise approximately 20% of the total
data: 394 data points for w and 216 for Peq rr. Among the 1625
400 candidate models evaluated, the optimal regression model
for predicting w was identified as a two-descriptor expression
involving (M) and (x — xs) (Fig. 3b). The final expression takes

the following form:
logw(}—]‘;> = 3.78(1 — exp[ —exp[2.60 — 1.62 log,, (M)

— 0.234(x — xu)]]) — 3.74. (1)

The regression model achieved R* = 0.828, root mean
squared error RMSE = 0.188log;o[% mol g '], and mean
absolute error MAE = 0.119 log;,[% mol g~ '] for the training
dataset (wherein the size of the dataset was given as ngam =
1573) and R*> = 0.800, RMSE = 0.220 log;[% mol g '], and MAE
= 0.133 logo[% mol g~ '] for the test dataset (gaa = 394). To
further evaluate the model's robustness, we performed 100
random resamplings independently, each selecting 7gata = 394
for testing. The resulting performance metrics were averaged to
yield (R%)100 = 0.826 + 0.00101, (RMSE); 4 = 0.191 + 0.000374
log1o[% mol g~'], and (MAE);o, = 0.120 %+ 0.0000483 log;,[%-
mol g~ ']. For reference, our own XGBoost analysis on the same
dataset, refined using 10-fold cross-validation (see XGBoost
regression section, SI), yielded R> = 0.868, RMSE = 0.164

Chem. Sci., 2025, 16, 23111-23120 | 23113
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Fig. 2 Data profile of metal hydrides in the DigHyd database. (a) Frequency of metal elements appearing in the dataset, with Ni and Mg being
most prevalent. Histograms of (b) gravimetric hydrogen density (w) and (c) logarithm-scaled equilibrium pressure (Peq rT) at room temperature,
highlighting MgH, (saline-type) and LaNisHg (interstitial-type) as representative cases.®® For both (b) and (c), the minimum (Min.), average (Ave.),
maximum (Max.), standard deviation (St. Dev.), and skewness (Skew) are provided, illustrating the broad spread and asymmetry in the dataset. (d)
Scatter plots of w versus Peqrr: all compositions (left), Ni-containing but Mg-free systems (middle), and Mg-containing but Ni-free systems
(right). The ultimate target region of U.S. Department of Energy (US-DOE) target region is indicated by red boxes.

log10[% mol g~ '], and MAE = 0.103 log;0[% mol g~ '] for the test
data points, confirming that proposed descriptor-based model
achieves accuracy on par with state-of-the-art ML approaches.
Importantly, the model generalizes well across chemical space:
5 representative compounds (ie., MgH,, Mg,NiH,, FeTiH,,
PdH,6, and LaNisHe)™ lie close to the “experimental =
regressed” parity line, demonstrating both accuracy and prac-
tical utility in capturing real-world behavior.

23114 | Chem. Sci,, 2025, 16, 2311-23120

We also provide detailed statistics of the regression model in
Table S1, including standard errors, 95% confidence intervals,
standardized coefficients, ¢-values, and variance inflation
factors (VIF) for each term. All t-tests yield p-values <10~ "’
confirming that no term is redundant. The VIF value is sup-
pressed (1.47), indicating the absence of multicollinearity. In
addition, Fig. S3 presents histograms of the residuals for both
training and test datasets, showing zero-centered distributions.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Physically interpretable regression models for hydrogen storage properties. (a) Seven elemental descriptors were combined with scalar
transformations and (non)linear link functions to generate 1625400 candidate models. Final models for (b) gravimetric hydrogen density (w)
[based on (M) and (x — xn); defined in egn (1)] and (c) equilibrium pressure (PeqrT) at room temperature [{(pmoy). (x — xn). and (n¢); eqn (2)],
wherein training and test datasets follow an 80 : 20 split and are denoted by black and red open circles, respectively. For both (b) and (c), 5
representative cases (i.e., MgH,, Mg,NiH,4, FeTiH,, PdHg 6, and LaNisHg),”~° the coefficient of determination (R?) and mean absolute error (MAE)
for the test datasets are provided, comparing with the ML benchmarks.””

This result demonstrates that the model errors are random
rather than systematic, with no apparent bias or pattern.

