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As a fundamental property of electrons, spin and its interactions profoundly influence chemical processes
and material properties. In this review, we focus on key advances in spin chemistry for energy storage and
conversion technologies. Starting from the basic concepts of spin and theoretical computations, we discuss
its role in the mechanisms of electrochemical thermodynamics and kinetics. We then examine advanced
characterization techniques, particularly emerging in situ electrochemical methods, and summarize how
these have led to new insights into electrochemical mechanisms mediated by spin effects. Next, we
review the applications of spin manipulation in electrocatalysis and energy storage, along with strategies
for performance enhancement and regulation, with emphasis on the intrinsic interrelationships between
catalysis and energy storage systems. Finally, we outline future perspectives for spin chemistry in energy

conversion and storage, particularly in the context of big data and artificial intelligence, which are poised
Received 31st August 2025 b h hanisti derstandi lerat terials desi di the int tati ¢
Accepted 27th October 2025 o enhance mechanistic understanding, accelerate materials design, and improve the interpretation o
structure—activity relationships. This interdisciplinary integration not only accelerates the development of

DOI: 10.1039/d55c066992 sustainable, high-performance energy technologies but also lays a foundation for future innovations in

Open Access Article. Published on 06 November 2025. Downloaded on 2/13/2026 3:53:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/chemical-science spin-driven materials science.

1 Introduction

The rapid pace of global industrialization and continuous
population growth are driving an exponential surge in energy
demand. However, our heavy reliance on fossil fuels is not only
depleting resources faster but also causing severe environ-
mental crises." These include worsening global warming from
greenhouse gas emissions, more frequent extreme weather
events, and disruption to ecosystems. To address these chal-
lenges, there is now a strong global push towards carbon
neutrality by transforming our energy systems, aiming for truly
sustainable development. Renewable energy sources like solar,
wind, and hydropower offer promising alternatives to fossil
fuels because they are clean and sustainable. But their inherent
intermittency and instability make large-scale deployment
difficult. We urgently need efficient energy storage and
conversion (ESC) technologies to bridge the gap between
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fluctuating power generation and the steady demand of end
users. ESC systems play a crucial role here. They convert vari-
able electricity into storable chemical fuels like hydrogen or
methanol, or deliver electricity directly to the grid. This helps
create integrated “generation-storage-utilization” energy
networks.”

Electrocatalysis sits at the heart of energy conversion. It
drives critical reactions such as hydrogen evolution (HER)* and
oxygen evolution (OER)* in water splitting, carbon dioxide
reduction (CO,RR),® and oxygen reduction (ORR)® in fuel cells.
By controlling how electrons move at interfaces, this technology
directly turns renewable electricity into high energy density
green fuels or enables efficient power generation. For example,
water electrolysis stores surplus energy as hydrogen, while fuel
cells convert that hydrogen back into electricity, forming
a potential “hydrogen economy” loop. However, the efficiency
and scalability of these processes depend on catalyst perfor-
mance. Precious metal catalysts (Pt, Ru, Ir et al.) show excellent
activity but face major hurdles for widespread use because they
are scarce and extremely expensive.” In contrast, non-precious
alternatives often suffer from lower activity or poor durability.
Developing catalysts that are highly active, long-lasting, and
cost-effective remains a critical challenge for advancing
electrocatalytic technologies. Alongside electrocatalysis, inno-
vations in energy storage systems, including lithium-ion
batteries (LIBs), supercapacitors and emerging metal-air
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batteries, demand breakthroughs in materials science. Persis-
tent issues with energy density, cycle life, and safety often stem
from limitations in electrode materials and the dynamics of
reactions at interfaces. For instance, the “shuttling” of poly-
sulfides in lithium-sulfur (Li-S) batteries and high resistance at
interfaces in solid-state batteries highlight the urgent need for
novel material designs. Tackling these key challenges requires
control over electrons at the atomic scale.?

Electron spin is a fundamental quantum mechanical prop-
erty. Unlike classical particles, electrons possess an intrinsic
angular momentum independent of their movement through
space.’ Wolfgang Pauli introduced the concept of spin in 1925
to explain anomalies in atomic spectra. Dirac's later relativistic
quantum theory provided the mathematical framework, con-
firming its quantized nature: electrons exist in discrete “spin-
up” or “spin-down” states defined by quantum numbers. Spin
underpins core principles like the Pauli exclusion principle and
Hund's rules, which dictate how electrons behave in atoms and
molecules.’®** The landmark Stern-Gerlach experiment (1922)
directly demonstrated spin quantization, showing silver atoms
splitting into distinct paths in a magnetic field, a cornerstone of
quantum theory. Beyond atomic-scale magnetism, spin governs
phenomena like the Zeeman effect and influences material
properties such as conductivity and magnetic ordering through
spin polarization. This occurs when an external field or
material-specific interactions cause an imbalance between the
number of “spin-up” and “spin-down” electrons. Spin dynamics
represent a critical, yet largely unexplored, avenue for boosting
efficiency in electrochemical systems.*™* Transition metal
catalysts exploit changes in spin state, for instance, putting Fe
or Co centers into a high-spin (HS) configuration to adjust how
their orbitals interact with reactant molecules. This can directly
lower the energy barrier for reactions like oxygen evolution or
reduction.’® At electrode interfaces, spin polarization can opti-
mize charge transfer by aligning electron spins, reducing scat-
tering losses and improving conductivity. The Chirality-Induced
Spin Selectivity (CISS) effect is a prime example, where chiral
molecules selectively transmit electrons based on their spin,
enhancing energy conversion efficiency without needing an
external magnet.” In energy storage, spin transitions in mate-
rials like Mn**/Mn** or Co®"/Co®" affect crystal lattice stability
and how easily ions can move. Spin-aligned pathways in
systems like Li-S batteries could also help suppress the prob-
lematic polysulfide shuttle effect. Advanced techniques like
electron paramagnetic resonance allow us to probe spin
densities, linking microscopic behavior to overall device
performance. Despite progress, significant challenges remain.
These include untangling the complex effects of spin-orbit
coupling (SOC) in catalysts containing heavy elements and
designing practical, scalable interfaces that exploit spin selec-
tivity. These challenges position spin manipulation as a key
frontier for next-generation breakthroughs in
electrochemistry.'®

The rapid advancement and growing interest in spin-related
electrochemistry have led to a surge in studies integrating spin
phenomena with electrochemical systems, as well as a prolifer-
ation of reviews in this interdisciplinary area.'* However, most
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Scheme 1 The schematic of the characterization and application of
electronic spin polarization.

existing reviews focus either on catalysis or energy storage,
overlooking the critical interdependencies between the two.
Extensive evidence indicates that catalytic processes play an
indispensable role in energy storage systems.”>*" In this review,
we establish a “spin-energy” framework to systematically
elucidate how spin effects operate synergistically across both
energy conversion and storage processes. We examine the
universal influence of spin on key steps such as charge transfer
kinetics, the binding behavior of reaction intermediates at
surfaces, and reaction pathways. Furthermore, we provide
a detailed discussion of advanced techniques for characterizing
spin properties, along with recent applications of spin manip-
ulation in electrocatalysis and energy storage, including various
strategies for spin regulation. We also summarize the latest
advances in artificial intelligence applied to spin chemistry
from limited reported literature, while offering an in-depth
discussion of the future prospects of Al-driven developments
in electrochemical spin research. Ultimately, this review aims to
accelerate the translation of spin control strategies from theo-
retical concepts into high-efficiency, durable energy systems,
thereby advancing sustainable energy solutions (Scheme 1).

2 Fundamental mechanisms of spin—
electrochemical coupling

Electron spin is an intrinsic angular momentum of electrons,
described in quantum mechanics as a non-classical inherent

property with a quantum number S = 1. The corresponding spin
magnetic moment is expressed as:

My = —gskp /(s + 1) (1)
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Fig. 1 Spin alignment of electrons in a magnetic field due to the
Zeeman interaction. Reproduced with permission.? Copyright 2023,
the Royal Society of Chemistry.
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Bohr magneton.”” According to the Pauli exclusion principle,
two electrons in the same atomic orbital must have opposite
spin orientations (ms = +} and m; = —}), a constraint that
directly governs electron configurations in atoms/molecules
and chemical bond formation. In an external magnetic field
(B), the interaction energy between electron spin and the field is

described by the Zeeman effect:

E=—u;B= gs,“'BmsB (2)

This energy difference induces spin-state splitting (spin-up
vs. spin-down) and triggers spin polarization, a phenomenon
where a specific spin orientation dominates within an electron
population. The quantum nature of spin not only governs
material magnetism (e.g., ferromagnetic and antiferromagnetic
ordering) but also influences electronic band structures and
dynamical behaviors through SOC. The Hamiltonian form of
SOC is:

HSOC = AL ° S (3)
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where 1 is the coupling constant, L and S are the orbital and
spin angular momentum operators, respectively. This interac-
tion is particularly significant in transition metal catalysts,
where it modulates the spin states of d-orbital electrons (e.g:,
high spin vs. low spin configurations), thereby altering the
adsorption strength of reaction intermediates and activation
energy barriers. In summary, the quantum mechanical essence
of electron spin and its coupling with external fields (magnetic
or crystal fields) provide a critical theoretical foundation for
understanding macroscopic material properties and micro-
scopic dynamics.**** The following section will systematically
elaborate on the thermodynamic (e.g., spin polarization effects
on charge transfer free energy) and kinetic (e.g., spin selective
electron transfer rates) roles of spin in energy storage systems
(e.g., LIBs) and electrocatalytic processes (e.g., OER/ORR).”

Electron spin, as a fundamental quantum degree of freedom,
transcends its traditional role in governing magnetic properties
to emerge as a critical regulator in electrochemical processes.’
The core of spin-electrochemical coupling lies in spin-
dependent charge transfer across electrode-electelectrolyte
interfaces. Unlike conventional models that treat electrons as
mere spin-less charges, we emphasize that the spin state of
electrons directly influences their tunneling probability, the
adsorption configuration of intermediates, and ultimately,
reaction kinetics and selectivity.”

The rate of electron transfer in electrochemical reactions is
not solely determined by overpotential but is intrinsically spin-
sensitive. This sensitivity stems from two primary quantum
phenomena: spin selection rules and spin-polarized tunneling.*
According to spin selection rules, electron transfer between
species with specific spin states, such as from a singlet-state
catalyst to a triplet-state oxygen molecule, must obey spin
conservation. Spin-forbidden reactions face significantly higher
activation barriers, though spin-orbit coupling can modulate
these barriers by enabling spin-flip processes, thereby opening
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Fig. 2 Projected density of states (pDOS) of the 3d orbitals of Co ions, atomic structures, and the potential-dependent total energies with
polynomial fits for the LS and HS states of CoN,4 (a—c); for the LS, intermediate-spin (IS), and HS states of *OH/CoN4 (d—g); and for the LS, IS, and
HS states of *O,H/CoNy4 (h—k). Copyright 2020, American Chemical Society.** Electronic structure evolution of MgPc@FCNT and MgPc@CNT
systems upon Li>S,4 adsorption: (L and n) calculated total DOS before and after adsorption, respectively; (m and o) projected DOS (PDOS) of the
Mg 3s and 2p orbitals before and after adsorption. Copyright 2024, Springer Nature.*”
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otherwise inaccessible reaction pathways.* This is particularly
crucial in electrocatalytic reactions like the ORR, where the triplet
ground state of O, presents a fundamental kinetic challenge.
Meanwhile, spin-polarized tunneling describes how the proba-
bility of an electron tunneling through an energy barrier depends
on its spin orientation when the electrode or adsorbate exhibits
spin polarization. Ferromagnetic electrodes inject spin-polarized
currents, in which one spin channel may experience lower
interfacial resistance than the other, leading to spin-selective
electrocatalysis.® A distinctive feature of electrochemical
systems is the ability to tune the Fermi level via applied electrode
potential, offering a powerful in situ means to manipulate spin
interactions. In transition metal catalysts, the energy difference
between HS and low spin (LS) states is often comparable to
thermal energy.'® Variations in the applied potential can shift the
Fermi level, altering the occupancy of frontier d-orbitals and
thereby inducing spin-state transitions that optimize interme-
diate binding. Moreover, the degree of spin polarization at the
Fermi level, which governs the efficiency of spin-polarized elec-
tron transfer, is itself a function of electrode potential. This
creates a feedback mechanism wherein the potential not only
drives the reaction but also dynamically tunes the spin character
of active sites. The magnetic ordering of a catalyst—whether
ferromagnetic, antiferromagnetic, or paramagnetic, governs the
electronic structure at the surface and thereby influences the
adsorption energy of reaction intermediates. The interaction
between spin-polarized d-bands of a magnetic catalyst and the
molecular orbitals of an adsorbate is spin-sensitive. For instance,
in the OER, the adsorption strength of *OH or *O species can vary
considerably with different surface spin configurations, directly
affecting the catalytic overpotential.*” Furthermore, ferromag-
netic ordering promotes long-range electron delocalization,
enhancing electrical conductivity and enabling efficient charge
compensation during adsorption and desorption, a phenom-
enon that is less pronounced in spin-disordered systems (Fig. 1
and 2).

2.1 Thermodynamic and kinetic of spin effects in energy
storage systems

The dynamic aspects of spin-related phenomena focus on the
temporal evolution and rate-governed processes in energy
storage systems. Central to this is SP, which modulates the
efficiency of charge transport within battery electrodes by
influencing the alignment of electron spins under magnetic
fields. For instance, in LIBs, SP alters the kinetics of ion inter-
calation at electrode-electrolyte interfaces through selective
occupation of spin-dependent electronic states, thereby accel-
erating Li" migration and redox reactions.?®?° Similarly, in redox
flow batteries, SP enhances the reaction rates of electroactive
species by optimizing spin-aligned electron transfer pathways,
directly improving charge-discharge efficiency. A critical
mechanism involves spin-magnetic field interactions, where
phase shifts between spin states induce directional polariza-
tion, dynamically modifying material reactivity. This control
over reaction pathways enables the suppression of parasitic side
reactions, such as electrolyte decomposition, by steering

© 2025 The Author(s). Published by the Royal Society of Chemistry
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electron transfer toward desired channels. Furthermore, spin
manipulation strategies allow precise tuning of electrochemical
kinetics, including ion diffusion barriers and interfacial charge
transfer resistance, which collectively govern battery perfor-
mance metrics like charging speed and cycle durability. The
experimental complexity lies in real-time monitoring of spin
dynamics, requiring advanced spectroscopic techniques to
resolve transient spin states during operational conditions.””

Thermodynamically, spin effects are governed by energy
landscapes and equilibrium states in magnetic materials. The
energy disparity between spin-up and spin-down electrons in
magnetic fields dictates their population distribution, as
described by spin-dependent density of states. Ferromagnetic
materials exhibit spontaneous spin alignment below the Curie
temperature, maintaining a stable magnetization without
external energy input a metastable thermodynamic state.
Conversely, antiferromagnetic systems achieve energy minimi-
zation through antiparallel spin arrangements, nullifying
macroscopic magnetization until thermal fluctuations above
the Néel temperature disrupt this order. Paramagnetic
substances, with randomly oriented spins at equilibrium,
transiently align under external fields but revert to disorder
upon field removal, reflecting entropy-driven equilibrium
restoration. SP interfaces with thermodynamics by altering
activation energies of electrochemical processes; for example,
spin-polarized charge carriers reduce the thermodynamic
driving force for detrimental side reactions, stabilizing elec-
trode materials. Temperature-dependent spin behavior further
links thermal energy to magnetic phase transitions critical for
designing batteries operating across temperature ranges. The
thermodynamic stability of spin configurations also impacts
long-term material degradation, as misaligned spins may
induce lattice strain or electronic instability. Ultimately, the
interplay between spin-derived energy states and thermal
equilibrium governs the feasibility of spin-engineered materials
for high-efficiency, durable energy storage systems.

