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of Chemistry The cyclopropylmethyl group has been valued in medicinal chemistry for its stereoelectronic properties in

optimizing drug stability and target affinity. Selectively introducing a cyclopropylmethyl group is a challenge
in organic synthesis. Here, we developed an enzymatic approach using a cyclopropylmethyl-S-
adenosylmethionine analogue (CPM-SAM) and methyltransferases. CPM-SAM was prepared using an

engineered AclHMT from iodomethyl-cyclopropane and S-adenosylnomocysteine. Enzyme cascades
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Introduction

The cyclopropylmethyl (CPM) group has emerged as a pivotal
functional group in medicinal chemistry, leveraging its unique
structural features to increase drug specificity,’ refine target-
binding patterns,” and optimize hydrophobicity profiles.* The
characteristic high angle strain of cyclopropane confers meta-
bolic advantages by reducing accessibility to enzymatic attack,
thereby decreasing hepatic clearance rates and prolonging
plasma halflife through improved metabolic stability.*
Currently approved drugs containing the cyclopropylmethyl
group (Fig. 1) show broad therapeutic applications. Key exam-
ples include nalmefene® (an opioid antagonist for addiction)
and roflumilast® (a phosphodiesterase 4 inhibitor). Further-
more, multiple investigational candidates are in preclinical
development, exemplified by the GlyT1-selective inhibitor
DCCCyB,” alongside clinical-stage agents such as pomotrelvir,
a SARS-CoV-2 main protease (Mpro) inhibitor undergoing
evaluation for COVID-19 treatment.®

However, the synthetic challenges associated with selective
CPM incorporation remain significant. In situ cyclopropanation
needs harsh conditions (strong Lewis acids, high heat, or metal
catalysts), risking ring-opening, side reactions and environ-
mental impact.>'® Therefore, developing green, efficient enzy-
matic strategies for the selective incorporation of pre-formed
cyclopropane groups (e.g., CPM) bypasses C-C bond inertness**
and circumvents direct cyclization challenges. This approach
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would advance the preparation of cyclopropane-based phar-
maceuticals for next-generation therapeutics with optimized
pharmacokinetics and enhanced target engagement.
S-Adenosyl-i-methionine (SAM or AdoMet), a ubiquitous
cofactor in living organisms, serves as the primary methyl donor
for methyltransferases to methylate diverse biomolecules,
including DNA, RNA, proteins, and small-molecule metabolites.
This biochemical process underlies a variety of basic biological
functions.” The versatility of SAM-dependent methyl-
transferases (MTs) has driven extensive exploration of synthetic
SAM analogs with modified methyl substituents.’*** Recently,
this repertoire was further expanded to enzymatic transfer of
fluoroalkyl groups, such as fluoromethyl,***° fluoroethyl,** and
other fluoro-containing functional groups® that are important
in medical chemistry and agrochemistry. Given the
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Fig. 1 Drugs containing cyclopropylmethyl groups.
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pharmacological significance of cyclopropylmethyl groups in
drug design, we propose the development of cyclopropylmethyl-
SAM (CPM-SAM) as a novel cyclopropylmethyl donor for enzy-
matic cyclopropylmethylation. On the basis of our work with
a fluoroethyl transfer reaction, in which several methyl-
transferases cannot tolerate the size of the fluoroethyl group
and need protein engineering, the use of the bulkier cyclo-
propylmethyl would be a challenge for both SAM analogue
synthesis and methyltransferases.