The optimal regression model for predicting P.qrr was
derived using three physically meaningful descriptors: (pmo1),
(x — xm), and (n¢) (Fig. 3c). The resulting model is expressed as:

logio Peqrt = 12.2(1 — exp[—exp[—1.37 + 21.0(pmo1) — 0.163
x 10~ _ 0 878[erf(10(n )] — 9.52. (2)

The regression model achieved R* = 0.728, RMSE = 1.44
log;0[MPa], and MAE = 0.992 log;,[MPa] for the training dataset
(Mdaa = 862) and R*> = 0.750, RMSE = 1.418 log;,[MPa], and
MAE = 0.995 log;[MPa] for the test dataset (ngsa = 216). To
further evaluate the model's robustness, we performed 100
random resamplings independently, each selecting g, = 216
for testing. The resulting performance metrics were averaged to

© 2025 The Author(s). Published by the Royal Society of Chemistry

yield (R*);90 = 0.731 £ 0.00200, (RMSE);o, = 1.42 + 0.0136
logio[MPa], and (MAE);o, = 0.986 + 0.00290 log;,[MPa]. For
reference, our own XGBoost analysis on the same dataset,
refined using 10-fold cross-validation (see XGBoost regression
section, SI), yielded R*> = 0.786, RMSE = 1.281 log,,[MPa], and
MAE = 0.726 log;o[MPa] for the test data points, further con-
firming that the descriptor-based model performs on par with
advanced ML methods again. Notably, the same 5 reference
compounds remain well-aligned with the “experimental =
regressed” trend, reinforcing the robustness of the models
across both thermodynamic and capacity domains.

Detailed regression statistics are provided in Table S2. All
terms are significant (p < 10™'"), and VIF values below 3 indicate
no multicollinearity. Residual histograms in Fig. S4 show zero-
centered distributions, confirming that model errors are
random rather than systematic. The use of simple, physically

Chem. Sci., 2025, 16, 23111-23120 | 23115
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grounded descriptors thus enables predictive, interpretable
modeling of hydrogen storage performance with broad chem-
ical applicability. A complete listing of the feature vales x — xg,
M, pmol, and 7y is available in Table S3.

To elucidate the physical basis of the regression models, we
provide schematic illustrations of how each key descriptor
influences hydrogen storage behaviors (Fig. 4). For achieving
high w, two primary factors are beneficial: a low M and a large
[{x — xu)| (given by small x; x < xu). As shown in Fig. 4a and b,
lighter host metals not only reduce the overall system mass,
directly contributing to higher weight-specific capacity, but also
may facilitate more dynamic lattice vibrations, potentially
enhancing hydrogen diffusion into the bulk. A larger |(x — xu)]
promotes stronger metal-hydrogen bond polarity, which is
advantageous for maximizing hydrogen uptake under non-
equilibrium or storage-focused conditions. Together, these
descriptors encode essential atomic-scale design principles,
providing both predictive power and chemical insights into the
governing factors that enhance w in metal hydrides.

For P.q rr, the relevant descriptors reflect a different physical
regime, rooted in thermodynamic stability. As illustrated in
Fig. 4c and d, high p,,, increases the number of reactive sites
per volume, while a low n¢ implies reduced steric hindrance,
allowing hydrogen to occupy interstitial positions more readily.
Furthermore, smaller |(x — xu)|, implying weaker bond polarity,
lead to higher hydrogen chemical potential in the solid phase.
This destabilizes the metal-hydrogen bond and shifts the
equilibrium toward desorption, resulting in higher Peqrr.
Collectively, these effects enhance lattice accessibility and
reduce hydrogen binding strength under equilibrium
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conditions, providing a chemically intuitive explanation for the
model's predictive trends.

To further explore how the regression models guide rational
compositional design, we constructed descriptor-based design
maps by selecting three representative elemental anchors (i.e.,
Mg, Ni, and Be) and simulating compositional substitution
trajectories with other metallic elements; additional composi-
tional pathways originating from Li, Na, Al, K, Ca, Ce, Sc, Ti, V,
Cr, Mn, Fe, Co, Cu, Zn, Ga, and Mm (mischmetal) are presented
in Fig. S5. Also, a user-interactive Excel file is provided in the SI
for predicting w and P.q g based on any input composition. As
shown in Fig. 5a, Mg, a prototypical saline-type hydride former,
lies near the high-w, low-P.q gt corner of the map. Substituting
Mg with other metals generally leads to increased P.qgrr but
reduced w, reflecting a shift away from the saline regime.
Conversely, Ni-based pathways in Fig. 5b, representing
interstitial-type hydrides, exhibit the opposite trend: most
substitutions lower P.q zr While increasing w. These two maps
together highlight the w-P.qrr trade-off that characterizes
conventional hydride systems.