2.2 Thermodynamic and kinetic of spin effects in
electrocatalytic

The thermodynamic framework governing catalytic processes is
fundamentally shaped by energy equilibria and spin-mediated
interactions. A critical parameter is the reaction enthalpy
(AH), which is modulated by spin-related phenomena such as
spin-orbital coupling. These interactions reconfigure the elec-
tronic structure of catalytic active sites, reducing coulombic
repulsion between reactants (e.g., triplet-state oxygen) and the
catalyst surface. This adjustment lowers energy barriers for
electron transfer, as quantified by:

AH = AHy — AHgpy (4)

where AHg;, represents spin-dependent enthalpy shifts.
Concurrently, entropy (AS) plays a pivotal role, dictated by the
spin degeneracy (gspin) and configurational states (gC. ) of
electrons. Ferromagnetic catalysts exhibit ordered spin align-
ment (gspin = 1), yielding negligible entropy loss (AS.™ = 0),
whereas paramagnetic systems (gspin = 2) suffer entropy

Chem. Sci., 2025, 16, 21298-21333 | 21301
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penalties (AS.™ < 0), rendering them thermodynamically unfa-
vorable. The alignment of d-band centers in transition metals
further optimizes adsorption energies, adhering to the Sabatier
principle, where intermediate binding strengths balance reac-
tivity and desorption. For instance, covalent eg-orbital interac-
tions in perovskite oxides enhance oxygen electrocatalysis by
stabilizing intermediates. Magnetic moment correlations,
illustrated via volcano plots, reveal optimal catalytic activity at
specific spin states, underscoring the interplay between spin
ordering and thermodynamic efficiency. These principles
collectively highlight how spin configurations refine energy
landscapes to drive reactions toward equilibrium with minimal
energetic cost.>*°

Kinetic pathways in catalysis are governed by electron
transport efficiency and quantum spin interactions, which
dictate reaction rates and charge-transfer kinetics. Central to
this is the role of quantum spin exchange interactions (QSEI),
where electrons with parallel spins exchange orbitals to miti-
gate coulombic repulsion, stabilizing transient states during
redox steps. Ferromagnetic materials, characterized by long-
range spin alignment, exhibit enhanced conductivity due to
spin-polarized charge carriers and Fermi-level hole generation.
This facilitates rapid electron delocalization and reduces acti-
vation barriers for “spin-forbidden” reactions. In contrast,
antiferromagnetic systems suffer from suppressed QSEI and
increased Jahn-Teller(J-T) distortions, destabilizing anti-
bonding orbitals and impeding electron mobility. Experimental
studies on Ni,Fe; ,OOH reveal that ferromagnetic coupling
between HS Fe**and (LS) Ni** creates spin channels, enabling
efficient long-range charge transport and superior oxygen
evolution activity. Additionally, spin currents generated during
electron transfer influence interfacial kinetics, as spin-selective
adsorption alters intermediate binding dynamics. The five-step
catalytic cycle, diffusion, adsorption, electron transfer, desorp-
tion, and product diffusion. Is accelerated by external stimuli
(e.g., light, voltage), which modulate Fermi levels to align
molecular orbitals (HOMO/LUMO) with catalytic sites. By inte-
grating spin-dependent conductivity and quantum interactions,
these mechanisms elucidate how dynamic electron reorgani-
zation underpins catalytic turnover rates, bridging atomic-scale
spin phenomena with macroscopic reaction kinetics.**

2.3 Pivotal role of theoretical calculations in spin-related
electrocatalysis and electrochemical energy storage

Theoretical computational methods play an indispensable role
in elucidating the microscopic mechanisms of spin behavior in
electrocatalytic and energy storage materials. Advanced
computational techniques such as density functional theory
(DFT) enable researchers to quantitatively analyze the influence
of spin states on electronic structures, reaction pathways, and
energy barriers, thereby establishing a physical foundation for
spin engineering. This section systematically examines the core
contributions and cutting-edge advances of theoretical calcu-
lations in this field.

2.3.1 Theoretical construction and validation of spin-
dependent descriptors. The primary contribution of

21302 | Chem. Sci,, 2025, 16, 21298-21333
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theoretical calculations lies in establishing key descriptors that
bridge spin states and catalytic performance. Studies reveal that
the spin magnetic moment and orbital occupancy of transition
metal active centers directly determine the adsorption strength
of intermediates. For instance, DFT calculations demonstrate
that spin-coupling effects in Fe-Ni dual-atom catalysts signifi-
cantly reduce the spin magnetic moment of Fe 3d orbitals (from
1.88 up to 1.48 ug) while enhancing charge delocalization. This
optimizes the adsorption energy of *OOH/OH intermediates,
substantially boosting bifunctional ORR/OER activity.** Simi-
larly, in the OER, theoretical calculations confirm that e, orbital
electron occupancy serves as a fundamental descriptor: cata-
lysts exhibit optimal oxygen binding strength and reduced
reaction barriers when the e, occupancy of surface transition
metal ions equals 1. Yu et al. employed constant potential DFT
simulations to quantify how electrode potential governs spin-
state transitions in Fe-N, single-atom catalysts. Their work
directly links spin multiplicity to oxygen electrocatalysis
mechanisms. This spin reconfiguration, validated by projected
density of states (PDOS) and magnetic moment analysis, alters
intermediate adsorption energetics while activating distinct
catalytic sites. The study identified Fe-N bond elongation as
a structural descriptor that stabilizes HS states by reducing
orbital splitting energy. By correlating spin dependent reaction
pathways with overpotential dependent activities, this work
demonstrates how DFT uniquely resolves spin-activity rela-
tionships under electrochemical conditions. These established
descriptors provide quantitative criteria for the rational design
of spin-optimized catalysts.*®

2.3.2 Regulation mechanisms of external fields on spin
states. Theoretical simulations uncover the dynamic regulation
mechanisms of electric fields and magnetic fields on spin
states. In CoN, electrocatalyst systems, DFT calculations indi-
cate that electrode voltage can induce spin state transitions at
Co centers.** By altering surface charge distribution near the
zero-charge point, this spin-voltage coupling effect significantly
impacts the adsorption strength of oxygen-containing inter-
mediates, explaining the experimentally observed nonlinear
variation of electrocatalytic activity with potential. Furthermore,
studies on diatomic Co,/graphene systems reveal that applied
potential in acidic media can drive active centers to transition
among ferromagnetic, antiferromagnetic, paramagnetic, and
diamagnetic states, thereby switching CO electroreduction
pathways: preferential C, product formation (CH;CH,OH, the
reaction free energy difference AG = 0.50 eV) under alkaline
conditions versus predominant C; product generation (CH;OH,
AG = 0.27 eV) in acidic environments. Cao et al. demonstrate
that embedding ferromagnetic Fe;O, cores within NiFe-LDH
induces an exchange bias effect, regulating spin polarization
without external magnetic fields. DFT calculations reveal this
interfacial interaction drives electron transfer from Fe to Ni
sites (validated by charge density differences) and critically
enhances hybridization between Fe-3d and O-2p orbitals. This
orbital reconfiguration aligns electron spins, minimizes scat-
tering, and selectively promotes triplet oxygen generation from
singlet precursors during oxygen evolution, reducing the over-
potential to 196 mV at 30 mA cm ™ 2%

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.3.3 Correlation between spin dynamics and reaction
environment. Theoretical calculations have achieved break-
throughs in deciphering the correlation between reaction envi-
ronments (e.g., electrolyte pH, interfacial solvation effects) and
spin dynamics. Taking inverse perovskite nitride Cuq sNFe; 5 as
an example, DFT calculations combined with magnetic moment
analysis reveal that Ni doping triggers a Fe*" LS to HS transition,
inducing the formation of a paramagnetic (oxy)hydroxide surface
layer that markedly accelerates OER kinetics.*® In energy storage,
theoretical simulations of the MgPc@FCNT system in Li-S
batteries demonstrate that fluorine coordination induces spin
polarization at Mg sites, enhancing polysulfide adsorption
capacity (adsorption energy increased by ~40%). This occurs
through quantum spin exchange interactions that reduce elec-
tron repulsion, thereby accelerating Li,S nucleation kinetics.*”

2.3.4 Design and optimization of spin-engineered cata-
lysts. For dual-atom site catalysts (DASCs), theoretical calcula-
tions guide the formulation of spin engineering strategies: (i)
coordination environment modulation: altering N coordination
numbers or introducing heteroatoms (e.g., B, P, F) to adjust
crystal field splitting energy and influence spin-state di-
stributio;*” (ii) metal-support interactions: charge transfer from
supports (e.g., graphdiyne, carbon nanotubes) can reconstruct
the spin alignment of active center d-orbitals;* (iii) bimetallic
spin coupling: heteronuclear metal pairs (e.g., Fe-Ni) achieve
“softening” of spin polarization through antiferromagnetic
coupling or spin delocalization effects, balancing intermediate
adsorption strength.*®

2.3.5 Machine learning-accelerated high-throughput
screening. The emerging strategy of integrating Machine
Learning (ML) with DFT has significantly enhanced the design
efficiency of spin-optimized catalysts. By constructing
descriptor databases incorporating spin degrees of freedom
(e.g., d-band center, spin magnetic moment, orbital occupancy),
ML models can rapidly predict the spin states and catalytic
activities of thousands of candidate materials. For example,
high-throughput screening of dual-atom catalysts identified Cr-
Mn and Fe-Co combinations as theoretically superior to
conventional noble metal catalysts in overpotential due to
strong spin synergy effects.®®

Serving as a ‘digital laboratory’ for spin regulation research,
theoretical calculations not only deeply reveal the coupling
mechanisms of spin charge lattice interactions but also guide the
targeted design of high-performance catalysts. With advances in
strongly correlated electron calculation methods and quantum
dynamics simulations, the dynamic capture of spin behavior at
electrochemical interfaces will become increasingly precise,
ultimately accelerating the practical application of spin engi-
neering in energy conversion and storage.

3 Advanced characterization
techniques

Electron spin, as a microscopic phenomenon that cannot be
directly observed, is minuscule yet exerts a significant influence
on the functionality and properties of certain materials,
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necessitating in-depth research. Therefore, characterization
techniques capable of analyzing electron spin phenomena have
become indispensable tools in this field of study. Below, these
techniques are classified and described in detail, with the hope
of providing some assistance to readers in related fields.

3.1 Ex situ characterization techniques

3.1.1 X-ray photoelectron spectroscopy (XPS). XPS provides
insights into elemental composition, electronic states, and
energy levels, and can also indicate spin states in some mate-
rials. The 3s and 2p core-level splitting in transition metal
oxides reflects their spin state; generally, a larger splitting
magnitude (higher AE value, as shown in Fig. 3a) indicates
stronger spin-spin coupling, a greater number of unpaired
electrons, and consequently a more complex spin configura-
tion. For instance, Al doping increases the AE value of Co30,
from 3.61 eV to 4.92 eV, implying an elevated spin state induced
by strain modulation (Fig. 3a).*® Similarly, Yang et al intro-
duced non-spin polarized Mo atoms into the spin polarized
CoyN lattice, forming LS Co;MozN, manifested in XPS by
a decrease in the Co 2p energy difference from 15.05 eV to
14.89 eV.* Likewise, changes in ligands affect the spin charac-
teristics of the central metal ion; for example, the energy
difference follows the order AE(Co-CN) > AE(Co-Br) > AE(Co-
OAc) due to variations in the coordination environment of Co.**
However, caution is necessary regarding the reliability of XPS
calibration methods.*> When fitting data, the complex line
shape of 2p XPS spectra for 3d metal ions arising from elec-
tronic structure (particularly transition metal-ligand cova-
lency).** Furthermore, during data analysis, changes in binding
energy attributable to a “chemical shift” must be distinguished
from those caused by an “electronic shift” resulting from
changes in Fermi level of the sample.*

3.1.2 X-ray emission spectroscopy (XES). XES enables
probing of electronic structures, coordination environments,
and chemical states vig analysis of characteristic emission lines.
It is highly sensitive to spin state changes, particularly through
variations in the KB’ peak intensity, which is proportional to the
number of unpaired 3d electrons. For example, pressure-
induced transition of Fe** from HS to LS in MgSiO; perovskite
results in the disappearance of the KB’ peak.*” In addition, in
contrast to Na,Mn[Fe(CN)g] (Mn-HCF) and the high-entropy
metal doped hexacyanoferrates Na,Mn, sFeq 15Nip15CUg 15
Coy.15[Fe(CN)e] (HEM-HCF), the Fe in Na,Fe[Fe(CN)g] (Fe-HCF)
exhibits a higher spin state. This is corroborated by the
increased splitting of KB, ;-KB' and the enhanced intensity of
the KB’ signal, which stems from the two distinct coordination
environments of Fe-C=N and Fe-N=C.*® Similarly, intro-
ducing Mn ions elevates the spin states of cobalt oxides, man-
ifested by pronounced Kp' peaks (as shown in Fig. 3b) due to
symmetry breaking in the coordination environment.*
However, dopants differentially modulate spin states of distinct
metal ions within the same system. For instance, in Be-doped
Li; ,Mny ¢Nij ,0, cathodes, the KB intensity decreases for Mn
but increases for Ni.*® This contrasting reduction in Mn spin
state and enhancement in Ni spin state originates from Be
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(a) Co 3s XPS spectra of CozO4 with and without Al doping. Reproduced with permission.** Copyright 2024, Wiley-VCH. (b) Co KB XES

spectra of CoFeMnO YSNCs, CoFeO SSNCs, Coz04 SSNCs, CoO ref. and CozQ4 ref. Reproduced with permission.*® Copyright 2024, Wiley-VCH.
(c) Magnetic susceptibility of TM-DABDT with various Fe/Co ratios. Reproduced with permission.®® Copyright 2023, Wiley-VCH. (d) X-band EPR
for bulk and nanolayer samples at 2 K. Reproduced with permission.”® Copyright 2024, Wiley-VCH. (e) Mdssbauer spectra of Poly FePc.
Reproduced with permission.>* Copyright 2025, Nature Publishing Group. (f) The AFM topographical (left) and MFM (right) image of the CozO4
and Al-Coz04 samples. Reproduced with permission.3® Copyright 2024, Wiley-VCH.

doping induced optimization of the Ni-O-Mn super-exchange
pathway, facilitated by the dopant's pronounced electronega-
tivity and compact ionic radius. This dual modulation effect
simultaneously promotes transition of Ni ions to a HS config-
uration while stabilizing Mn ions in their LS state.

3.1.3 Vibrating sample magnetometer (VSM). Variable-
temperature magnetic susceptibility measurements can
directly quantify the number of unpaired electrons. By
analyzing the temperature-dependent magnetic susceptibility
curve (x-T), the effective magnetic moment (u.s) can be deter-
mined. This moment relates to the number of unpaired elec-
trons (n) through the following equation:**

n(n+ D (5)

Metr =

Different spin states can be further quantified and their
relative fractions in the material evaluated using this relation-
ship, thereby enabling assessment of qualitative spin-state
manipulation strategies:

Mer = V8Cuy (6)

Mefr =

gtp\/Sus(Sus + 1) Vias + Sms(Sws + 1) Vs + Sts(Sts + 1) Vis
)

21304 | Chem. Sci,, 2025, 16, 21298-21333

Vas+ Vms + Vis =1 (8)

In the aforementioned equations, C is the Curie constant,
determined by fitting the magnetic susceptibility (x = M/H)
above the paramagnetic transition temperature. It obeys the
Curie-Weiss law x = C/(T — ), where 6 denotes the Curie-Weiss
temperature. g is the Lande factor (g = 2), while Syg, Sus, and
Sis are the spin quantum number (S) of HS, mediate spin (MS)
and LS state, respectively. For example, in Fe*", Syg (=5/2), Sms
(=3/2), and Sis (=1/2). Vis, Vs, and Vi g are the volume fraction
for metal ions in HS, MS, and LS states, respectively.>?