Results and discussion
Synthesis of CPM-SAM

Halide methyltransferases (HMTs) have been used for SAM
analogue preparation.”® We heterologously expressed three
phylogenetically distinct HMTs, vpaHMT, wumaHMT, and
AclHMT, to evaluate their capacity for CPM-SAM synthesis from
S-adenosyl-.-homocysteine (SAH) and iodomethyl-cyclopropane
(I-Me-Cpp, Scheme 1). HPLC and LC-MS analyses detected trace
amounts of CPM-methylthioadenosine (CPM-MTA, a degrada-
tion product of CPM-SAM, Fig. S2 and S3) in reactions con-
taining vypaHMT or umaHMT. Notably, both CPM-MTA and
CPM-SAM were detected in the AcJHMT-catalyzed reaction (Fig.
S2). These findings demonstrate that Ac’HMT exhibits slightly
better tolerance toward iodomethylcyclopropane (I-Me-Cpp)
moieties, albeit with compromised catalytic efficiency. A
systematic enzyme engineering study on Ac’lHMT by Hammer
et al.** developed an AcJHMT mutant (V11F/L301/L39D/WA41F),
demonstrating high activity toward I-Me-Cpp in SAM analogue
synthesis. Therefore, we utilized Ac/HMT (V11F/L30I/L39D/
WA41F), denoted as AclHMT (FIDF), to synthesize CPM-SAM (Fig.
S2). CPM-SAM was successfully prepared with 61.5% yield,
significantly higher than that of the chemical method (17.32%
yield, see the SI). CPM-SAM was fully characterized by high-
resolution mass spectrometry (HRMS), 'H and *C NMR. Addi-
tionally, owing to its tendency to decompose into the MTA
analogue, we evaluated the stability of CPM-SAM in buffers at
pH 1.0 and 7.0, revealing degradation rates of 2.1% and 16.2%
to CPM-MTA, respectively, after 24 hours at 30 °C (Fig. S3).

AcIHMT (FIDF)-methyltransferase cascade catalyzed
cyclopropylmethylation

After successfully obtaining CPM-SAM, we aimed to investigate
whether CPM-SAM can be recognized by SAM-dependent MTs to
cyclopropylmethylate diverse compounds. Enzymatic cascade
reactions of HMTs and MTs, developed by Seebeck'® and later
effectively used in fluoroalkylation,'®** were used for CPM-SAM-
mediated cyclopropylmethylation (Scheme 2). Nicotinamide N-
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Scheme 1 Synthesis of CPM-SAM.
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Scheme 2 Enzyme cascade of AclHMT (FIDF) and methyltransferase
for cyclopropylmethyl transfer reactions.

methyltransferase (NNMT) is a key enzyme in nicotinamide
(NCA, 1) metabolism and xenobiotic detoxification. Its metab-
olite, 1-methylnicotinamide, protects against lipotoxicity-
induced renal tubular injury.*® Only trace amounts of cyclo-
propylmethylated NCA (2, 3.1% yield) were detected in the
AcIHMT (FIDF)-NNMT cascade reaction (Fig. 2 and S6A). The
low activity may stem from steric constraints of the large
cyclopropylmethyl group of CPM-SAM, which requires an
expanded active pocket. By analyzing the crystal structure of
NNMT with SAH bound (PDB: 2IIP), we identified two residues
near the sulfur atom of SAH that likely influence substrate
binding: Y11 and Y204 (Fig. S5A). Subsequent docking analysis
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Fig. 2 (A) Cyclopropylmethylation activity of the AcHMT (FIDF)-
NNMT (Y11V/Y204A) cascade reactions. The AclHMT (FIDF)-NNMT
(Y11V/Y204A) assay contained 80 uM SAH, 3 mM |-Me-Cpp, 1 mM NCA
(1), 40 uM AcHMT (FIDF) and 80 uM NNMT (Y11V/Y204A) in 200 mM
sodium phosphate (pH 7.0), and the solution was incubated at 30 °C
for 24 h. (B) Activity summary of AclHMT (FIDF)-NNMT cascade
reactions with NNMT mutants. The data plotted are the means of three
independent measurements with standard deviation.
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of CPM-SAM with NNMT revealed residue Y204 positioned 1.1 A
from the cyclopropylmethyl group and residue Y204 2.6 A from
the purine ring of CPM-SAM (Fig. S6B and C). We then gener-
ated Y11A/H/L/S/V and Y204A/H/L/S/V single mutants and
assessed their catalytic activity. The Y204A mutant exhibited the
highest activity. We then constructed several double mutants
and Y11V/Y204A achieved a reaction yield of 89.52%, which is
29-fold higher than that of the wild-type and also much higher
than that of the chemical method of 65.2% yield (Fig. 2 and
page S6). Molecular docking of CPM-SAM with NNMT (Y11V/
Y204A) confirmed the improved accommodation of the cyclo-
propylmethyl group within the active site (Fig. S5D). Time-
dependent experiments were conducted to evaluate both direct
catalysis by NNMT (Y11V/Y204A) on CPM-SAM and cascade
catalysis involving Ac/HMT (FIDF)-NNMT (Y11V/Y204A).
Compared with direct catalysis, the cascade system demon-
strated a slightly superior product yield, which was likely
attributed to the inherent instability of CPM-SAM (Fig. S6C).
Kinetic analysis revealed that the NNMT (Y11V/Y204A) mutant
exhibits comparable Ky, values for SAM and CPM-SAM, while its
keac value decreased by a factor of 35 with CPM-SAM (Table S3).