In contrast, Be forms a unique trajectory on the design map,
as represented in Fig. 5c, with compositions such as Be,Na;_j.
Three composition ranges, b = 0.622-0.717, 0.720-0.743, and
0.673-0.698 yield w = 7.92-7.97%, 7.89-7.91%, and 7.93-7.95%,
together with P.qrr = 0.016-3.1 MPa, 3.5-10 MPa, and 0.3-
1.2 MPa, respectively. These ranges correspond to the ultimate
US-DOE targets converted from operating ambient temperature
via the van't Hoff relationship (see Ultimate US-DOE Targets of
Peqrr via Van't Hoff conversion section, SI), the targets for
internal combustion engine (ICE) applications, and the targets

(b)

metal

large y

7
7

metal

v

large ¢

Fig.4 Schematic interpretation of key descriptors influencing hydrogen storage performance. High gravimetric density (w) is favored by: (a) light
mass (M) and (b) large electronegativity (x) (strong bond polarity) of host metal atoms. High equilibrium pressure (Peq r7) at room temperature is
promoted by: (c) high molar density (pmop), low ionic filling factor (), and (d) small x (weak bond polarity).
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Fig. 5 Descriptor-based design maps and compositional pathways for hydrogen storage materials. Predicted gravimetric density (w) and
equilibrium pressure (Peq rr) at room temperature for compositions interpolated between (a) Mg [(b) Nil and other metals, tracing transitions from
saline(interstitial)-type hydrides, respectively. (c) Compositional map anchored on Be, illustrating a unique trajectory that originates near the
ultimate target regions of US-DOE. Three US-DOE benchmarks are indicated; red, dark green, and blue boxes represent the ultimate target
converted from operating ambient temperature via van't Hoff relationships, that for internal combustion engine (ICE) applications, and that for

fuel cell (FC) applications, respectively. Each dot in (a)—(c) represents a 10-atomic-percentage substitution step (e.g., Be — BegiNagg — ... —
Na); color gradients follow electronegativity values x as mapped in (d). (d) Distribution of elemental descriptors across metals: electronegativity
(x, horizontal), molar density (pmo. Vertical), and atomic mass (M, log-scaled as circle size).

for fuel cell (FC) applications, respectively.>® No experimental
reports on Be-Na hydrides are available to date. Be itself
combines several rare and favorable features: low atomic mass
(M = 9.01 g mol "), moderately high electronegativity (x — xu =
—0.63), and the highest molar density (pme = 0.205 mol cm™?)
among the studied elements. These attributes together enable
the balancing of w and P.q rr that few other systems can offer.

To better understand the physical origin of the w-Peqrr
trade-off, we analyze the elemental descriptor space in Fig. 5d,
where each metal is plotted by its x and pp.1, with M encoded in
circle size. A clear positive correlation is observed between x
and pmo, Which may reflect that elements with stronger
electron-attracting character favor shorter bond lengths and
more compact lattice structures. This trend provides insight
into the trade-off observed in Fig. 5a and b; metals with low x

© 2025 The Author(s). Published by the Royal Society of Chemistry

(e.g., Mg, Li, Na) favor high w due to comparably low M and
strong bond polarity to hydrogen (large |(x — xu)|), but result in
loose packing (Iow ppo1) and low Peq . In contrast, transition
metals (e.g., Ni, Fe, Cr), with high x, exhibit tight packing (high
Pmo1) and high Py xr but reduced w due to heavy M and weaker
polarity-driven uptake (small [(x — xu)|)-

Beryllium (Be), however, emerges as a distinct outlier in this
landscape. Despite its relatively moderate electronegativity, Be
possesses an unusually high pp,o and low M, positioning it in
a sparsely populated upper-left region of the design space in
Fig. 5d. This anomaly may be attributed to its unique electronic
structure: the low principal quantum number (2) of its valence
electrons facilitates tight orbital overlap and strong core-valence
attraction, enabling a compact atomic arrangement. This high
packing efficiency enhances P.q rr, while the light M supports
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high w. As such, Be sits at a rare convergence point of design
principles, suggesting that its alloys, particularly when judi-
ciously combined with more electropositive elements, may
serve as promising leads for next-generation hydrogen storage
materials.”*> However, the use of Be raises important safety
concerns due to its known toxicity, particularly in powder or
nanoparticle form,* as well as its considerable cost. While the
target metrics for hydrogen storage performance are favorable,
any application of Be-based materials would require stringent
handling protocols and careful risk-benefit evaluation.

