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romatic heavy allene as a platform
for selective conversion to a germylene-
coordinated digermavinylidene

Daichi Uchida, Hiroko Yamada and Yoshiyuki Mizuhata *

We report the synthesis of the first neutral homoaromatic heavy allene, stabilized by a methylene-bridged

four-membered framework. Single-crystal X-ray diffraction and DFT calculations reveal a cyclic three-

center–two-electron (3c–2e) p interaction, a short bridgehead distance, a delocalized HOMO, and

a strongly negative NICS(−1) value (−16.9 ppm), collectively establishing pronounced homoaromaticity.

Coordination of 4-dimethylaminopyridine (DMAP) induces a clean and selective transformation into

a germylene-coordinated digermavinylidene, without substituent migration. This reactivity originates

from LUMO localization at the bridgehead Ge atom supported by Wiberg bond indices and NBO

analyses. Our findings highlight neutral homoaromaticity as a structural platform for programmable

bonding interconversion in heavy main-group p systems.
Introduction

Allenes (R2C]C]CR2) are a fundamental class of p-systems
dened by their linear C]C]C core and orthogonal double
bonds. Carbon-based allenes are well understood and have
found broad applications in synthesis and catalysis.1–4 By
contrast, their heavier congeners (R2E]E]ER2; E = Group 14
elements beyond carbon) display drastically different geome-
tries and electronic structures, reecting the intrinsically poor
pp–pp overlap and limited hybridization of heavy atoms. As
a result, these compounds—oen referred to as “heavy allenes”
to distinguish them from their carbon analogues—deviate from
linearity and are generally classied into three bonding types:
bent allenes (Type I), ylidene forms (Type II), and ylidone
structures (Type III). In reality, many heavy allenes adopt
intermediate bonding descriptions, lying on a continuum
between these archetypes. These variations highlight both the
bonding preferences of heavy elements and their unconven-
tional reactivity, making heavy allenes an attractive arena for
main-group chemistry.

The rst isolable heavy allene, a tristannaallene reported by
Wiberg, was shown to adopt a bent structure (Fig. 1b, A).5 119Sn
NMR revealed low-valent character at the central tin atom,
consistent with an alternative description as a stannylene-
coordinated distannavinylidene (Type II). The syntheses of tri-
silaallene, trigermaallene, 1,3-digermasilaallene, and 2-germa-
disilaallene further established the eld and demonstrated bent
frameworks (Type I) as a common motif (Fig. 1b, B–D).6–9 More
recently, ylidene-type heavy allenes (Type II) have been reported,
iversity, Gokasho, Uji, Kyoto 611-0011,

the Royal Society of Chemistry
and these studies revealed that the incorporation of donor
substituents enabled modulation of the predominant reso-
nance structures of heavy allenes (Fig. 1b, E–G).10,11
Fig. 1 (a) Three structural types of heavy allenes. (b) Reported heavy
allenes.
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In parallel, ylidone-type heavy allenes (Type III) have attrac-
ted growing attention because of their role in single-atom
transfer reactions. Cyclic constraints have proven particularly
powerful in enhancing the zero-valent character of the central
atom, thereby favoring ylidone bonding. For example, the rst
cyclic heavy allene (H) displayed Si(0) character in 29Si NMR
spectroscopy.12 A variety of cyclic heavy allenes with strong zero-
valent contributions have since been prepared (Fig. 1b, I).13–21 A
unifying feature is that donor coordination at the 1,3-positions
amplies the zero-valent nature of the central atom. More
recently, cyclic frameworks incorporating carborane units
(Fig. 1b, J) have been introduced, enabling single-atom transfer
processes.22,23 In another striking example, an anionic analogue
of a four-membered heavy allene has been reported, which
reacts with trimethylsilyl chloride to afford the corresponding
neutral heavy allene (Fig. 2, K and L).24 Interestingly, the anionic
analogue K exhibits a cyclic three-center–two-electron (3c–2e) p
interaction and thus clear homoaromatic character, whereas
the neutral analogue L is dominated by a linear (allyl-type) 3c–2e
delocalization and lacks genuine cyclic homoaromaticity.
Collectively, these advances demonstrate that both cyclic
frameworks and charge provide a versatile handle for tuning the
structure and reactivity of heavy allenes. The extension of the
concept of aromaticity to heavier main-group elements offers
a general framework for designing novel reactive p-systems.