We further explored the catalytic activity of S-methyl-
transferase toward CPM-SAM. Thiopurine S-methyltransferase
(TPMT) catalyzes the S-methylation of thiopurines and thio-
pyrimidines. This is a key metabolic pathway for thiopurine
drugs like 6-mercaptopurine (6-MP), 6-thioguanine (6-TG), and
azathioprine, which are currently used for the treatment of
childhood acute lymphoblastic leukemia, autoimmune
diseases, inflammatory bowel disease, and transplant rejec-
tion.”® We evaluated the activity of the AcJHMT (FIDF)-TPMT
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Fig. 3 (A) The AclHMT (FIDF)-TPMT (W29H/K32L) assay contained 80

uM SAH, 3 mM [-Me-Cpp, 4 MM TCEP, 1 mM 6-mercaptopurine (3), 40
uM AclHMT (FIDF) and 80 uM TPMT (W29H/K32L) in 200 mM potas-
sium phosphate buffer (pH 8.0), and the solution was incubated at 30 °
C for 24 h. (B) Activity summary of AclHMT (FIDF)-TPMT cascade
reactions with TPMT mutants. The data plotted are the means of three
independent measurements with standard deviation.
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cascade system for the cyclopropylmethylation of 6-mercapto-
purine (6-MP, 3, Fig. 3 and S8), achieving a 12.07% yield of the
cyclopropylmethylated product (4, Fig. 3B). To increase the
catalytic efficiency, structural analysis of TPMT with SAH bound
(PDB: 2BZG) revealed that residue W29 might have steric space
with the cyclopropylmethyl group (Fig. S7B). Saturation muta-
genesis of W29 identified the W29H variant that significantly
improved catalytic activity (yield 38.9%, Fig. 3B). Given that
AclHMT belongs to the TPMT family, we extended our
successful engineering strategy of AclHMT to TPMT. Sequence
alignment identified three equivalent positions: W29/K32/F40
in TPMT corresponding to W27/L30/W41 in AcIHMT (Fig. S7A).
Double mutants through the combinatorial pairing of W29H
with K32 and F40 were prepared. Notably, the TPMT (W29H/
K32L) variant demonstrated significantly enhanced perfor-
mance with a yield of 92.3% (7.6-fold higher than that of the
wild-type enzyme, Fig. 3B). This enhancement likely stems from
the W29H mutation accommodating CPM-SAM through opti-
mized spatial arrangement, while maintaining the capacity to
form an aromatic lid at the binding site.”

Following successful CPM-SAM-mediated cyclo-
propylmethylation on small molecules, we extended this
method to achieve late-stage selective modification of complex
pharmaceuticals and natural products. Coumarins are natural
products produced in plants and some microbes. Coumarins
and their derivatives are widely used in pharmaceuticals with
anti-inflammatory, anti-ulcer, antitumor, antimicrobial, and
anticoagulant activities.”®** NovO catalyzes the regioselective
C8-methylation of coumarin.*® Using 4,5,7-trihydroxycoumarin
(5) as the substrate, we evaluated the cyclopropylmethylation
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Fig. 4 (A) Cyclopropylmethylation activity of the AcHMT (FIDF)-