For example, calculations based on x-T curves using Lan-
gevin theory reveal significant differences in the effective
magnetic moments of differently doped transition metal ion
coordination compounds, such as Fe-DABDT and Co-DABDT
(where DABDT = 2,5-diaminobenzene-1,4-dithiol).*® The
moments are 3.14 ug for Fe-DABDT and 2.08 up for Co-DABDT,
respectively. Furthermore, the number of unpaired electrons
(using eqn (1)) differs by over two-fold (3 for Fe-DABDT vs. 1.31
for Co-DABDT). This disparity primarily originates from the
nucleophilic reaction enabled by the magnetized Fe sites, which
accelerates the polarization of electron spin states. Building on
this foundation, the percentage distribution of different spin
states within the system can be further calculated. Taking the
FeN, model as an example: coordination with adjacent
graphitic nitrogen increases the ¢ from an initial value of 2.16
us (sample named as Fe-N,) to 5.82 up (sample named as Fe-
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N,/NGC-C), and the number of unpaired electrons rises from
1.4 to 4.8. Subsequent calculations (eqn (2)-(4)) reveal that the
proportion of HS surges from an initial 5.2% to 96.6% after
coordination with adjacent graphitic nitrogen (Fe-N,/NGC-C).**
This computational approach is applicable not only to single
metal ion systems but also to mixed metal ion systems, as
demonstrated by Du et al.>

3.1.4 Electron paramagnetic resonance (EPR). EPR spec-
troscopy probes spin states of transition metal ions by diag-
nosing g value anomalies, zero-field splitting (ZFS) effects, and
signal detectability patterns, where HS species typically display
broad resonances at high g values (e.g., g = 6.0 for HS Fe** (S =
5/2))** or characteristic splitting (e.g., six-line hyperfine struc-
ture at g = 2.0 for HS (S = 5/2) Mn>"),%® while LS ions exhibit
sharp signals near g = 2.0 (exemplified by LS (S = 1/2) Fe*" in
cytochrome c with g = [2.4, 2.2, 1.9]);% crucially, LS Co®" (S = 0)
remains EPR silent” whereas HS Co>" (S = 3/2) shows aniso-
tropic signals at g = 6.0 in hydrated complexes,®® though
detection often requires cryogenic temperatures to resolve ZFS-
broadened features in HS ions like Mn®* (S = 2, ¢ = 4.8 in
oxygen evolving complexes).*® For instance, the mechanical
exfoliation of the metal-organic layer induces partial spin
crossover at the Fe*" centers. As revealed by the X-band EPR
spectra at 2 K, the exfoliated nanolayers exhibit additional LS
signals at g, = 1.60, g, = 2.32 and g, = 2.81 alongside the
original peaks (g, = 1.81, g, = 2.07 and g; = 4.31) observed in the
bulk sample, confirming the occurrence of spin crossover
(Fig. 3c and d).** Inspired by natural systems, Zhang et al
constructed dual =Fe"---Fe"'= sites by selectively removing
bridging sulfur atoms from pyrite (FeS,). Subsequent room-
temperature oxidation during which a superoxide radical
intermediate is generated, enabled the synthesis of HS (S = 2)
Fe'Y=0, a highly reactive intermediate that accelerates
methane oxidation to methanol. To verify the successful
formation of the HS Fe"V=0 species, low-temperature (77 K)
EPR spectroscopy was employed. The spectrum exhibited
anisotropic signals with g-values of g; = 2.011, g, = 2.002, and g3
= 1.997, indicating the generation of a superoxide radical
intermediate and confirming the efficacy of the room-
temperature oxidation process. Furthermore, the presence of
significant ZFS provided additional evidence for the formation
of HS (S = 2) Fe'=0.%

In addition, characterizing HS metal ions requires cryogenic
temperatures (2-77 K) to suppress relaxation-induced broad-
ening, while high concentrations induce spin-spin coupling
that broadens spectral lines, which is the particular challenge
for solid-state samples.®” Although EPR qualitatively distin-
guishes spin states, it cannot directly quantify relative pop-
ulations; mixed-spin systems (e.g,, Fe**/Fe*") thus require
validation via complementary techniques like Mossbauer
spectroscopy. Consequently, EPR should be integrated with
magnetometry, XAS, or other methods to prevent misinterpre-
tations. For complex systems, multi-frequency EPR (X/Q/W-
band) is recommended to resolve anisotropic signatures.

3.1.5 Mossbauer spectroscopy. MoOssbauer spectroscopy
deciphers transition metal spin states by analyzing isomer shift
(6) variations, quadrupole splitting (AEQ), and magnetic
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hyperfine splitting patterns, where HS states exhibit larger 6 and
AEQ values than LS counterparts due to elongated metal-ligand
bonds and symmetry breaking. This is exemplified by HS Fe**
(Fe3AlL,Si30p5: 6 = 1.2-1.3 mms ', AEQ = 3.4-3.6 mm s ')® vs.
LS Fe*" (Prussian white: § = —0.1 mm s, AEQ = 0),% while Co
systems show contrasting HS Co®" (CoO: 6 = +0.5 mm s~ *, AEQ
~ 4.1 mm s )* and LS Co®" (K5[Co(CN)g]: 6 =~ —0.8 mm s *,
AEQ = 0.3 mm s~ ').* For Mn, HS Mn®* (Mn,05: § = +0.35 mm
s, AEQ = 2.8 mm s ')* displays J-T-distorted signatures
absent in LS states, though **Mn/*’Co measurements require
cryogenic conditions or magnetic fields to resolve spin-
crossover dynamics (e.g., 6 shift from 1.1 to 0.3 mm s ' in Fe-
phenanthroline complexes during HS to LS transition).*®
Despite 100% natural abundance of *°Co and *>Mn isotopes,
Mossbauer spectroscopy for Co/Mn systems exhibits lower
resolution than *’Fe due to higher y-ray energies. Quantitative
analysis necessitates spectral deconvolution using fitting soft-
ware (e.g., MossWinn) coupled with crystal field theory calcu-
lations. While this technique is indispensable for iron-based
materials, its application to Co/Mn systems requires integration
with XANES and magnetic measurements to mitigate misin-
terpretation risks.”

For example, Ni doping was performed on perovskite oxide
fuel electrode materials to obtain Sr,Fe; ;Nip,Mo, 506
(SFNM).”™ Mdossbauer spectroscopy found that the singlet state
representing HS Fe*" increased from 22.7% to 40.4%, while the
doublet state content representing HS Fe*" decreased from
77.3% to 59.6%. This change is mainly caused by the double
exchange effect coupling generated by Ni after doping. In
addition, to analyze the spin state of the active center Fe in Fe—
N-C catalysts, Mossbauer spectroscopy was used to test several
types of Fe-N-C catalysts (Fig. 3e).** It was found that high-
purity FePc and FePc-FePc samples showed a single charac-
teristic peak in the Mossbauer spectrum, with AEQ = 1.28 mm
s 'and 6 = 0.32 mm s~ . Combined with EPR (g = 4.0), the spin
quantum number of the active center Fe was determined to be S
= 3/2. The poly-FePc sample, however, showed two spin states:
the main component with AEQ = 2.31 mm s, attributed to the
Fe®'N, structure without ligand binding, accounting for 65%;
and the secondary component with AEQ = 0.63 mm s ', cor-
responding to the OH-Fe*'N, (S = 5/2) structure, accounting for
35%. This provides significant theoretical support for further
optimizing the catalytic performance of Fe-N-C catalysts.

3.1.6 Magnetic force microscopy (MFM). MFM is developed
based on Atomic Force Microscopy (AFM). It can detect the
magnetic field intensity on the material surface with extremely
high resolution, reaching the nanoscale, and is very suitable for
characterizing the spin properties of thin-film materials or two-
dimensional materials. MFM can distinguish different types of
spin materials by analyzing magnetic domain structures. For
example, ferromagnetic materials exhibit alternating bright and
dark stripe patterns (A¢ > 2°), ferrimagnetic materials show
blurred domain walls (A = 0.5-2°), and topologically struc-
tured magnetic materials have bright ring-shaped stripes (with
diameters ranging from 50 to 200 nm). HS materials display
significant phase differences (A¢p = 3-5°) due to strong
magnetic coupling, while LS signals are very weak (A¢ < 1°).
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Moreover, the latest quantum MFM technology can achieve
single-spin sensitivity at the up level. Therefore, MFM plays
a unique and indispensable role in analyzing spin-state varia-
tions in materials. For instance, Al-doped Co;0, shows brighter
MFM contrast (Fig. 3f), indicating increased surface spin states
due to strain-induced electron redistribution.*® Conversely,
applying alternating magnetic fields to Co, gMn, , MOF reduces
spin states, evidenced by MFM image darkening.”> MFM also
resolves thickness-dependent magnetic domains: ultrathin
Fe,Sg nanosheets (e.g., 9 nm) exhibit single-domain structures
(bright contrast), while thicker ones (e.g., 48 nm) form vortex-
like multi-domains (bright/dark alternation), convertible to
single-domain under external fields.”” For quantitative spin
analysis, integrated techniques like FFT decomposition are
essential, as demonstrated in CrBr;, where decreasing similarity
indices (£ = 0.26 to 0.13) with increasing thickness (190 nm to
300 nm) quantitatively confirm escalating domain complexity.”

3.1.7 Artificial intelligence (AI) and machine learning (ML).
The rapid development of AI and ML is profoundly trans-
forming research paradigms in the fields of electrochemical
energy storage and catalysis, particularly in understanding and
utilizing the key quantum property of spin. Contributions of Al/
ML now extend far beyond simple assistance, playing a signifi-
cant role in enhancing data analysis capabilities, accelerating
research processes, and optimizing experimental design.

In the area of electrochemical catalysis, AI/ML has been
instrumental in understanding and optimizing spin-related
processes at reaction interfaces. First, it enables high-
throughput, precise screening of spin catalysts. By construct-
ing machine learning models with spin density, local magnetic
moment, and other key descriptors, researchers can rapidly
identify single or dual-atom catalysts with high activity and
selectivity for target reactions from vast candidate materials.
For instance, AI/ML has efficiently screened single-atom
electrocatalysts for the two-electron oxygen reduction
pathway.®® Second, AI/ML can uncover the deep structure—
activity relationship between spin states and catalytic perfor-
mance. By quantifying the contribution of spin-related
descriptors to catalytic activity, ML models translate abstract
quantum effects into understandable design principles. For
example, successful analysis has shown how chiral structures
can enhance HER activity by inducing symmetry-breaking of
spin density,” and how spin-spin coupling regulates reaction
pathways and selectivity in CO, reduction processes.*®

In the realm of electrochemical energy storage, AI/ML
applications focus on designing and screening electrode mate-
rials that optimize reaction kinetics and stability based on
specific device requirements. The core contribution lies in the
synergistic optimization and device-driven material design.
Machine learning models simultaneously correlate the intrinsic
properties of materials (such as conductivity, stability, and spin
states of catalytic active sites) with macroscopic device perfor-
mance indicators (like energy density and cycle life), enabling
rapid identification of materials with multifunctional proper-
ties. For instance, high-throughput screening has been applied
to identify dual-atom catalysts that exhibit both high activity
(for OER/ORR) and excellent stability, directly aiding the
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development Zn-air
batteries.*

Achieving these cutting-edge research breakthroughs heavily
relies on the deep interdisciplinary integration of materials
science, electrochemistry, quantum computing, and data
science. A typical research paradigm is the construction of
a data-driven discovery closed-loop process, with the following
core steps: (1) data collection and construction: using first-
principles calculations (e.g., DFT), a comprehensive dataset is
generated containing material geometries, electronic structures
(such as energy bands and density of states), and spin proper-
ties (e.g.,, magnetic moments, spin occupancy), with target
properties being catalytic activity (such as overpotential and
reaction free energy) or battery performance (such as capacity
and stability). (2) Feature engineering: from raw quantum
chemistry data, physically meaningful descriptors are extracted,
selected, and constructed, including d-band centers, spin
density, and charge distributions of specific atoms—these
features serve as the crucial link between microscopic proper-
ties and macroscopic performance. (3) Model training and
validation: appropriate machine learning algorithms (e.g:,
random forests, neural networks) are used to train models with
the dataset, and their predictive accuracy and generalizability
are rigorously evaluated through methods such as cross-
validation. (4) Prediction, validation, and design: the trained,
high-performing models are then used to predict the perfor-
mance of a vast unknown material space, identifying the most
promising candidates. These predictions are subsequently
validated through first-principles calculations or experimental
synthesis, completing the loop from virtual prediction to actual
confirmation.

Within this complete technical workflow, feature engi-
neering undoubtedly stands as the pivotal, decisive step. This
process bridges the microscopic quantum world with macro-
scopic performance, and its significance is evident in the
following key aspects:*® First, it directly determines the upper
limit of machine learning model performance. Only by selecting
quantum descriptors with clear physical meaning, such as d-
band centers and spin occupancy, can the model capture the
essential laws governing spin effects. Next, it ensures the
physical interpretability of the model, transforming AI's
predictions from a black box into trustworthy design principles,
such as high spin density promotes hydrogen adsorption.
Finally, it significantly improves data utilization efficiency,
which is particularly critical for the high computational costs
associated with quantum chemistry data. Therefore, feature
engineering, based on profound physical insights, is the
fundamental reason why AI/ML can elevate itself from a data-
fitting tool to a scientific discovery engine in the field of
electrochemical spin research.

For instance, ML enables systematic understanding of the
intrinsic physicochemical properties of different atoms, the
diversity of active sites, and the influence of interactions
between sites on catalytic activity. In a study using dual-atom
site catalysts with various geometric features and atomic
combinations as a model system for Li-S batteries, a multi-view
ML framework was constructed, comprising three components:

of high-performance rechargeable

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) Schematic diagram of the multi-view machine learning framework structure. (b) Feature importance (%) of the final XGBR model based

on embedded module results. Reproduced with permission.** Copyright 2024, Nature Publishing Group. (c) DFT-calculated heatmap of oxygen
evolution reaction activity for various dopant-support combinations. (d) Overpotential of IrTiO,, IrTiO,_,, commercial IrO,, and 20% Ir/C at 10

mA cm™2

2025, AAAS.

a filter module, a wrapper module, and an embedded module.
Integrated analysis of limited data samples revealed that the
calibrated d-orbital electronic properties exert multi-factorial
influences on the performance of multi-site catalysts, thus
identifying these as key features correlated with catalytic
performance. This is primarily because orbital coupling
between sites can induce changes in the band center and
alterations in spin states, thereby affecting interactions with
polysulfides, leading to various Li-S bond breaking processes
and modifying lithium migration barriers (Fig. 4a and b).*

In addition, integrating DFT with Bayesian optimization can
accelerate the discovery of optimal doped catalyst models. This
study focused on rutile-type oxide supports, where doping was
achieved by substituting host atoms at coordinatively unsatu-
rated sites with guest atoms. The calculated results of the
theoretical overpotentials of each element across 66 different
binary oxides revealed that Ir-doped TiO, exhibits potential for
forming dual active sites. Further application of Gaussian
process-based Bayesian optimization underscored the impor-
tance of balancing Ir content and oxygen vacancy concentration
to achieve optimal performance. Subsequently, atomically
dispersed Ir on TiO, , nanorods (TiO, ,) was synthesized,
which demonstrated an overpotential of only 295 mV at 10 mA
cm 2, outperforming commercial IrO, (410 mV) and 20% Ir/C
(382 mvV). Its mass activity reached 807 A g~ Ir, which is 9

© 2025 The Author(s). Published by the Royal Society of Chemistry

. () Mass activity of IrTiO,, IrTiO,_,, commercial IrO,, and 20% Ir/C at 1.53 V versus RHE. Reproduced with permission.*¢ Copyright

times that of IrO, and 23 times that of 20% Ir/C. Although these
experimental results fell short of the simulated limit, where
a mass activity 40 times that of IrO, was predicted at an Ir
surface ratio of ~12.5%, this study provided critical insights
that helped narrow down the experimental design space
(Fig. 4c-e).*®