Motivated by these insights, our interest turned to a neutral
homoaromatic allene, and we sought to design a new type of
heavy allene featuring a methylene-bridged four-membered
ring. A methylene group, being the most compact carbon
linker, was expected to enforce close approach of the bridge-
head atoms. Such enforced proximity could favor the formation
of a cyclic 3c–2e bond across the heavy allene unit, introducing
the possibility of homoaromatic stabilization.

Here, we report the synthesis of a structurally unique heavy
allene of this type (Fig. 2). The compound displays clear
homoaromaticity arising from a cyclic 3c–2e bond enforced by
the methylene bridge, as supported by crystallographic and
computational analysis. Coordination of 4-di-
methylaminopyridine (DMAP) induces a selective trans-
formation into a germylene-coordinated digermavinylidene.
Fig. 2 This work: design of a neutral homoaromatic allene and its
conversion, building on insights from previous studies.24

22598 | Chem. Sci., 2025, 16, 22597–22602
This study thus establishes a new structural paradigm for heavy
allenes and provides a rare example of controllable bonding
transformation in main-group p-systems.
Results and discussion

To access the target framework, we employed a dianionic di-
germirane as a key precursor. Treatment of 1,1,3,3-tetrabromo-
1,3-digermane (1)25 with 6.5 equivalents of KC8 afforded the
dipotassium digermiran-1,2-diide (2) (Scheme 1). Aer removal
of graphite and KBr by ltration, slow evaporation of the
benzene solution at room temperature gave crystalline 2. Its
structure was elucidated by NMR spectroscopy and single-
crystal X-ray diffraction (Fig. 3, S1 and S2). The preparation of
cyclopropane dianions remains a long-standing challenge in
direct functionalization chemistry,26,27 and heavy-element
analogues are exceedingly rare. Indeed, Lee and Sekiguchi re-
ported a transient trisila analogue generated by two-electron
reduction of a cyclotrisilene at cryogenic temperatures, which
could not be isolated under ambient conditions.28 In contrast, 2
represents the rst crystalline heavy cyclopropane dianion that
is stable at room temperature.

The solid-state structure of 2 (Fig. 3) reveals crystallization as
a contact ion pair, with potassium cations sandwiched between
the solvated benzene molecule and the aryl substituents. The
[Ge2C] core forms a nearly symmetric three-membered ring with
equivalent Ge–C bond lengths [Ge1–C1: 2.0489(2) Å; Ge2–C1:
2.0481(2) Å]. These bonds are elongated relative to standard Ge–
C single bonds (1.95–2.00 Å),29 consistent with repulsion from
the high electron density on the anionic Ge centers. The Ge–Ge
distance [2.5819(5) Å] is considerably longer than typical Ge–Ge
single bonds (ca. 2.48 Å)30 and closely matches that in the long-
bond isomer of 1,3-digermabicyclo[1.1.0]butane [2.5827(3) Å].31

Both Ge atoms adopt a distinct trans-pyramidal geometry [Ge1–
Ge2–C(Tbb) 98.95(6)°, Ge2–Ge1–C(Tbb) 101.48(6)°], supporting
localization of the negative charges at the germanium centers.

The reaction of 2 with GeCl2$IPr (IPr = 1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidene) proceeded rapidly to
afford a red solid identied as homoaromatic heavy allene 3.
The structure of 3 was conrmed by NMR spectroscopy and
single-crystal X-ray diffraction (Fig. 4a, S4 and S6). Owing to the
similar crystallization behavior of 3 and free IPr, separation by
recrystallization proved difficult, and repeated attempts led to
mixtures of products.

The molecular structure of 3, determined by single-crystal X-
ray diffraction (Fig. 4a), consists of a four-membered [Ge3C]
Scheme 1 Synthesis of neutral homoaromatic allene 3. aNMR yield.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Molecular structure of 2$2C6H6 (thermal ellipsoid plots set at
50% probability). The hydrogen atoms except for CH2 are omitted for
clarity.