NovO (I6V/C47G) cascade reactions. The cascade reaction mixture
contained 80 uM SAH, 3 mM [-Me-Cpp, 1 mM substrate (5), 40 uM
AcHMT (FIDF) and 80 uM NovO (I6V/C47G) in 200 mM sodium
phosphate (pH 7.0), and the mixture was incubated at 30 °C for 24 h.
(B) Activity summary of AclHMT (FIDF)-NovO cascade reactions with
NovO mutants. The data plotted are the means of three independent
measurements with standard deviation.
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activity of the AclHMT (FIDF)-NovO enzyme cascade (Fig. 4 and
S10). As anticipated, NovO (WT) exhibited poor tolerance
toward CPM-SAM, with only trace amounts of cyclo-
propylmethylated products detected (6, yield 2%, Fig. 4B).
Structural analysis of NovO (SAH-bound, PDB: 5MGZ) revealed
that residues 16 and F14, located 3.9 A and 5.1 A from the sulfur
atom respectively (Fig. S9A), might create steric hindrance for
CPM-SAM binding. Molecular docking of CPM-SAM into NovO
further demonstrated spatial overlap between the cyclo-
propylmethyl group and substrate 5 (Fig. S9B). FuncLib®* anal-
ysis of the residues within a 4 A radius of CPM-SAM in the CPM-
SAM-NovO docking complex suggested the mutation of C47 (3.3
A from the purine ring) to glycine and C48 to alanine or glycine,
along with the distal residue V177 to glutamic acid or glycine.
Subsequent docking simulations of the CPM-SAM-NovO (16V/
C47G) variant demonstrated resolved substrate overlap, with
CPM-SAM reoriented properly. The C47G mutation facilitated
optimal bending of CPM-SAM to approach the C8 position of
the substrate (Fig. S9C and D). We subsequently generated
single and combinatorial mutants at these five sites. Activity
assays revealed that NovO (I6V/C47G) was the most efficient
variant, achieving a 58.48% yield with a 28-fold increase over
that of the wild-type enzyme (Fig. 4B, the isolated product yield
reached 53.23%). Kinetic analysis revealed that the NovO (I6V/
C47G) mutant exhibits comparable k., values for SAM and
CPM-SAM, while its Ky is reduced by a factor of 16 (Table S3).

O-Methyltransferases (OMTs), the largest class of methyl-
transferases in nature, play critical roles in natural product
biosynthesis.>* DnrK catalyzes the 4-O-methylation of carmino-
mycin in the biosynthesis of the antitumor drug daunoru-
bicin.* We investigated the activity of the Ac’HMT (FIDF)-DnrK
cascade for the 4-O-cyclopropylmethylation of carminomycin (7,
Fig. 5). However, wild-type DnrK exhibited no detectable activity
toward CPM-SAM (Fig. S12). Structural analysis of DnrK with
SAH bound (PDB: 1TW2) revealed two bulky residues, F156 and
L160, positioned near the sulfur atom (Fig. S11A). Molecular
docking simulations demonstrated that L160 acts as a steric
barrier, preventing the cyclopropylmethyl group of CPM-SAM
from accessing the 4-OH of the substrate (Fig. S11B). Inspired
by our previous design of the DnrK (L160A) mutant for FEt-
SeAM,*" we conducted docking studies with CPM-SAM. These
simulations revealed that the L160A mutation alleviates steric
hindrance, positioning the cyclopropylmethyl moiety near the
catalytic site properly. Subsequent activity assays using AcCCHMT
(FIDF)-DnrK (L160A) confirmed the production of 4-O-cyclo-
propylmethylated carminomycin (8), with a yield of 54.76%
(Fig. 5B, 51.3% isolated yield). To further optimize the effi-
ciency, we introduced the double mutants F156A, L, and S/
L160A. However, the catalytic performance remained inferior to
that of the single mutant DnrK (L160A).

Flavonoids are key phenolic compounds with therapeutic
potential against cancer, oxidative stress, pathogens, inflam-
mation, and cardiovascular dysfunction.>® However, poor
stability in vivo limits their clinical use. Research showed that O-
methylation enhances their lipophilicity and stability,
improving their potential as pharmaceutical agents for new
applications.**** ROMTY, an O-methyltransferase from Oryza
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Fig. 5 (A) Cyclopropylmethylation activity of the Acl[HMT (FIDF)-Dnrk

(L160A) cascade reactions. The AclHMT (FIDF)-Dnrk (L160A) assay
contained 80 uM SAH, 3 mM |-Me-Cpp, 1 mM substrate (7), 40 uM
AclHMT (FIDF) and 80 puM Dnrk (L160A) in 50 mM Tris—HCL (pH 8.0),
and the solution was incubated at 30 °C for 24 h. (B) Activity summary
of AclHMT (FIDF)-DnrKs cascade reactions with DnrK mutants. The
data plotted are the means of three independent measurements with
standard deviation.