With the advancement of Al technology, machine learning-
assisted approaches are being applied to catalysis in increas-
ingly profound ways. In recent years, researchers have begun
integrating supervised learning, graph neural networks (GNNs),
and generative models to not only predict catalytic performance
but also to build interpretable structure-activity relationship
models, thereby advancing catalytic theory. For example,
a study employing unsupervised machine learning, using only
five experimental data points combined with generalized
parameter databases and problem-specific in silico data,
successfully identified phosphine ligands capable of forming
dinuclear Pd") complexes from a total space of 348 ligands, with
experimental verification demonstrating superior performance
over conventional Pd©/Pd™ systems.”®

Although the aforementioned techniques each have their
unique advantages in characterizing the spin states of materials
or reactions, they still face certain limitations, as summarized
in the table below.
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Core indicators
for

Characterization characterizing  Technical Challenges for
techniques spin advantages in situ study
XPS Energy Provides direct ~Limited to
difference AE chemical state  surface
between main  information; detection;
and satellite line highly surface- difficulty
sensitive; maintaining
applicable to vacuum
various solid compatibility
materials with
electrochemical
environments
XES Intensity ratio of High energy Weak
KB, 3/Kp' peaks resolution; fluorescence
(HS vs. LS states) probes occupied signals;
orbital radiation
information; damage and
distinguishes absorption by
coordination window
atoms with close materials;
atomic numbers complex cell
design
requirements
VSM Unpaired Direct and highly Non-standard
electrons; sensitive cell
macroscopic measurement;  configurations
magnetization  determines may affect
changes saturation electrochemical
magnetization  performance;
and hysteresis ~ magnetic
loops background
interference
from cell
components or
external fields
EPR g value, High resolution Microwave
hyperfine for paramagnetic absorption by
structure and the centers; real- metallic or
radical time in situ electrolyte
concentration  monitoring components; cell
geometry
constraints
imposed by
resonator design
Mossbauer Isomer shift Provides highly Isotope
spectroscopy ¢ and precise local enrichment
quadrupole structural and  required (e.g.,
splitting(AEQ)  electronic >’Fe); possible
information; deviation of
nondestructive  reaction
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3.2 In situ characterization techniques

While ex situ characterization focuses on revealing electronic
spin properties of synthesized materials and their causal rela-
tionships with preparation processes, ultimately establishing
structure-activity correlations through electrochemical perfor-
mance. However, the advancement of in situ electrochemical
techniques is pivotal for probing dynamic electronic structure
evolution during interfacial electron transfer. This capability
proves transformative for elucidating energy storage and cata-
Iytic mechanisms. Unlike ex situ methods, implementing in situ
measurements requires custom-engineered electrochemical
cells tailored to instrument response characteristics and
material-specific spectral signatures, while rigorously miti-
gating signal interference from ancillary components (e.g., cell
materials, current collectors). The following synthesizes break-
throughs in in situ methodologies and their mechanistic
revelations.

3.2.1 In situ magnetic measurements. Real-time moni-
toring of magnetic susceptibility enables tracking of valence
changes in transition metal ions during electron transfer
processes, thereby elucidating energy storage mechanisms. The
measurement system (Fig. 5a) mainly consists of a Physical
Property Measurement System (PPMS) integrated with a VSM
module and an electrochemical testing unit.”” The in situ cell
must exhibit excellent electrochemical performance, compact
size, and flexibility; therefore, a thin-film pouch cell encapsu-
lated with polyethylene terephthalate (PET) is employed. To
minimize the signal-to-noise ratio, the magnetic field is aligned
parallel to the copper foil, and background signals (e.g,
magnetic moments from the copper foil, lithium metal, and
PET film) are subtracted during data processing.”® Using this
method, it's possible to give interesting insight into the expla-
nation of the excess capacity of transition metal oxides than
theoretical values in battery system. Li et al. utilized this device
to reveal anomalous electron filling in 3d orbitals during deep
discharge, directly correlating with performance enhancement
through an abrupt drop in magnetic susceptibility at low-
voltage plateaus. Using Fe;O, nanoparticles as an example,
during cycling between 0.01 V and 3 V, the magnetic suscepti-
bility followed a cyclic trend, with the first charge-discharge
cycle differing due to irreversibility. Specifically, during the first

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06699a

Open Access Article. Published on 06 November 2025. Downloaded on 2/13/2026 3:53:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

Potentiostat

- = = insulated copper wire

= = = = sample holder

2 straw

S glass tube ----

Magnetic moment (uB Fe™)

First

A8
V(NG

0 100,000

Second

Voltage versus lithium (V)

T
200,000

=]

¥

@»-- Li anode

View Article Online

Chemical Science

100

80

60

(,_6 nwa) yuawow onsubeyy

Fourth

Fifth

300,000 400,000 500,000

Time (s)

Fig. 5

(a) Scheme of in situ cell used for operando magnetometry measurements in PPMS magnetometer. Reproduced with permission.”

Copyright 2022, American Chemical Society. (b) In situ magnetometry in an FesO,4/Li cell as a function of electrochemical cycling under an
applied magnetic field of 3 T. (c) Formation of a space charge zone in the surface capacitance model for extra lithium storage. Reproduced with

permission.” Copyright 2021, Nature Publishing Group.

cycle, the magnetism decreased from 3 V to 0.78 V, increased
from 0.78 V to 0.45 V, decreased again down to 0 V, remained
low until 1.4 V, and finally increased up to 3 V (Fig. 5b). These
changes were correlated with structural transitions: from Fe;0,4
spinel to FeO-Li,O composite, to Fe reduction, and finally back
to Fe;0,4. The study confirmed that additional storage capacity
originated from intermediate spin transitions and LiO, surface
storage formation (Fig. 5¢).”° Notably, the magnetization change
(16.3 emu g ') measured via in situ magnetometry, combined
with spin polarization ratios, yielded a calculated additional
capacity of 176-213 mAh g~ '. This closely matches the elec-
trochemically measured value (229 mAh g~ ). Moreover, similar
magnetic responses were observed in diverse transition metal
compounds (e.g., CoO, NiO, FeF,, Fe,N), demonstrating that
space charge capacity is a universal mechanism in transition
metal compounds.®*** Crucially, particle size directly correlates
with the additional capacity attained, providing novel design
strategies for high-performance materials.

3.2.2 In situ Mossbauer spectroscopy. For in situ Mossba-
uer spectroscopy cells, electrolyte content should be minimized
to avoid signal interference, and active materials should be

© 2025 The Author(s). Published by the Royal Society of Chemistry

prepared with enriched *’Fe isotopes to enhance resonance
signals. Additionally, windows should use materials with weak
y-ray absorption, such as poly(methyl methacrylate) (PMMA) or
Be, to prevent excessive y-ray loss. For example, a cell suitable
for LIBs (Fig. 6a), constructed with a Swagelok tube as the main
body, PMMA as windows, and internal assembly in the order of
lithium metal, separator, active material, and Be metal,
successfully detected the conversion of FeSn, anode with Li,Sn,
and Fe during charge-discharge processes. In addition, its
advanced spectral fitting capabilities further allow detailed
analysis of dynamic changes in the relative proportions of
different oxidation and spin states during reactions, providing
breakthrough insights into the mechanisms of electrochemical
energy storage and electrocatalysis.®**

For instance, Wang et al. revealed through in situ Mossbauer
spectroscopy that in Prussian blue cathode materials for
sodium-ion batteries, the oxidation of HS Fe*' to LS Fe*"
dominates the initial charge capacity, while incomplete oxida-
tion of LS Fe*" during later charging stages leads to irreversible
reactions between residual LS Fe*" and water-coordinated HS
Fe*', ultimately causing capacity loss (Fig. 6b and c).*’

Chem. Sci., 2025, 16, 21298-21333 | 21309
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Additionally, in electrocatalysis, Wang et al. utilized in situ
Mossbauer spectroscopy and found that the content of in situ
generated HS Fe'" in NiFe-based (oxy)hydroxide (NiFe, ,-O,H,)
as an OER catalyst is positively correlated with the current
density (reaction performance) (Fig. 6d), which further deepens
the understanding of the mechanism of NiFe-based
electrocatalysts.®

3.2.3 In situ EPR. The design of the in situ EPR setup aims
to enhance the EPR signal from the test sample while mini-
mizing interference from background and other signals.
Simultaneously, it strives to maintain the electrochemical
response as close as possible to that observed in testing

View Article Online

Review

environments like button cells, thereby ensuring the electrode
undergoes a comprehensive energy storage or catalytic mecha-
nism process. However, differences in EPR responses among
various electrode materials necessitate specific design adapta-
tions for the apparatus, which has thus far hindered the
commercialization of standardized in situ fixtures. For instance,
Hu et al. rapidly synthesized L-MnO, via laser thermal shock (83
s) and applied it as a supercapacitor electrode. In situ EPR, with
a capillary based three electrode EPR cell (Fig. 7a and b),
monitoring during charge-discharge revealed systematic
changes in Mn”* concentrations, with signal intensification
between 0.4-0.58 V (charge) and suppression between 0.45-
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(a) Modified Swagelok electrochemical cell for in situ Mossbauer measurents. The cell (a) is composed of PFA cell body (1), nut (2), PFA

sealing ferrules (3), and stainless steel plunger (4). The junction around the electrodes (b) is formed by PMMA windows (5), lithium disc (6), Be
based connector (7), Whatman separator (8), and active material (9). Reproduced with permission.®® Copyright 2013, American Chemical Society.
(b) Operando *’Fe Mdssbauer spectra of monoclinic Prussian blue (M-PB) and corresponding charge/discharge profiles for two cycles. (c)
Changes of LS Fe, HS Fe?* and HS Fe* for two cycles. Reproduced with permission.®” Copyright 2023, Elsevier. (d) The content of Fe** and
corresponding electric current determined at different applied potentials. Reproduced with permission.®® Copyright 2021, Elsevier.
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Reproduced with permission.®® Copyright 2024, Wiley-VCH. (f) In situ EPR spectra of piezo-catalytic reaction. Reproduced with permission.®®
Copyright 2024, Wiley-VCH. (g) Cell design for operando measurements using XES. Reproduced with permission.®? Copyright 2024, American
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Copyright 2025, American Chemical Society.

0.3 V (discharge), associated with Na" intercalation and Mn
valence changes (Fig. 7c-e). Compared with unmodified MnO,,
L-MnO, exhibited enhanced redox activity and improved Na'/
electron transport due to optimized spin state.*® Xu et al. doped
Mn>" into CsPbBr; perovskites for lithium-oxygen (Li-O,)
battery cathodes, achieving low overpotential (0.4 V) and 96.3%
energy efficiency under magnetic and light stimulation. In situ
EPR showed time-dependent spin polarization enhancement
under light, confirming spin-state contributions to catalytic
improvement.*® In addition, in electrocatalysis, in situ EPR is
often used to track changes in intermediates and reaction
mechanisms during electrochemical reactions. Zhu et al. used
a self-built photo/electrocatalytic in situ EPR test device to track
the signal changes of the two-electron ORR producing H,0,
during electrocatalytic, photocatalytic, and piezoelectric

© 2025 The Author(s). Published by the Royal Society of Chemistry

catalytic reactions. It was found that the ORR reaction paths of
photocatalysis and piezoelectric catalysis are basically the same,
i.e., superoxide radicals (O,") first appear, then form hydro-
peroxyl radicals (*OOH), and finally generate H,0, (0,~ —
*OOH — H ,0,) (Fig. 7f); while the reaction path in electro-
catalysis only involves *OOH and *H, with no detection of O,
(*OOH — H,0,). This indicates that the mechanisms of these
two types of ORR reactions are different, and the piezoelectric
catalytic process is closer to the photocatalytic reaction process,
so its mechanism is more similar to the band theory in the field
of photocatalysis.*

3.2.4 In situ XES. The core design of the in situ XES cell
(Fig. 7g) involves several key considerations: selecting a window
material with low absorption for both incident X-rays and
emitted fluorescence (e.g., quartz, Kapton film, or Perspex);”

Chem. Sci,, 2025, 16, 21298-21333 | 21311
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Fig. 8 (a) Schematic diagram of the spin state tuning manner. (b) Steady-state ORR polarization plots of Ti4N3Cl,/FePc, TisNsO,/FePc, FePc and
20%Pt/C performed in 0.1 m KOH at room temperature with a rotation rate of 1600 rpm, and their corresponding (c) TOF values of Ti4N3CL/
FePc, Ti4sNsO,/FePc, FePc, and 20% Pt/C. Reproduced with permission.®® Copyright 2024, Wiley-VCH. (d) Schematic illustration of bond
formation between the d-band center of catalyst surfaces in different spin states and the adsorbates. () Comparison of electrocatalytic activity
and (f) product selectivity for the nine 2D Co-MOFs. Electrocatalytic selectivity between HER and ORR on the Co-MOFs. Reproduced with
permission.®” Copyright 2023 American Chemical Society. (g) Scheme of Fe atomic clusters on Fe—N-C matrix is achieved by a developed
pyrolyzing method of double-ligand zinc-based zeolite framework. (h) Electrocatalytic ORR performance of the catalysts. (i) LSV curves of the
resultant catalysts and Pt/Cin 0.5 M H,SO4 (0.1 M HCLO,4 for Pt/C), and Plots of E, E4,, limiting current density, kinetic current density, and transfer
electron number in 0.5 M H,SO,4. Reproduced with permission. () Comparison of ORR activities of reported atoms and clusters in 0.1 M KOH.*°
Copyright 2024, Wiley-VCH. (j) LSV curves of FePc/Eu,Os, FePc, Eu,O3, and CNTSs. (k) lllustration of the proposed f-p—d gradient orbital coupling

effect in FePc/Eu,Os. Reproduced with permission.’*® Copyright 2025, Wiley-VCH.

excluding metal components containing elements such as Cr or
Fe in the cell body to minimize stray signals, with optional
matte-finishing of the inner walls to reduce specular X-ray
reflection; and preferring carbon-based or organic adhesives
(e.g., polytetrafluoroethylene emulsion) for sealing to avoid
fluorescence interference from impurities. Furthermore, the
element-specific nature of XES provides in situ measurements
with a distinct advantage in tracking the spin-state evolution of
specific elements.”

For example, Chen et al. used in situ XES to detect the spin
state evolution of CoFe,0, (CFO) catalysts during OER with or
without external magnetic field (0.4 T) intervention. They found
that the spin states of Fe and Co gradually increased in the
voltage range of 1.4-1.8 V, and the variation amplitude of the
spin state was larger under the intervention of an external
magnetic field. This explains, from the perspective of spin state,
the significant impact of the external magnetic field on the CFO
catalyst during the OER process, which greatly enhances the
catalytic activity of this catalyst (Fig. 7h and i).>* Juan Herranz
et al. also used in situ XES to study the variation of the spin state
of Fe-N-C catalysts with voltage during electrochemical catal-
ysis. They found that when the voltage changed from 0.9 V to
0.2 V, the average spin state of the catalyst decreased from 0.8 to
0.55, and when the voltage recovered, the spin state also

21312 | Chem. Sci,, 2025, 16, 21298-21333

increased and returned to its original state. This indicates that
the spin state of this catalyst exhibits high reversibility with
voltage changes, which provides great help for in-depth
understanding of the dynamic evolution of the electronic
structure of its active sites.”* Furthermore, in electrochemical
energy storage, Faisal M. Alamgir et al. probed the spin state
changes of four different LIB cathode materials (LiCoO, (LCO),
Li[Niy/3C04/3Mn, 3]0, (NMC111), Li[Ni C0o.Mng 4]0,
(NMC811), and LiFePO, (LFP)) during charging using operando
XES. They observed distinct variations among the four mate-
rials: the intensity of the KB, ; peak gradually increased in LCO
and NMC111 during charging, indicating enhanced spin states,
whereas it decreased in NMC811 and LFP, suggesting dimin-
ished spin states. These findings reveal that different LIB
cathode materials undergo distinct mechanisms of electronic
structure changes during charge-discharge processes.”