Interestingly, the promising behavior of Be-based hydrides,
particularly Be,Ti, is supported by experimental and computa-
tional findings that align closely with our model predictions.
Mealand and Libowitz assumed that 0.1 MPa < Py gt < 15 MPa for
Be,TiH; with w = 4.4%.>® Our regression models predict w = 5.6%
and Peqrr = 171 MPa, reasonably capturing both the high w and
a tendency toward elevated P rt. More recently, Kim, Iwakiri, and
Nakamichi conducted PCI measurements on Be,Ti and assumed
Pegrr > 13 MPa, exceeding the upper limit of their apparatus.””
Although the experimentally observed w under 13 MPa was limited
to 0.57% (not reaching equilibrium), this was attributed to surface
BeO formation, which impedes hydrogen uptake. Importantly,
their first-principles calculations, which estimated accessible
stable hydrogen sites in the lattice, yielded w = 5.4%, closely
corroborating both our prediction and earlier empirical data.*®
Taken together, both studies appear to have failed to achieve clear
equilibrium conditions, most plausibly due to the intrinsically
high P.qrr of the investigated Be-based hydride, which exceeded
experimental constraints. In addition to Be,Ti, Maeland and
Libowitz also studied Be,Zr, reporting the formation of a Be,ZrH, 3
phase with w = 2.1% at Peq gy = 13 MPa.?® Our model forecasts w =
3.5% and Pe.qrr = 40 MPa, again indicating good semi-
quantitative agreement. These converging observations reinforce
the notion that Be-based systems reside in a favorable region of
the design space, offering a rare combination of high w and
moderate-to-high Peq rr, despite known practical challenges such
as Be toxicity and oxide passivation. These real-world cases provide
compelling validation for our model and emphasize the potential
of Be-centered hydride chemistries.

Summary

In this work, we have developed and validated physically
interpretable regression models for predicting two key perfor-
mance metrics of metal hydrides: w and P.qgr. Leveraging
a rigorously curated dataset (DigHyd) and a minimal set of
chemically meaningful descriptors, we constructed explicit
analytic models that match the predictive accuracy of state-of-
the-art ML methods, while preserving full physical trans-
parency. Design maps generated from these models revealed
a fundamental trade-off between w and P.qrr performances,
rooted in opposing trends in elemental properties, particularly
x. Saline-type hydrides, composed of light and more electro-
positive elements, tend to exhibit high w due to strong metal-
hydrogen bond polarity but suffer from low Peq rr. In contrast,
interstitial-type hydrides based on heavier, more electronega-
tive transition metals show the opposite behavior. Amid this
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trade-off landscape, Be-based systems, such as Be-Na alloys,
emerge as rare candidates capable of balancing both metrics,
owing to its unique combination of low M and high py
(possibly owing to the compact electronic structure). These
findings offer chemically intuitive insights into the design
principles governing hydrogen storage materials.

Beyond binary hydrides, the regression framework estab-
lished here is readily extensible to more complex compositional
spaces, including ternary and high-entropy alloy systems, as
well as porous materials such as MOFs and COFs. The incor-
poration of additional physically motivated descriptors, or
integration with first-principles methods, may further enhance
the scope and fidelity of the models. Importantly, identifying
chemically benign analogs to high-performing but toxic systems
like Be-based compounds remains an urgent priority. More
broadly, this descriptor-driven modeling strategy offers a scal-
able and interpretable platform for data-guided materials
discovery, with potential applicability across diverse energy-
relevant domains where structure-property relationships
remain poorly understood. We also note that the present
models are limited to equilibrium and gravimetric metrics;
dynamic stability and cycling durability remain unaddressed
and will be explored in future extensions of the framework.
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