sativa subsp. Japonica, specifically catalyzes the 3’-O-methyla-
tion of eriodictyol (9) to produce homoeriodictyol, a compound
exhibiting antioxidant, anti-inflammatory, antimicrobial, and
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Fig. 6 (A) Cyclopropylmethylation activity of the AcHMT (FIDF)-

ROMTY9 (M184A/W271H) cascade reactions. The AcHMT (FIDF)-
ROMT9 (M184A/W271H) assay contained 80 uM SAH, 3 mM |-Me-Cpp,
1 mM substrate (9), 40 uM AclHMT (FIDF) and 80 uM ROMT9 (M184A/
W271H) in 10 mM Tris—HCl at pH 8.0, and the solution was incubated
at 30 °C for 24 h. (B) Activity summary of AclHMT (FIDF)-ROMT9
cascade reactions with ROMT9 mutants. The data plotted are the
means of three independent measurements with standard deviation.
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anticancer activities.”” We evaluated the Ac/HMT (FIDF)-
ROMT9 cascade system for the 3'-O-cyclopropylmethylation of
eriodictyol (9, Fig. 6 and S14). Again, the wild-type ROMT?9 failed
to recognize CPM-SAM. Since the crystal structure of ROMT9
remains unresolved, molecular docking of SAH into the
AlphaFold-predicted structure (AF-Q6ZD89-F1) identified
residue M184 (4.0 A from the sulfur atom) as potential steric
hindrance (Fig. S13A). Docking simulations with CPM-SAM
revealed positional inconsistency compared with SAH binding
(Fig. S13B), suggesting that M184 obstructs CPM-SAM accom-
modation. To alleviate steric clashes, we engineered M184 to
smaller residues (Ala/Ser). Activity assays confirmed that both
mutants acquired catalytic activity on CPM-SAM, with M184A
exhibiting a 7.75% product yield (Fig. 6B and S14). W271,
a bulky aromatic residue near the binding site, was further
optimized. Systematic mutagenesis of W271 to smaller residues
(Ala, His, Leu, Ser, and Val) identified ROMT9 (M184A/W271H)
as the most efficient variant with a 97.41% yield for cyclo-
propymethylated eriodictyol (Fig. 6B). Docking of CPM-SAM
with the ROMT?9 double mutant (M184A/W271H) demonstrated
perfect overlap with the original SAH position (Fig. S13C).
Kinetic analysis revealed that the ROMT9 (M184A/W271H)
mutant exhibits closely matched k., and Ky values for SAM and
CPM-SAM (Table S3).

Moreover, the cyclopropylmethylation reactions using CPM-
SAM directly and the AcJHMT (FIDF)-MT coupled enzymatic
cascade were compared using all the top-performing mutants of
the methyltransferases mentioned above. Although direct
catalysis resulted in marginally higher reaction rates during the
initial 3-12 h, the coupled enzymatic system ultimately ach-
ieved superior product yields (Fig. S6-S14). This strategy not
only reduces the consumption of costly SAH but also enhances
production efficiency, demonstrating its practical advantage for
scalable biosynthesis.

Conclusions

In summary, we successfully synthesized a cyclopropylmethyl-
SAM analogue (CPM-SAM) using engineered AclHMT (FIDF).
Through enzyme engineering, we enhanced the catalytic effi-
ciency of diverse methyltransferases (MTs) toward CPM-SAM,
particularly transforming several MTs that were initially inca-
pable of recognizing CPM-SAM into highly efficient cyclo-
propylmethyl transferases. By coupling Ac/[HMT (FIDF)-
mediated in situ CPM-SAM synthesis with engineered MTs, we
achieved enzymatic cyclopropylmethylation across N-, S-, C-,
and O-nucleophilic sites. This strategy provides a sustainable
and selective platform for generating cyclopropylmethyl-con-
taining analogues of bioactive molecules in a late-stage manner,
offering green biocatalysts for pharmaceutical discovery and
diversification.
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