4 Spin electrochemical materials and
their applications
4.1 Electrocatalysis

With the continuous deepening of the basic research on spin
effects in electrocatalysis, studies based on spin not only
analyze reaction pathways and reaction intermediates from the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) Schematic illustration of the synthesis process for Cos04 @NiFe-LDH/CC. (b) Slab model of NiFeOOH@Co304 (c) specific OER activity

of Co304/@NiFe-LDH/CC normalized by the corresponding electrochemical surface area and catalyst mass loading at the potential of 1.48 V vs.
RHE. (d) LSV curves of as-prepared samples with pure carbon cloth (CC) and RuO,/CC as a comparison. Reproduced with permission.***
Copyright 2024 American Chemical Society. (e and f) LSV curves at a scan rate of 5 mV s~ of MnFe,O,4 and Ni/MnFe,O,4 with different Ni
loadings. Chronoamperometry test of Ni 35%/MnFe,O4 at 1.50 V versus RHE. Reproduced with permission.*? Copyright 2024 Wiley-VCH.

thermodynamic perspective, but also analyze phenomena such
as electron transfer from the kinetic perspective. Given the
differences in reaction conditions, the mechanism of spin
effects in different electrocatalytic systems needs to be system-
atically classified and sorted out.

4.1.1 Electrocatalytic oxygen reduction reaction (ORR). The
ORR is a pivotal electrochemical process involving multi-step
electron transfer and plays a central role in enabling efficient
clean energy conversion technologies. Crucially, the spin state
of catalysts determines the adsorption energies of key inter-
mediates, thereby governing ORR performance. Optimization of
ligand structures around central metal ions, physical field
induction, and heterojunction-based gradient orbital coupling
represent viable approaches for spin state manipulation.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Zhang et al. synthesized chlorine-terminated TiyN;Cl, and
oxygen-terminated Ti,N;O, MXenes, functionalizing them with
iron phthalocyanine (FePc) to form model catalysts with well-
defined FeN,—Cl-Ti and FeN,-O-Ti structures. Temperature-
dependent magnetization (M-T) measurements confirmed
that the FeN,-CI-Ti structure in Ti,N;Cl,/FePc induces a tran-
sition from a LS state (t,,’e,’) to an intermediate-spin state
(t2g"ey"), while FeN,~O-Ti in Ti,N;0,/FePc showed ineffective
modulation (Fig. 8a).°® This intermediate spin state enhanced
ORR performance: Ti,N;Cl,/FePc achieved a half-wave potential
(E12) of +0.91 V vs. RHE, exceeding Ti4N;0,/FePc by 10 mV, FePc
by 20 mV, and 20% Pt/C by 60 mV (Fig. 8b and c). It also
exhibited a turnover frequency (TOF) of 0.288 e~ s ' site '
(double than that of Ti,N;0,/FePc and FePc), a Tafel slope of

Chem. Sci., 2025, 16, 21298-21333 | 21313
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(a) Scheme of FeW oxides. (b) LSV curves of FeWO-T and RuO, in 1 M KOH. Reproduced with permission.’*®* Copyright 2024 Elsevier B.V.

(b) Polarization curves of NiFe-LS, NiFe-HS, NiFe—KOH and V—-NiFe. (c) Polarization curves of NiFe-LS, NiFe-HS, NiFe—KOH and V-NiFe. (d)
Summarized overpotentials at current densities of 50, 100, and 500 mA cm~2 for NiFe-LS and some representative NiFe-based catalysts. (e)
Schematic illustration of the synthesis process for NiFe-LS. Reproduced with permission.’** Copyright 2024 Wiley-VCH. (f) lllustration of the
evolution of Fe**, Co?*, and Ni?* spin state and O—M-O spin channel; and differential charge diagram and detailed of central cations for CFL,
NFL, and NCFL. (g) Polarization curves of CFL, NFL, NCFL, and CP. (h) Overpotential at 10 mA cm~2 and 100 mA cm~2 of CFL, NFL, and NCFL.
Reproduced with permission.*®> Copyright 2023 American Chemical Society.

39.18 mV dec ', and a 4-electron pathway selectivity (H,O, yield
=~ 4.66%). The spin-ORR linkage, established via DFT calcula-
tions, shows that the intermediate spin state in Tiy,N;Cl,/FePc
facilitates electron filling in the antibonding Fe 3d and O, ©*
orbitals, optimizing O, activation. This reduces the energy
barrier for the rate-determining step (O,* — OOH¥) and results
in a lower overpotential (n = 0.47 V) compared to FePc (n = 0.85
V) and TiyN;0,/FePc (n = 0.90 V). Charge density differences
confirm enhanced electron transfer to adsorbed O, (0.53 ™) in
TisN;Cl,/FePc, thus, improving ORR kinetics. In addition to the
important role of functional groups in tuning spin states, the
regulation of spin states through organic ligands in MOF
materials can also significantly enhance their performance. Wei
et al. conducted a systematic DFT study to investigate how
organic ligand engineering modulates the spin states of Co
active sites in 2D Co-MOFs and enhances their electrocatalytic
performance toward the ORR.*” By varying the ligand skeletons
(benzene, triphenylene, trinaphthylene) and functional groups
(-NH,, -OH, -SH), nine Co-MOFs were designed. The tri-
phenylene and hydroxyl (—OH)-2DCo-MOFs, Co-20 exhibited
the highest magnetic moment (1.12 ug), indicating a HS state
that correlates with enhanced ORR activity. This high spin
configuration shifted the d-band center and promoted
moderate adsorption of key intermediates, especially *OH,
which is critical for the potential-limiting hydrogenation step.
Co-20 achieved an ultralow overpotential of 0.23 V, out-
performing Pt(111) and most reported catalysts (Fig. 8d). Elec-
tronic structure analysis (including PDOS and COHP) revealed
that spin-state modulation altered Co-O bonding characteris-
tics, with optimal Co 3d-O 2p orbital overlap (Fig. 8e and f).
Yu et al. examined multiple Fe-N, embedded carbon cata-
lysts (Fe-N,-C, Fe-N,-C-O, Fe-N,-C-OH, and Fe-N,-~C-OOH)
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to elucidate spin effects on key ORR intermediates, which
revealed that the Fe-N,~C-OH structure exhibited an asym-
metric spin distribution at the active site, where the spin density
localized on the Fe atom and the adsorbed *OH intermediate
was antiparallel.”® This antiparallel spin alignment facilitated
favorable orbital hybridization, leading to optimal *OH
adsorption strength, which is critical for lowering the over-
potential of the rate-limiting step in ORR. The PDOS indicated
that this spin-state configuration altered the Fe 3d orbital
occupation, shifting the d-band center and enhancing bonding
interactions with *OH. As a result, the Fe-N,~C-OH system
displayed the lowest overpotential (0.38 V) among the studied
models.

Spin control can also be achieved by introducing clusters
around monodisperse atoms. Zhang et al. conducted charac-
terizations such as hysteresis loops and ZFC-T magnetization
rates to confirm that the Fe clusters reduced the 3d electron
density and increased the effective magnetic moment of the
single-atom Fe sites.” The performance enhancement was
achieved by implanting Fe atomic clusters near monodispersed
Fe-N, sites in an N-doped porous carbon matrix (Fig. 8g-i). This
caused the electron spin-state of the monodispersed Fe active
sites to transition from LS (tx5°e,”, tegr = 0.9 up) to medium spin
(MS, trg’ey', Mot = 3.6 ). DFT calculations indicated that the
MS state facilitated electron filling in the o* orbital (d.),
weakening *OH adsorption by reducing charge transfer from
Fe-N, to *OH and lowering the desorption energy barrier (from
0.776 to 0.532 eV). This spin-state manipulation optimized OH™
desorption, the rate-determining step, thereby boosting ORR
activity and enabling efficient zinc-air (Zn-air) batteries.

Additionally, it is also possible to manipulate spin state by
engineering heterostructures to generate qualitative gradient

© 2025 The Author(s). Published by the Royal Society of Chemistry
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spin orbital coupling. Cheng et al. introduced an f-p-d (Eu-O-
Fe) gradient orbital coupling strategy by integrating FePc with
Eu,0; to enhance the spin state of atomic Fe sites. This
coupling shifted the Fe center from a LS to an MS state,
increasing the occupancy of electrons on the g orbitals and
generating more unpaired electrons.'® The elevated spin state
optimized the adsorption/desorption of oxygen intermediates:
bond order analysis revealed stronger binding of OOH* (bond
order: 1.5 vs. 0.5 for FePc), weakening the O-O bond to facilitate
dissociation. DFT calculations confirmed reinforced OOH*
adsorption (1.37 eV vs. 1.32 eV) and significantly reduced OH*
adsorption energy (0.51 eV vs. 1.50 eV) accelerating OH*
desorption. These balanced interactions lowered the ORR
energy barrier to 0.51 eV (vs. 1.17 eV for FePc) and shifted the
rate-determining step from OOH* — O* to O* — OH*. The f-
p-d coupling also narrowed the bandgap (1.02 eV vs. 1.07 eV)
and improved charge transfer, further reducing kinetic barriers
(Fig. 8j and k). The ORR performance of the relevant catalysts is
summarized in Fig. 8l.

4.1.2 Electrocatalytic oxygen evolution reaction (OER). For
OER, its slow kinetic process is the main factor limiting the
efficiency of all-oxygen reduction. Therefore, designing catalysts
from the perspective of spin to improve the performance of OER
is of great significance for enhancing the efficiency of overall
water splitting.

Heterojunction construction represents a relatively practical
and effective strategy for achieving spin-state manipulation,
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thereby regulating the energy barriers of intermediate species to
enhance catalytic performance. For example, the antiferro-
magnetic Co;0,/NiFe-LDH coupling interface triggered spon-
taneous magnetic enhancement via strong double exchange
interactions, generating polarized spin channels that accumu-
lated spin-aligned electrons to lower the triplet O, formation
energy barrier.”* This design achieved a 26-fold intrinsic OER
activity boost over pristine NiFe-LDH at n = 0.25 V, with
experimental/theoretical studies confirming interface induced
spin electron ordering optimizes charge transfer and weakens
OOH* intermediate adsorption (Fig. 9a-d). Yang et al. achieved
spin-state modulation in Ni/MnFe,0, heterojunctions through
interfacial charge redistribution stabilizing HS Ni**, which
optimizes oxygen intermediate adsorption.'” This design
delivered an ultralow 261 mV overpotential at 10 mA cm™ > and
a 38.3 mV dec ' Tafel slope, with DFT confirming reduced
energy barriers via spin-polarized d-p coupling. The approach
further enabled Zn-air batteries yielding a 1.56 V open-circuit
voltage, establishing spin-engineered catalysts for ampere-
level applications (Fig. 9e and f).

Crystallinity significantly influences spin properties, as
demonstrated by Wang et al.'s FeW oxides (FeWO-T).'** Results
indicate variations in crystallinity modulate electronic interac-
tions within Fe-W-O systems and M-O bond lengths, collec-
tively governing spin states. The LS FeWO-450, synthesized at
the critical amorphous-to-crystalline transition temperature,
optimizes OER intermediate adsorption by flattening reaction
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free-energy landscapes, achieving exceptional performance (289
mV@10 mA cm >, 41.6 mV dec™ " Tafel slope). DFT results show
low-crystallinity A-C-WO3/Fe,(WO,); exhibits the highest
magnetic moment (63 ug), confirming its stabilized LS state that
enables balanced oxygen-intermediate bonding to accelerate
OER kinetics. Similarly, disrupting crystalline structures via
doping/etching strategies introduces defects that modulate
metal spin states (Fig. 10a and b). As demonstrated in Fe-
modified NiFe-LDH, excessive binding between HS Fe’
(t2¢’e,’) and oxygen intermediates slows reaction kinetics.'*
Deliberately engineered defects disrupt Fe coordination envi-
ronments, enhancing d-orbital splitting to stabilize LS Fe®*
(tz¢’e,”). This optimizes adsorption of oxygen intermediates
(OH*, O*, OOH®), shifting the rate-determining step from O*
— OOH* on HS-Fe*" to OH* — O* on LS-Fe**, thus reducing
energy barriers. Concurrently, accelerated formation of high-
valent Ni species synergistically enhances OER kinetics
(35.93 mV dec™ ' Tafel slope). The resulting NiFe-LS catalyst
achieves a mere 244 mV overpotential at industrial-grade 500
mA cm ? (110 mV lower than NiFe-HS), outperforming most
reported NiFe-based catalysts (Fig. 10c-e).

Complementing architectural approaches, real time spin
state tuning is achievable via external magnetic fields without
modifying catalysts. For example, Lin et al. demonstrated that
ternary NiCoFe-LDH achieved a low overpotential (230 mV at 10
mA em ™), further reduced to 206 mV under a 700 mT magnetic
field, with the highest magnetic response (—34.8 mv T~ 1).1% As
the spin-orbital coupling at Fe sites facilitated O-O bond
formation, while the Zeeman effect optimized charge transfer.
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Similar, the (Ru-Ni)O,@NF catalyst achieved 200 hours stability
at 286 mV (1 A cm ?) under a 0.4 T magnetic field. This
exceptional durability originates from dual heterojunction
engineering: intrinsic tuning via Ni-doped RuO, aligning Ru
spins to facilitate O-O coupling, and interfacial ferromagnetic
RuO,/antiferromagnetic NiO coupling enabling spin-selective
charge transfer. Theoretical analysis confirms that the result-
ing spin polarization minimizes intermediate spin-flip energy
barriers while strengthening Ru-d/O-p hybridization (Fig. 10f-
h). Huang et al.'s study of CoFe,O, (CFO) further reveals spin
order modulation under magnetic fields. Under a 0.4 T field,
spin-selective electron transfer from OH ™ reactants to Co/Fe 3d
orbitals was enhanced, with Co®" exhibiting greater sensitivity
due to its dominant role in spin-aligned M(OH)-O(1)-M(OH)
pathways that enable triplet oxygen formation (Fig. 11a-d)."*®
This field-amplified ferrimagnetic ordering optimizes OER
kinetics by promoting spin-polarized charge transfer through
selective atomic channels, while M(OH)-O(2)-M(T_d) sites
remain spin-inactive.

Li et al. boosted OER performance via dual spin polarization:
intrinsic (Ni-doped RuO, aligns Ru spins, easing O-O coupling)
and interfacial (FM RuO,/AFM NiO coupling enables spin-
selective charge transfer).'®” Under 0.4 T, (Ru-Ni)O,@NF ach-
ieves 286 mV@1 A cm > with 200 hours stability, supported by
high coercivity and low resistance. Theoretical study shows spin
polarization minimizes intermediate spin-flip energy and
strengthens Ru-d/O-p hybridization, slashing reaction barriers,
as shown in Fig. 11c-g.
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permission.’°® Copyright 2025 American Chemical Society. (d) Schematic of the RnCo/RhGd IHA synthesis process. (e) LSV curves of RhCo,
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for corresponding catalysts. (h)Mass activities at overpotentials of 10
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4.1.3 Electrocatalytic hydrogen evolution reaction (HER).
The HER as the complementary half-reaction to water oxidation
has been widely studied due to the high energy density of its
product. Research into spin states is critical for elucidating the
HER mechanism. Catalyst heterointerfaces, defects, and
vacancies significantly modulate material spin density, as
demonstrated by Meera et al.'s CoOO-Co03;0,/rTGO@N;iP system.'*®
The CoO (Co*" ty,’e,”)/C030, (Co*" ty,°e,’) heterointerface
creates complementary active sites: electron-deficient Co®*
facilitates H,O dissociation (Volmer step), while electron-rich
Co®" promotes H' adsorption/H, release (Heyrovsky step).
Oxygen vacancies elevate the Co>*/Co®" ratio and trigger elec-
tronic rearrangement, converting LS Co°" (ty.’e,’) to MS
(tzg’es'). This induces J-T distortion that eliminates orbital
degeneracy and accelerates charge transfer. Simultaneously,
oxygen vacancies optimize adsorbate coordination environ-
ments as electron traps, while rGO enhances interphase
conductivity and NiP stabilizes the architecture. Thus, the
synergistic design enables efficient H-spillover, achieving 106.2
mV@10 mA cm > and 107.9 mV dec™ ' Tafel slope (Fig. 12a-c).
The spin splitting also critically influences electrocatalytic
pathways. Kumar et al. established a direct correlation between
Rashba spin splitting and HER enhancement in Janus BiClS
monolayers, where broken inversion symmetry and strong
spin-orbit coupling induce conduction band minimum split-
ting at the I'-point, creating intermediate electronic states.'®
Through biaxial strain engineering, tensile strain (3%) ampli-
fied Rashba strength (ap = 1.52 €V A) while reducing AGy from
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1.15 to 0.76 eV, whereas compressive strain diminished ai and
increased AGy. DFT confirms this ag—AGy inverse relationship
stems from Rashba-delayed electron-hole recombination, pro-
longing electron availability at conduction band minimum
proximal states for HER participation.