Fig. 4 (a) Molecular structure of 3 (thermal ellipsoid plots set at 50%
probability). The hydrogen atoms except for CH2 are omitted for
clarity. (b) Molecular orbitals (isovalue: 0.05) of 3.
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core with a cis arrangement of substituents. The structure was
analysed as exhibiting pseudo-symmetric disorder in the [Ge3C]
ring core (Fig. S11). The bond lengths between the bridge and
bridgehead germanium atoms [Ge1–Ge2: 2.3938(1) Å; Ge2–Ge3:
2.3673(1) Å] lie within the range reported for digermenes
[2.213(2)–2.416(2) Å].32–38 In contrast, the transannular Ge1–Ge3
distance [2.6718(1) Å] is longer than typical Ge–Ge single bonds
(ca. 2.48 Å)30 but shorter than that of Ge–Ge p single-bonded
species [2.8714(11) Å].39 These metrics indicate a weak but
signicant transannular interaction between the bridgehead
atoms. The internal angle [Ge1–Ge2–Ge3: 68.26(3)°] is narrower
than in known trigermallenes [C: 122.61(6)°,H: 82.27(5)°] or the
neutral four-membered heavy allene [L: 73.24(4)°],24 high-
lighting the enforced proximity induced by the methylene
bridge. Furthermore, the angle is comparable to that of anionic
analogue K [65.21(3)°], strongly supporting the presence of
homoaromaticity in 3.

Although the Si–Si and Ge–Ge separations are similar in
magnitude [2.682(1) Å for L vs. 2.6718(1) Å for 3], their bonding
interpretations differ fundamentally. The Si–Si distance is
© 2025 The Author(s). Published by the Royal Society of Chemistry
markedly elongated relative to a normal Si–Si single bond (ca.
2.34 Å), whereas the Ge–Ge distance is only slightly longer than
a standard Ge–Ge single bond (ca. 2.48 Å). Thus, L is best
described as allyl-type delocalization without transannular
bonding, while 3 exhibits a genuine, though weak, transannular
Ge–Ge interaction.

DFT calculations at the B3LYP-D3/6-311G(2df,2p) level
reproduced the experimentally determined geometry of 3 with
good delity (Table S3) and claried its bonding picture
(Fig. 4b). The HOMO is an asymmetric three-center–two-
electron (3c–2e) p orbital delocalized over Ge1–Ge3 via Ge2;
the asymmetry arises from the slight outward tilt of the Ge1/Ge3
p orbitals enforced by the cis arrangement of substituents. The
HOMO−1 is a lone pair localized on Ge2, consistent with
a formal zero-valent character at the bridge position. These
assignments are supported by Wiberg bond indices (WBI: Ge1–
Ge2 = 1.28, Ge2–Ge3 = 1.24, and Ge1–Ge3 = 0.44), which
indicate signicant double-bond character to the bridge atom
and a measurable transannular interaction between the
bridgeheads. Natural bond orbital analysis further shows nearly
balanced contributions of the three Ge centers to the 3c–2e
orbital [Ge1: 33% (practically pure p-orbital), Ge2: 36% (prac-
tically pure p-orbital), and Ge3: 31% (practically pure p-orbital)].

The homoaromatic nature is quantied by NICS calcula-
tions: NICS(−1) = −16.9 ppm at a point 1 Å above the ring
center on the substituent side, whereas NICS(+1) =−5.6 ppm at
the opposite face. The strongly negative NICS(−1) value
evidences a diatropic ring current, comparable to those of the
homoaromatic silatrigermacyclobutenylium ion (−17 ppm)40

and the germanium-containing bishomocyclopropenylium ion
(−11 ppm).41 These analogies demonstrate that 3 is a rare
neutral homoaromatic heavy allene.

Upon treatment with 4-dimethylaminopyridine (DMAP),
compound 3 was cleanly converted into digermavinylidene 4
(Scheme 2a). This transformation is particularly noteworthy
when compared with the silicon analogue N,42 which is gener-
ated by dissociation of the dimer M (Scheme 2b). In that case,
a t-Bu group migrates from the bridgehead to the bridge posi-
tion to form isomer O, and only then does DMAP coordinate to
yield P. In contrast, the germanium compound 3 remains
monomeric and undergoes conversion to 4 without any
substituent migration. This difference can be rationalized by
the stabilization provided by the 3c–2e interaction in 3 and by
the localization of the LUMO at the bridgehead Ge atom
(Fig. S13). The transformation could also be observed in the 1H
NMR spectrum of a mixture of 3 and DMAP, and compound 4
was successfully isolated by treatment of 3 with GeCl2$DMAP,
affording a yellow solid in 37% yield. The absence of IPr coor-
dination during the synthesis of 3 is attributed to steric
hindrance caused by both the bulky Tbb substituents and the
IPr ligand itself. While two Tbb groups of 4 are structurally
asymmetric, they were observed as equivalent in the 1H and 13C
{1H} NMR spectra. We interpret that this equivalence is due to
a 1,3-shi mechanism of DMAP, and this process occurs faster
than the NMR timescale (Fig. S7 and S8).