Beyond coordination environment tuning of s-d-p orbitals,
f-orbital manipulation also enables spin-state regulation. Liu
et al. engineered RhCo-RhGd intraparticle heterostructure
nanoalloys featuring distinct Gd/Co interfaces within a Rh
matrix. The unique 4f electron configuration and strong orbital
couplings from rare earth Gd mediates spin magnetic modu-
lation through heterointerface induced Gd-Co antiferromag-
netic interactions."® These trigger electron redistribution and
spin polarization control, evidenced by EPR/VSM showing
reduced spin polarization and unpaired electrons. DFT further
reveals weakened spin polarization at interfacial Rh/Co sites
optimizes H,O adsorption/dissociation, driving exceptional
alkaline HER performance of 11.3 mV overpotential at 10 mA
cm ™ with robust stability, as shown in Fig. 12d-g. Long et al.
engineered a HS Co;S, electrocatalyst through Mo/P co-doping
in spinel sulfide.""* Mo substitution at octahedral Co sites
increased tetrahedral Co** (3d”) populations, while P doping
induced octahedral distortion. Crystal field theory confirmed
unpaired electrons occupying high energy e; orbitals in low-
coordination Co sites, establishing the HS state. EPR revealed
enhanced unpaired electrons at HS state (g = 2.44 tetrahedral
signal) versus pristine CosS,. DFT calculations demonstrated
this HS configuration promotes d—p hybridization and e; orbital
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occupancy, accelerating electron transfer to intermediates while
reducing activation energies and optimizing adsorption.
Consequently, HS Co;S, achieved exceptional bifunctional
performance with 70 mV HER and 222 mV OER overpotentials
at 10 mA cm 2, as shown in Fig. 12k and L.

The external magnetic field modulation strategy also effec-
tively applies to HER systems. Xue et al. demonstrated that an
alternating magnetic field (AMF) induces LS to HS transitions at
octahedral Fe sites in Fe;O,@CNTSs heterostructures.**? This HS
state accelerates charge transfer through enhanced o(d.?, p., s)
and m(d,; — px, d); — py) orbital interactions, optimizing inter-
mediate adsorption/desorption. For HER, the configuration
facilitates o(d,’, s) hybridization, approaching thermoneutral
AG of H* intermediates. Consequently, AMF application
reduced HER overpotential from 89 mV to 32 mV at 10 mA cm >
(Fig. 13a-d). Complementarily, Roy et al. demonstrated that
dimensionality tailored ferromagnetism in quasi-2D MnSe, (T
= 309 K, net moment: 3.54 ug per Mn atom) enables exceptional
alkaline HER enhancement under 0.4 T magnetic fields.'*®
Unlike paramagnetic bulk counterparts, the half-metallic
ferromagnet exhibits 120% current density increase and
20.25% lower Tafel slope (132.8 vs. 166.5 mV dec™ ') at —182 mV
overpotential. This originates from field-suppressed domain
walls and enhanced surface spin polarization that optimize
adsorbate interactions, confirmed by reproducible chro-
noamperometric responses during field cycling, as shown in
Fig. 13e-j.
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4.1.4 Electrocatalytic carbon dioxide reduction reaction
(CO,RR). The CO,RR involves multiple processes of electron
and proton transfer. Currently, there are problems such as low
Faraday efficiency, poor product selectivity, and severe compe-
tition from side reactions. Similarly to HER, spin-state modu-
lation via coordination environment optimization has advanced
CO,RR catalysis. Shao et al. systematically evaluated dual-atom
spin catalysts in 2D-MOFs and zero-dimensional molecular
metal complexes for selective CO, electroreduction.”™* First-
principles calculations across AFM, FM, and non-magnetic
states revealed tunable C; product selectivity through spin
manipulation: AFM ground state Mn,/Fe, catalysts favored
HCOOH production, while FM counterparts preferred CH,
formation. This selectivity switch stems from spin dependent
electronic restructuring with FM coupling elevates d-band
centers to strengthen intermediate bonding (enabling deep
reduction), whereas AFM configurations facilitate HCOOH
desorption. Machine learning further identified absolute
magnetic moment as the key activity descriptor, exhibiting
linear correlation with overpotential (7). Another study focusing
on tetrahedrally coordinated single-atom catalysts (SACs)
revealed significant differences in electron-donating capabil-
ities and reaction barriers among transition metal SACs
anchored on ZnO basal planes."** Crucially, an inverse volcano
relationship emerged between SACs' spin magnetic moments
and theoretical overpotentials. Among these, MS Fe*" (S = 3/2,
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t2g4eg1) demonstrated superior catalytic performance, as shown
in Fig. 14a-f.

The catalytic performance can also be enhanced via spin-
polarizing dopants, exemplified by Li et al.'s N-doped Fe-N-C
composites. Nitrogen near Fe-N, sites induced spin polariza-
tion, upshifting the Fe d-band center to strengthen *COOH
adsorption and reduce CO, reduction barriers."*® The optimized
catalyst achieved >90% CO selectivity at —0.5 V RHE with 24
hours stability, which is enabled by spin-driven electron redis-
tribution depleting Fe 3d| states and triggering COOH orbital
migration, synergistically enhancing thermodynamics and
kinetics. Defect-induced electronic restructuring modulates
spin polarization, as demonstrated by Bao et al.’s axial nitrogen
coordination in Fe-Nj sites.'”” This coordination transforms the
crystal field from planar tetragonal (D4h, Fe-N,) to quasi-
octahedral (C4v, Fe-N;), lowering d-orbital degeneracy in d.?,
d,; and d,, orbitals and reducing unpaired electrons to weaken
spin polarization. Consequently, diminished Fe-*CO interac-
tions lower *CO desorption barriers, while adjacent carbon
defects facilitate *COOH formation thus achieving dynamic
equilibrium between adsorption/desorption. The FeN;@DNC
catalyst consequently achieves 99% CO faradaic efficiency at
—0.4 V RHE (H-cell) and maintains 98% FE at 270 mA cm ™2 in
flow cells.

The magnetic field modulation strategy also enhances acidic
CO,RR, as demonstrated by Song et al's application of high
fields to Ni-Nj single-atom catalysts. Magnetization measure-
ments revealed increased effective magnetic moments (0.47 —
2.72 uer), while soft XAS showed field-dependent Ni L-edge
“white-line” reduction indicating electronic modulation."*®
Constrained DFT calculations established that elevating Ni's
atomic spin magnetic moment directly strengthens CO, acti-
vation: at 2.0 ug, electron injection to CO, rose to ~0.70 e~
versus ~0.45 e~ at 1.0 ug, shortening Ni-C bonds and enhancing
Ni 3d-C 2p hybridization near Fermi level. Density of states
analyses confirmed intensified spin polarization at higher
atomic spin magnetic moment. This spin manipulation lowered
the COOH formation barrier (rate-determining step) while
raising H adsorption energy, shifting selectivity from HER to
CO,RR. Thus, under 2 T fields, CO faradaic efficiency surged
from 18% to 63.2% in acidic electrolyte (pH = 0.91), with
reversible effects over multiple on/off cycles. Liu et al. engi-
neered Pd-PdS,-Co, heterostructural nanosheets with tunable
Co®" spin states to enhance C-C cleavage in glycerol electro-
oxidation (GOR). Magnetic characterization revealed Pd-PdS,-
Co,, contained 68.4% LS Co®" (ty,"e,’), while Co, g/Cos , vari-
ants were HS dominated (t,,°e,'). This enabled spin-selective
electron donation through Co-S-Pd bridges: LS-Co®*"'s occu-
pied t,, and empty d,” orbitals facilitated c-donation to Pd,
optimizing its d,* state for C-C cleavage. Conversely, HS-Co®>*
promoted m-donation via partially filled orbitals. The optimized
electronic structure in Pd-PdS,-Co,, strengthened glycerol
adsorption (—1.09 eV vs. HS —0.50 eV) and reduced C-C
cleavage barriers to 0.65 eV, achieving 90% formic acid faradaic
efficiency at low potentials with 46.4% reduced electricity
consumption in integrated GOR||CO,RR systems (Fig. 14g-p)."**

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

4.2 Electrochemical energy storage

The rapid development of electric vehicles, wearable elec-
tronics, and related technologies has escalated performance
demands for electrochemical energy storage systems. While
conventional LIB materials (intercalation-, conversion-, and
alloy-type) increasingly fail to meet future fast charging
requirements due to inherent limitations, precise manipulation
of electron spin states combining with novel spin-enabled
storage mechanisms enables multiscale coordination of elec-
tronic structure, lattice dynamics, and interfacial reactions.
This paradigm overcomes traditional material constraints,
optimizes electrode performance, and advances next generation
design. Resonating with strategies in electrocatalytic systems,
we focus here on spin engineered enhancements in electrode
materials, specifically targeting charge transport kinetics,
storage capacity, and cycle stability. Battery systems and
electrocatalysis are intrinsically connected through spin effects,
as electrode materials in emerging metal-air and related
batteries often serve dual roles as both energy storage media
and electrocatalysts.”®'** Key reactions such as OER and ORR,
which govern battery performance, mirror those in conven-
tional electrocatalysis, enabling direct transfer of spin-
regulation strategies, including tuning spin states, orbital
occupancy, and exchange interactions in transition metals, to
enhance reaction kinetics in batteries.'”** Moreover, interfacial
processes in energy storage systems exhibit catalytic behavior
similar to electrocatalytic reactions, allowing spin-based design
principles such as spin-state modulation, defect engineering,
and heterostructure construction to be effectively applied across
both domains. This synergy underscores a fundamental
commonality and offers a unified approach to advancing cata-
Iytic and battery performance through spin control.'*®**1%
4.2.1 Anodes for alkaline ion batteries. Transition metal
compounds (e.g. oxides, fluorides, sulfides, etc.)**** frequently
exhibit capacities exceeding theoretical predictions, which
mechanistic studies attribute to interfacial phenomena beyond
conventional transition metal ion redox contributions.*****
Specifically, electrons occupying reduced 3d orbitals facilitate
lithium-ion storage within the solid electrolyte interphase (SEI)
layer through a space-charge mechanism. This is exemplified by
FeS,,* which first transforms into metallic Fe during energy
storage and subsequently develops spin-polarized capacity at
lower potentials. Crucially, the particle size of metallic phases
formed during such conversion reactions critically governs
material stability. For instance, Fe particles derived from FeS, in
SIB anodes (1.4 nm) exhibit severe pulverization compared to
those in lithium-ion systems (4.3 nm). This excessive particle
refinement disrupts electrode connectivity, generating inactive
particles that accelerate substantial capacity decay. Conse-
quently, strategically controlling nanoparticle dimensions in
transition metal compounds enhances electrode/electrolyte
interfacial area for capacity amplification while simulta-
neously mitigating mechanical strain during cycling, thereby
significantly improving structural stability. For example,
Confining metal nanoparticles within conductive carbon
networks enhances space-charge capacity (Fig. 15c¢) while
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ensuring overall electrode stability, as demonstrated by Co/C
nanoparticles (Fig. 15d) delivering 880 mAh g~" at 0.1 A g™ "
with exceptional cycling durability (Fig. 15e).** Similarly, con-
structing Fe/Li,O electrodes significantly boosts space-charge
storage through enlarged electron/ion-conductor interfaces,
enabling the fabricated electrode to achieve 126 mAh g~ within
6 s at 50 A g~ ' while maintaining stable performance over 30
000 cycles at 10 A g~ '.**> This spin-enhanced interfacial ion/
electron transport facilitates the development of high mass
loading anodes with superior rate capability. For instance,
electrospun Co@CNFs (Fig. 15f) (metal Co nanoparticles into
carbon nanofiber) systems allow adjustable mass loading
through controlled fiber mat thickness while ensuring homo-
geneous nanoparticle dispersion even at high loading levels; the
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resulting conductive network simultaneously promotes rapid
ion diffusion in the electrolyte phase (Fig. 15g). Anodes fabri-
cated with this method (up to 6.8 mg cm~?) exhibit remarkable
cycling stability and high-rate performance, sustaining over 3
mAh cm 2 at 2 A g .% Crucially, this spatial storage mecha-
nism circumvents phase transitions and mechanical stress,
preserving electrode structural integrity for ultra-long cycling
endurance.

As previously discussed, the catalytic activity of metal-
nitrogen-carbon (MNx/C) nanomaterials materials are intrin-
sically linked to electron spin states, which is well discussed in
catalysis. When integrated into carbon anodes, the optimized
electronic structure of FeNy sites catalytically promotes revers-
ible transformations within the SEI layer, facilitating additional
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Society of Chemistry. (f) Mechanism for the Co@CNFs fabrication. (g)

(vs. Li/Li*). Reproduced with permission.®* Copyright 2023, the Royal
Cycling performance of the Co@CNFs with various mass loading at

a current density of 5.4 pA cm™2. Reproduced with permission.’22 Copyright 2024, Wiley-VCH. (h) Schematic illustration of SEI structures and
chemistry behind Na ion storage in FeNy/C. (i) Rate capability and (j) Long-term cyclability of NC, FeN,/C-600, FeNy/C-700, and FeNy/C-800
electrodes in different electrolytes from 100 to 2000 mA g~*. FeN,/C -T denotes the FeN,/C materials obtained at varying pyrolysis temper-
atures. Reproduced with permission.*?®* Copyright 2022, the Royal Society of Chemistry.
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sodium-ion storage through the cycling of both organic and
inorganic SEI components (Fig. 15h).**® This mechanism
enables the FeNy/C anode to deliver a high capacity of 217 mAh
g~ " after 1000 cycles at 2000 mA g~ * (Fig. 15i and j). The Fe-N-
C/Fe;C@HCNs composite was synthesized via Fe*'/PVP self-
assembly pyrolysis. The Fe;C species enhance electron trans-
fer and Na* adsorption, enabling a high capacity of 242 mAh g *
at2 Ag " with 176 mAh g~ retained after 2000 cycles.’* Further
interfacial engineering demonstrates that assembling 2H-MoS,
nanosheets on Fe single atom (SA) anchored on N-doped carbon
(Fe(SA)-N-C) carriers induces electron transfer from Fe(SA)-N-
C to MoS, (Fig. 16a) driven by work function differences.** This
electron redistribution simultaneously enhances sodium-ion
adsorption at electron-rich MoS, sulfur sites while modifying
the spin state and catalytic activity of electron-deficient Fe sites
in Fe(SA)-N-C. Crucially, compared to N-doped carbon or pure
carbon substrates, the Fe(SA)-N-C confined Fe sites effectively
catalyze the 1T/2H-MoS, phase transition during cycling,
thereby achieving highly efficient sodium storage. Conse-
quently, the MoS,/Fe(SA)-N-C composite maintains exceptional
cyclability, retaining ~350 mAh g~ after 2000 cycles at 2.0 Ag ™"
(Fig. 16b and c). Analogous to catalytic effects observed in
metallic nanocomposites, where nanoparticle surfaces enhance
spin-polarized storage, these findings suggest that coupling
catalytic concepts with conventional redox/adsorption anode
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mechanisms can activate inert organic-inorganic SEI compo-
nents or solvent molecules, potentially unlocking substantial
extra capacity.

For LIBs/SIBs featuring larger ionic radii, addressing slug-
gish chemical kinetics is critical to enhancing performance.'*®
Spin-polarization engineering of electrode materials optimizes
electronic structures to boost adsorption and phase-transition
kinetics, thereby improving energy storage capabilities. In the
NiPSe;,'? (theoretical capacity >1300 mAh g™ %), the LS state of
Ni*" (tr4°e,”) fully occupies the t,, orbitals, generating signifi-
cant electron repulsion between nickel and selenium atoms.
This is reflected in the consistently low IpCOHP (Integrated
projected Crystal Orbital Hamilton Population) values with
minor bonding differences but fundamentally weak Ni-Se
bonding energy. The weakened bond strength facilitates bond
cleavage/reformation during charge/discharge cycles, effectively
reducing reaction energy barriers. Enabled by this LS state
structural adjustment, NiPSe; delivers exceptional electro-
chemical performance, particularly in cycling stability and rate
capability: it maintains 277.3 mAh g~ ' after 5000 cycles at
20 A g ' and 249.3 mAh g ! after 10000 cycles at 15 A g *
(Fig. 16d-f). Similarly, in the (Co,Cu)Se,/NC electrode system,'*®
electron transfer from Cu to Co fully occupies the -symmetric
tyg orbitals of Co, thereby reducing spin polarization and
elevating the p-band centre of Se. This enhanced electron
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Fig. 16 (a) Schematic illustration of the fabrication of MoS,/SA Fe—N-C. (b) Charge transfer schematic diagram of MoS,/SA Fe—N-C. (c) Cycling

performance of MoS,/SA Fe—N-C, MoS,/N-C, MoS,/C, and MoS,. Reproduced with permission.*?* Copyright 2023, Wiley-VCH. (d) Schematic
diagram of the crystal structure of NiPSes. (e) Structural model of Ni—Se bonds in [NiSeg] octahedra in NiPSes. (f) Long-term cycling performance
at 15 A g~1. Reproduced with permission.?” Copyright 2025, Elsevier. (g) Schematic illustration of V,C—-VO, multi-heterostructure. (h) Simulated
contour maps of K* ion diffusion barrier versus spin polarization density VH-mode. (i) Cycling stability at 0.2 A g~* for V,C and V,C-VO, anodes.
Cycling stability at 0.2 A g~ for V,C and V,C-VO, anodes. Reproduced with permission.*® Copyright 2022, Wiley-VCH.
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repulsion between Co and Se weakens the Co-Se bond strength,
while the increased sodium adsorption energy accelerates ion
transfer at the electrode/electrolyte interface. Consequently,
these synergistic effects significantly improve the anode's rate
capability. Furthermore, constructing heterojunction interfaces
induces lattice mismatch that modifies local spin polarized
states. In MoSe,/Cr,Se; embedded within hollow carbon
nanospheres, this strategy delivers a high capacity of 498 mAh
g ' with exceptional cycling stability (retaining 405 mAh g *
after 1000 cycles at 99.8% coulombic efficiency (CE))."** The
lattice mismatch at the MoSe,/Cr,Se; interface generates spin
polarized states and localized magnetic moments. Through
Mo>* doping, the antiferromagnetic Cr,Se; is effectively modi-
fied to regulate carrier concentration and spin polarization,
synergistically enhancing electrochemical performance. The
resulting spin polarized interfacial capacitance significantly
contributes to this improvement, while selenium vacancies at
the heterojunction provide abundant active sites for efficient
ion intercalation/deintercalation. Similarly, in V,C MXene/VO,
composites forming 3D multi-heterostructures (Fig. 16g),
convergence zones with normalized charge neutrality, thus
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exhibiting minimal radial spin polarization density gradients.
The prepared anode demonstrates reduced pseudo-potential
peaks and lower diffusion energy barriers for K (Fig. 16h),**°
This enables rapid K migration across the heterointerface,
yielding an anode material that maintains 372 mAh g~" at
0.2 Ag " over 900 cycles (Fig. 16i). When assembled into flexible
full cells, it withstands dynamic bending and folding defor-
mation with negligible capacity loss even after 60 cycles.

In summary, spin-related materials significantly enhance the
capacity, rate capability, and cycling stability of electrode
materials in LIBs and SIBs by modulating electronic spin states.
Key mechanisms include optimized spin configurations that
weaken metal-ligand bonds and reduce reaction barriers, as
well as heterointerface-induced spin polarization and local
magnetic moments that enhance interfacial capacitance and
catalytic activity. These strategies effectively alleviate mechan-
ical stress and structural degradation, offering promising
pathways for developing high-energy-density and long-life
batteries. A summary of the electrochemical performance of
spin-regulated anode materials is provided in Fig. 15a, b and
Tables S1, S2 (SI). Furthermore, in situ characterization (Section

A oo1jwoz C so d 300
' 0.05C (1C=250 mAh g*') ==
E ~45 o 225
0.0125 ' z \
; -§4.o o E g 200
: 535 2 %' 150
H u.on--a--w—m-qca E 8.
Sl : &30 8 § 10
%0018 : % ~—— Be-1 v v
| & 0018/ Lve03 108 : Sas Be-2 £ s0
L3 : Be-3 g
- H 20 w0
| E ! 50 100 150 200 250 300 350
: .8_, L Specific Capacity (mA h g")
| & 55005ttt it
§ 2
' ] B e A R S — 100
; ‘£ 1500 Na g
: z ~ o0 &
| . £ 60 &
! 810(» ”..u”no.'0..lc"“uu.|'n.....c'..lt..'o.NOa0."u“h"..““”“'””.’ [
| agagiizass - o B> 0009900%0040%0,000040/ 40 o
PRIV b 500t 11, oL 10 mAve’ + discharge 3
P bl WO, ATUO) < 2000 4000 6000 8000 10080 o
: Specific Capacity (mAh-g™) | o Cydenumbers
T P ' E o
h 1 3 100 jmagane > . N (I o
' ’%"ﬁ"“” ‘";@‘ 5 80 98% =0 SO0
5 Q
oM 00 0Ms000Ce -g 60 17% é Jahn-Teller Distortion s
% + o 8 Mn*0, M0,
‘ o = g :
ikttt "> EHEp 3¢ 3 CoMno, F A e -
MNezh spim vate Low spin tate g- 209 10Ag . @ Mno, b
- o 10000 30000 i High-spin Mn>* Low-spin Mn>
_________________________________________________________________________ Cyelemumber

Fig. 17 (a) Summary of the specific capacity of recent published cath
information summarized in SI. (b) Ni-O—-Mn structure and electronic s
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3.2) has revealed an interfacial space charge mechanism, sug-
gesting the potential for catalytically activated reversible SEI
transformations to provide additional storage capacity.®***> This
insight underscores the fundamental unity between spin-
mediated electrocatalysis and energy storage. Thus, both
electrocatalysis and energy storage can be regarded as different
manifestations of spin-regulated electron dynamics operating
under distinct energy conversion scenarios.

4.2.2 Cathodes for alkaline ion batteries. Similarly, precise
manipulation of electron spin states enables multiscale coor-
dination of electronic structure, lattice dynamics, and interfa-
cial reactions in cathode materials, thereby overcoming
structural degradation, reconstructing charge transport path-
ways, stabilizing redox couples, and unlocking extreme oper-
ating capabilities.

Lithium-rich cathode materials (Li/TM > 1) are regarded as
promising candidates for enhancing LIB energy density due to
their transition metal-oxygen (TMO) redox activity, high
reversible capacity (>250 mAh g~'), and low cost. However,
irreversible reactions during high-voltage anionic oxygen redox
(OAR) cause severe voltage decay and energy density loss. For
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instance, Be doping modulates Ni/Mn spin states to improve
cathode stability: doped Be preferentially occupies tetrahedral
sites in the transition metal (TM = Ni, Mn, Co, etc) layer,
reducing Mn valence while increasing Ni valence.” This elec-
tron redistribution strengthens Ni-O bonds but weakens O-O
bonds, forming stable Ni-(O-O) configurations that trigger
strong Ni/Mn-O electronic interactions. During charging, Be
doping induces intense hybridization between Ni t,; and O 2p
orbitals, establishing a reduction-coupling mechanism that
stabilizes anionic redox. Consequently, Be-doped samples
exhibit minimized structural changes and enhanced honey-
comb superlattice stability, alongside increased TM migration
barriers that suppress structural disorder at high voltages
(Fig. 17b). These synergistic effects yield superior discharge
capacity and Coulomb efficiency (CE), with Be-2 demonstrating
exceptional performance, retaining 93% capacity after 400
cycles at 1C (250 mA g '), far exceeding the 49% retention of
pristine materials (Fig. 17c and d). In addition, antiferromag-
netic superexchange interactions can mitigate voltage decay
caused by irreversible anionic oxygen redox reactions by regu-
lating electron spin orientation during ligand-to-metal charge
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literature information summarized in Sl. (c) and (d) Schematic of Li—O, batteries with and without TBPA. (e) Cycling performances of Li-O,
batteries with and without TBPA. Reproduced with permission.**® Copyright 2025, American Chemical Society. (f) Schematic diagram of the
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Schematic illustration of the band splitting due to RKKY type interactio
transfer without flipping. (h) The energy conversion efficiency of PtFe

ns and the generated directional e-spins for spin-conserved electron
/NC, Fe./NC, Pt./NC and commercial Pt/C electrode calculated by

discharge voltage/charge voltage of the first cycle at different current density in rate performance. Reproduced with permission.**® Copyright

2024, Wiley-VCH.
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transfer. For example, introducing strongly covalent metal
pairs, such as Fe>*(HS)-Ni**, Ni**-Ni**, Ru**-Ni**, or Rh**-Ni**,
into lithium-rich layered oxide cathodes (O,-Li,/3[Li;/sMns/6]02)
enables spin orientation control during charge transfer between
S and Fe sites. This manipulation locks unpaired electrons from
anions into ferromagnetic alignment, significantly enhancing
anionic redox activity while reducing voltage hysteresis and
improving reaction kinetics.***

This spin-based strategy for suppressing J-T distortion in
transition metal compounds to maintain electrode structural
stability demonstrates broad applicability across energy storage
systems. To address MnO, electrode degradation,”** both
electrochemical activation and elemental doping effectively
inhibit [MnOg] octahedral distortion and Mn dissolution,
thereby enabling long-term operational stability. Notably, cyclic
voltammetry activation (Fig. 17e) (the activated MnO, phase,
denoted as ATMO) (0-1.0 V vs. SCE) of Mn3;O, precursors
generates a stabilized LS Mn®' configuration (t,4'e,’) while
significantly suppressing HS species, consequently mitigating
J-T distortion (Fig. 17g), enhancing [MnOs] octahedral stability,
and promoting reversible ion intercalation kinetics. The opti-
mized electrode delivers an exceptional areal capacitance of
1876.6 mF cm™ 2 at 1 mA em™ > with robust cycling performance,
retaining 91.9% capacitance after 10000 cycles (Fig. 17f).
Similarly, introducing Co into the MnO, (Co-MnO,) (Fig. 17h)
lattice increases t,, orbital occupancy, inducing a HS to LS
transition in Mn®".*3 This shifts electrons from the d,- _ > o dyy,
orbital, effectively lowering the e, orbital energy levels, thus
reducing orbital degeneracy, and strengthening Mn-O bond
stability. Consequently, [MnOg] octahedral distortion decreases
by 69% with 80% less Mn dissolution, enabling Co-MnO, to
maintain 98% capacity retention after 40 000 cycles at 10 Ag ™,
dramatically superior to the pristine material's 17% retention
after 20 000 cycles under identical conditions (Fig. 17i).

Spin-state engineering similarly enhances the cycling
stability of Prussian Blue Analogues (PBAs) during energy
storage, enabling high capacity alongside exceptional longevity
as SIB cathodes. In Fe-based PBAs, carbon-coordinated iron
ions adopt a LS state that forms rigid bonds with cyanide
groups, increasing reaction energy barriers and rendering them
electrochemically inert with minimal capacity contribution.***
Introducing minor Cu®*/Zn** doping partially substitutes iron
sites and strengthens Fe-N octahedral coordination in the PBA
cause the activating of HS Fe redox centers with 1.6-fold
enhanced activity.”®® This modification yields a remarkable
initial discharge capacity of 144.7 mAh ¢ ' at 1C (170 mA g,
vs. 116 mAh g~ for undoped material), while simultaneously
enabling ultra-fast charging and outstanding cycling stability
with 77.21% capacity retention after 2500 cycles at 10C. Low-
temperature thermal activation at 200 °C also reactivates LS
Fe in PBAs."*® Thermodynamically driven partial cleavage of Fe—
C and Fe-N bonds redistributes electron density within [FeCg)]
octahedra, increasing electron density around LS Fe atoms. This
strongly perturbs and weakens Fe-C bonding strength, conse-
quently reducing ligand field stabilization energy (LFSE) of
[FeCg], ultimately enhancing capacity and stability. However,
optimal spin states differ across PBA metal-ion systems: LS Fe
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activation is desired in Fe-based PBAs, whereas Mn-based
systems require LS Mn’®" to mitigate irreversible distortion
from J-T effects in HS states.””®” Therefore, spin-engineering
strategies, including but not limited to doping, defect induc-
tion, and external energy-field reactivation as previously di-
scussed, must be tailored to specific electrode material
systems.*”

In summary, spin-state manipulation strategies significantly
enhance the cycling stability and electrochemical performance
of cathode materials in LIBs and SIBs by precisely regulating
electron spin states, thereby suppressing structural degrada-
tion, stabilizing anionic redox activity, and strengthening
metal-ligand bonding. This approach demonstrates broad
applicability across various systems, including lithium-rich
oxides, Mn-based oxides, and Prussian blue analogues.
Through elemental doping, electrochemical activation, or
thermal treatment, targeted induction of LS states effectively
suppresses T-J distortion and enhances reversible oxygen
redox, while activation of HS states improves reaction kinetics.
As illustrated in Fig. 17a (Table S3, SI), recently developed high-
performance spin-modulated cathode materials underscore the
critical role of spin engineering in designing next-generation
high-energy-density and long-life battery systems.

4.2.3 Metal oxygen battery. Catalysis and batteries have
become fundamentally intertwined disciplines. While Section
4.1 comprehensively summarizes spin-state modulation strate-
gies for enhancing electrocatalytic systems, this section focuses
specifically on spin-engineered catalytic materials within
battery applications.