The molecular structure of 4, determined by single-crystal X-
ray diffraction (Fig. 5a), exhibits a pronounced change in
Chem. Sci., 2025, 16, 22597–22602 | 22599
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Scheme 2 (a) Conversion of 3 into germylene-coordinated di-
germavinylidene 4. (b) Generation and isomerization of the silicon
analogue of 3.42 (c) Reported digermavinylidenes.43,44
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bonding relative to 3. The Ge1–Ge2 bond shortens to 2.3376(4)
Å, while the Ge2–Ge3 bond elongates to 2.4975(4) Å and the
transannular Ge1–Ge3 distance increases to 2.8008(3) Å. For
comparison, the corresponding bond lengths in 3 are Ge1–Ge2:
2.3938(1) Å and Ge2–Ge3: 2.3673(1) Å. The shortened Ge1–Ge2
Fig. 5 (a) Molecular structure of 4 (thermal ellipsoid plots set at 50%
probability). The hydrogen atoms except for CH2 are omitted for
clarity. (b) Molecular orbitals (isovalue: 0.05) of 4.

22600 | Chem. Sci., 2025, 16, 22597–22602
bond in 4 is consistent with values reported for di-
germavinylidenes [Q: 2.312(1) Å; R: 2.30597(19) Å].43,44 The
internal angle [Ge1–Ge2–Ge3: 70.82(1)°] remains narrow for
a heavy allene, though wider than that in 3. In addition, the sum
of bond angles around Ge1 is 359.4°, essentially planar, which is
comparable to the values reported for other digermavinylidenes
[Q: 360.0°; R: 358.8°] (Scheme 2c).43,44 These structural param-
eters rmly establish that 4 adopts a germylene-coordinated
digermavinylidene framework.

Computational analyses (DFT, NBO, WBI, and NPA) provide
further insight into the bonding situation of 4 (Fig. 5b). The
HOMO is a p orbital between Ge1 and Ge2, while the HOMO−1
corresponds to a lone pair on Ge2. Wiberg bond indices conrm
a strong double-bond character between Ge1 and Ge2 (1.61) and
a weaker interaction between Ge1 and Ge3 (0.27) compared to
that of 3. Natural bond orbital analysis reveals that the Ge1–Ge2
s bond consists of 61% contribution from Ge1 (sp1.16) and 39%
from Ge2 (sp7.88d0.06). The lone pair at Ge2 is essentially pure s
in character (sp0.23), while the p bond between Ge1 and Ge2 is
distributed nearly evenly (52% on Ge1, 48% on Ge2) with almost
pure p contributions on both atoms. Second-order perturbation
analysis of 4 revealed that the Ge1–Ge2 p orbital signicantly
interacts with the p* orbitals on Ge3 (31.74 kcal mol−1). These
results suggest that the vinylidene character is predominant in
4, with a slight contribution of a 3c–2e interaction. Natural
population analysis (NPA) assigns charges of +0.65 (Ge1), −0.25
(Ge2), and +1.16 (Ge3), indicating pronounced zwitterionic
polarization across the [Ge3C] framework. These computational
results, together with the crystallographic data, rmly establish
4 as a germylene-coordinated digermavinylidene.

It is also worth noting that related transformations, in which
Lewis base coordination induces conversion of heavy allenes
into ylidone-type species, have been reported in a few recent
studies.10,23 In this context, the present system provides
a particularly well-dened example where a homoaromatic
allene stabilized by a cyclic 3c–2e interaction is selectively di-
srupted by base coordination, establishing a new design prin-
ciple for controllable bonding transformation in heavy-element
p systems.

Conclusions

In summary, we synthesized the rst neutral homoaromatic
heavy allene and demonstrated its clean and selective conver-
sion into a germylene-coordinated digermavinylidene upon
DMAP coordination, without substituent migration. Single-
crystal X-ray diffraction, DFT, NBO, WBI, and NICS analyses
collectively establish that compound 3 is stabilized by a cyclic
three-center–two-electron p interaction, representing a rare
example of a neutral homoaromatic species in heavy main-
group chemistry. The contrasting bonding motifs of 3 and 4
highlight the structural programmability of heavy-element p

systems: homoaromaticity enforced by a cyclic 3c–2e bond can
be disrupted in a controlled manner and redirected into a yli-
dene-type bonding mode by Lewis base coordination. Looking
ahead, this concept of programmable bonding interconversion
can be extended to other Group 14 p frameworks andmay guide
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the rational design of functional molecular materials and novel
reactivity patterns.
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