In Li-0O, batteries, dissolved O, at the cathode reacts with Li*
during discharge to form Li,O, on porous electrodes via the
ORR, where electron transfer through the external circuit
delivers electrical energy. Conversely, charging decomposes
Li,O, through the OER, releasing O,. However, commerciali-
zation faces scientific challenges including high overpotentials,
low round-trip efficiency, sluggish ORR/OER kinetics, and
inadequate cycle life. To address these, introducing bromine
atoms into tris(4-bromophenyl)amine (TBPA) enhances SOC,
enabling TBPA to form intermediate complexes with *0,."** This
facilitates spin forbidden flip mediated oxygen state conversion
(0, — *0,), suppressing electrolyte decomposition. When
incorporated as an additive in RuO,-based systems, brominated
TBPA elevates '0, — 20, conversion efficiency through SOC
effects, reducing charging overpotential by 0.3 V while
decreasing byproduct formation by 78%, ultimately extending
cycle life to 350 cycles (Fig. 18c-e). Furthermore, constructing
spin selective electron channels circumvents energy losses from
non-spin conserving processes, enabling rapid electron transfer
kinetics with reduced energy barriers. For instance, in a fully
exposed cluster catalyst featuring Pt atoms octahedrally coor-
dinated by six Fe atoms, ferromagnetic quantum spin exchange
between Pt and Fe induces asymmetry between the spin-up and
spin-down subbands on Fe (Fig. 18f and g), presenting ferro-
magnetic ordering of the conduction spins which arises from
Ruderman-Kittel-Kasuya-Yosida (RKKY) type interactions.”®
This creates spin selective catalytic pathways where spin-
conserved electron transfer between triplet O, and singlet

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Li,O, accelerates reaction kinetics, substantially lowering the
energy barrier. Crucially, it renders the rate determining step
from dimeric (Li,O,), to Li,O, during the OER, and theoretical
calculations confirm significantly accelerated kinetics for the
0,/Li,0, redox couple. Consequently, assembled Li-O,
batteries achieve 89.6% energy conversion efficiency at
100 mA g~ ' with ultralow discharge-charge overpotential (0.32
V) (Fig. 18h). Such catalysts, which optimize reaction kinetics
through spin-selective charge transfer, can also be regulated by
designing heterojunctions, as reported in the Ni/MnFe,0,
heterojunctions.**

In Zn-air batteries, ORR performance critically determines
overall battery efficiency, and this oxygen reduction process
exhibits inherent spin dependence. Theoretical calculations
reveal nitrogen species' influence on the spin state of Fe-N-C
catalysts (Fig. 19a), particularly elucidating how graphitic
nitrogen regulates spin configurations to enhance ORR
activity.®* By strategically engineering nitrogen coordination to
shift Fe active centers from LS to HS states, Wang et al. opti-
mized adsorption/desorption energy barriers for oxygen inter-
mediates, thereby boosting both catalytic activity and stability
(Fig. 19b). The developed Fe-N,/NGC-C catalyst outperforms
benchmark Pt/C in ORR activity, retaining 89% of its E,, after
10000 potential cycles with merely 11 mV decay (Fig. 19c),
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demonstrating exceptional durability. Assembled Zn-air
batteries achieve a peak power density of 225 mW c¢cm™> and
a specific capacity of 798 mAh g, " (Fig. 19d and e). Further-
more, flexible versions maintain stable discharge under
bending stress and enable rapid charging of mobile devices.
Similarly, one-step pyrolysis incorporates Fe,Co, into nitrogen-
doped porous carbon to form core-shell catalysts comprising
FeCo alloys encapsulated by N-doped carbon matrices (Fe,-
Co,@NPC) (Fig. 19f).*** This architecture significantly enhances
catalytic activity due to work function disparities with built-in
electric field at the interface from FeCo alloy to NPC layer,
driving spin polarized charge transfer toward surface pyridinic-
N sites. Consequently, these pyridinic-N sites develop varied
magnetic moments (up to 0.024 ug), which are critical for OOH*
intermediate formation and substantially boost ORR activity.
Zn-air batteries employing this catalyst achieve a peak power
density of 282 mW cm > in liquid electrolytes (Fig. 19g),
significantly surpassing that of Pt/C. Remarkably, quasi-solid-
state counterparts maintain 117.6 mW cm™ > at —40 °C, repre-
senting only an 18.7% decrease from room-temperature
performance, while enduring over 300 hours of continuous
operation (2600 charge/discharge cycles (Fig. 19h)).

In summary, spin-engineered materials significantly
enhance the performance of both Li-O, and Zn-air batteries by
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(a) Structure models of Fe—N,—C and Fe—N4/Ngc—C. (b) Gibbs free energy diagrams of ORR on different structures of Fe—N-C at 0 V

and 1.23 V. (c) ORR polarization LSV curves of Fe—N4/Ngc—C before and after 10 000 potential cycles at a scan rate of 100 mV s, (d) Charge and
discharge polarization plots of the ZABs with Fe—N4/Ngc—C as the catalyst in an aqueous electrolyte with 6 M KOH and 0.2 M Zn(CHzCQO),. (e)
Specific capacity plots of the quasi-solid Zn—air batteries with Fe—N4/Ngc—C and Pt/C as the catalysts. Reproduced with permission.>* Copyright
2025, Science China Press and Oxford University Press. (f) Schematic illustration of the synthesis of Fe,Co,@NPs. (g) Discharging polarization and
power density curves of different types of Fe,Co,@NPs and commercial Pt/C electrode. (h) Charging/discharging performance of quasi-solid
Zn—air batteries at 2.0 mA cm™2, —40 °C. Reproduced with permission.*! Copyright 2023, Wiley-VCH.
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modulating electron spin states. In Li-O, batteries, spin-related
strategies effectively reduce overpotentials, suppress side reac-
tions, and extend cycle life. In Zn-air batteries, spin regulation
optimizes oxygen reduction reaction kinetics, substantially
improving catalytic activity and stability. The performance of
recently developed advanced spin-modulated -catalysts is
summarized in Fig. 18a and b (Table S4 and S5, SI), demon-
strating the considerable potential of this approach for metal-
oxygen batteries applications.

4.2.4 Metal-sulfur battery. For metal-sulfur batteries,
advancement hinges on designing efficient catalysts that
simultaneously address two core bottlenecks, polysulfide
shuttle and sluggish reaction kinetics, while synergistically
improving sulfur utilization and electrode stability. Adjusting
the spin state based on the vacancy defects of the catalyst
material is one of the common strategies."*> For instance,
precisely regulating oxygen vacancy concentrations in ZnAl,O,
modulates structural disorder and exposes Zn tetrahedral sites
(Fig. 20b and c), enabling the construction of narrow-bandgap
catalysts with HS states.™® This dual optimization enhances
electron transfer efficiency while reducing reaction energy
barriers, thereby accelerating the multiphase conversion of
lithium polysulfides (LiPSs). The amorphous ZnAl,O, catalyst
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maintains 93.9% capacity retention after 800 cycles even at 4C
high-current density (Fig. 20d).

Coordination engineering further enhances sulfur reaction
kinetics in catalysts. For example, fluorine coordination stra-
tegically modulates electronic distribution and energy level
alignment at Mg(SA) sites.”** Following this principle, Zhang
et al. synthesized MgPc@FCNT (Fig. 20e and f) via the strategy
of anchoring MgPc onto the fluorinated carbon nanotube
matrix (FCNT). This configuration induces electron spin polar-
ization that simultaneously strengthens adsorption of LiPSs
intermediates and facilitates electron tunneling in Li-S
batteries (Fig. 20g). As constructed electrode exhibits excep-
tional long-term cycling stability, demonstrating an ultralow
capacity decay of 0.029% per cycle over 1000 cycles at 2C
(Fig. 20h). Notably, even under high sulfur loading (4.5 mg
cm %), they maintain a high reversible areal capacity of 5.1 mAh
cm 2 after 100 cycles (Fig. 20i). Analogously, screening transi-
tion metals to maximize spin polarization increases spin-
polarized electron density, reducing antibonding orbital occu-
pancy in both Li,S, and catalytic centers. This strengthens
catalyst-sulfur interactions, weakens S-S bonds in Li,S,, and
ultimately accelerates the Li,S, — Li,S reduction at cathode
interfaces. Among ferromagnetic M-N, sites (M = Fe, Co, Ni),
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Fe-N, with the highest spin electron density delivers optimal
performance.**

External magnetic field induced spin polarization offers an
effective strategy for boosting electrocatalytic activity, equally
applicable to Li-S batteries."*® Research demonstrates that
CoS,/carbon nanofiber composites (CoS,/CNF) (Fig. 21a)
prepared via electrospinning exhibit significantly enhanced
kinetics under magnetic fields: Tafel slopes decrease to 65.3 mV
dec™* for oxidation (versus 72.9 mV dec ™ for pristine) and 45.0/
27.0 mV dec " for reduction steps (versus 61.2/31.0 mV dec ™" for
pristine) (Fig. 21b)."*” Concurrently, these catalysts achieve an
ultralow per-cycle capacity decay of 0.0084% over 8000 cycles at
2C (Fig. 21c). Mechanistic studies reveal that external magnetic
fields drive the transition of Co®" from LS to HS states in CoS,,
intensifying orbital hybridization between Co-3d and S-2p
orbitals. This strengthened 3d-2p hybridization accelerates
interfacial charge transfer kinetics. Furthermore, electron spin
polarization in CoS, generates magnetic moments that elongate
Li-S bonds, facilitating bond cleavage and thereby promoting
sulfur oxidation reactions.

Spin-regulation strategies demonstrate broad applicability
across Na/Al/Zn-S battery systems. For instance, when using
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heteronuclear diatomic catalysts as cathodes, comprising iso-
lated Fe-Co atomic pairs embedded in nitrogen-doped hollow
carbon nanospheres (Fe-Co/NC) (Fig. 21d),"** the sodium-
sulfur (Na-S) batteries exhibit capacity degradation 0.018% per
cycle during 2000 cycles, while delivering 341.1 mAh g™ ' at
5 A ¢!, comparing with the 810 mAh g~* under 0.5 A g*
(Fig. 21e and f). These enhancements originate from Fe-induced
electron delocalization in Co(u), triggering a LS to HS transition.
This electronic restructuring intensifies hybridization between
Co-d,> orbitals and antibonding =* orbitals of sulfur atoms in
sodium polysulfides, thereby optimizing the adsorption-
desorption equilibrium of sulfur intermediates on Fe-Co/NC
surfaces and substantially boosting sulfur redox activity.
Similar to findings in Li-S systems, the number of unpaired
electrons in a catalyst's electronic structure correlates positively
with the energy position of antibonding orbitals during chal-
cogen hybridization. This reduces antibonding orbital occu-
pancy, thereby enabling more efficient d-p orbital hybridization
that accelerates rapid and reversible polysulfide conversion. For
instance, when carbon-supported ferromagnetic SAs (Fe/Co/Ni)
optimize spin polarization,'*® Fe-based catalysts with the high-
est unpaired electrons deliver superior performance as
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(a) Schematic illustration of the structure of CNF/CoS,. (b) The Tafel slopes of the oxidation and reduction peaks for CNF/CoS,. Herein,

reaction 1 and reaction 2 represent the two predominant reduction pathways. (c) Long-term cycling of a CNF/CoS,/S electrode under
a magnetic field. Reproduced with permission.**” Copyright 2022, Wiley-VCH. (d) Schematic illustration of the structure of Fe—Co/NC. (e) Rate
capabilities of a Na—S battery based on a Fe—Co/NC/S cathode containing 5.6 mg cm 2 of S. (f) Long-term cycling of a Na—S battery based on
a Fe—Co/NC/S cathode containing 5.6 mg cm™2 of Sat 1 A g%, Reproduced with permission.*¢ Copyright 2025, American Chemical Society. (g)
Schematic illustration of the structure of Ni-MoS,. (h) Calculated spin density for Ni-MoS, with SOC. The yellow and cyan color denote spin-up
and spin-down, respectively. The iso-surfaces are 0.001 e A=, (i) Cycling performance of S@Ni—MoS,/C and S@MoS,/C at 0.5 A g~*. Reproduced

with permission.**® Copyright 2025, Wiley-VCH.
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cathodes in Aluminum-sulfur (Al-S) batteries. Similarly, deco-
rating MoS, substrates with Ni SAs (Ni-MoS,) (Fig. 21g) not only
increases unpaired electron density but also induces spin
splitting in Mo 4d orbitals, further enhancing spin polarization.
This shifts sulfur from LS to HS states, optimizing aluminum
polysulfide adsorption energy and consequently boosting Al-S
battery performance (Fig. 21h). Ni-modified MoS, cathodes
achieve an initial capacity of 1600 mAh g~" at 0.5 A g~ " with
a remarkably low per-cycle capacity decay rate of 0.035% over
2000 cycles (Fig. 21i).»*°

In summary, spin-engineered materials play a critical role in
enhancing the performance of Li-S, Na-S, and Al-S batteries by
mitigating polysulfide shuttling, accelerating redox kinetics,
and improving interfacial charge transfer. Key strategies
include vacancy-induced spin modulation, coordination engi-
neering, external magnetic field manipulation, and single-atom
catalyst design, all of which optimize electron spin states to
strengthen sulfur-catalyst interactions and facilitate efficient
polysulfide conversion. The performance of recently reported
advanced spin-regulated catalysts is summarized in Fig. 20a
(Table S6, SI), demonstrating the broad potential of spin
manipulation for advancing metal-sulfur battery technologies.

5 Conclusion and outlook

The regulation and manipulation of spin has emerged as
a crucial approach in the field of electrochemical energy
conversion, showing promising progress. In this review, we
begin by explaining the fundamentals of electron spin theory at
the atomic orbital level. We describe the characteristics of spin
state transitions in electrode materials and advanced tech-
niques for their characterization, particularly various in situ
methods. Furthermore, we summarize the principles and
effective strategies for modulating active sites. Finally, we
highlight recent advances in spin-related electrochemistry for
energy storage and electrocatalysis, as well as novel conversion
mechanisms based on spin effects for electrochemical energy
storage applications. Despite these advances, several key chal-
lenges and future research directions in this field warrant
further attention, including the following aspects.

5.1 Conclusion of critical challenges

5.1.1 The structure-performance relationship concerning
the spin properties of electrode materials remains unclear. For
instance, there is no consensus on whether HS/MS/LS states are
more favorable for optimal catalytic performance across
different metal ions. A thorough and systematic characteriza-
tion of the mechanisms underlying spin induced catalytic
processes is essential. In particular, various in situ character-
ization techniques could track potential spin state changes of
electrodes in electrolyte environments under operational
conditions, and reveal evolutions in the chemical composition
and electronic structure of active sites during reactions.
However, the highly specific nature of these techniques and the
highly customized design requirements for in situ instrumen-
tation make the commercial viability of dedicated setups (e.g.,
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for XRD or Raman) a significant challenge. This inherent lack of
standardization and scalability necessitates a paradigm shift in
research strategy. Consequently, fostering deep interdisci-
plinary collaboration and open exchange among researchers
has emerged not just as an alternative, but as the most viable
and effective path forward. It is also worth noting that while
external magnetic fields have been shown to modulate the spin
states of metal ions, it remains challenging to distinguish
whether observed changes in spin characteristics arise from the
strong magnetic fields inherent to techniques like EPR and
PMMS, or from voltage-driven processes. On the other hand,
theoretical modeling of voltage-driven dynamic evolution at
electrode interfaces introduces further complexity into spin-
related calculations. There is a notable scarcity of theoretical
work on voltage-induced spin transfer or flipping, and detailed
computational studies on spin-mediated processes in electro-
chemical energy conversion are still very limited.

5.1.2 Precise control over the electronic spin structure of
electrode materials remains a significant challenge. Although
strategies such as central atom modulation, coordination envi-
ronment engineering, and metal-support interactions have been
developed, based on physical mechanisms like spin-selective
orbital occupation, spin ordering and polarization, and spin-
orbit-charge-lattice couplings. These approaches often simulta-
neously alter not only the spin characteristics but also other
properties such as valence state and chemical composition. As
a result, the multi-faceted changes induced by these strategies
make it difficult to identify the dominant factor influencing
catalytic performance. Moreover, the inherent unpredictability of
current spin-state control methods undermines the reliability of
comparing different spin states (low, intermediate, and high
spin) within the same catalyst system. There is a pressing need to
establish a well-defined research framework for spin-related
studies to uncover fundamental mechanisms and derive
universal principles. Integrating machine learning with new
methodologies capable of capturing atomic-scale evolution of
lattice-spin interactions (such as potential energy surfaces) could
provide deeper insights.’* Furthermore, leveraging the vast
amount of published data, future efforts should focus on eluci-
dating the relationships between catalytic performance and spin
features, identifying meaningful descriptors, and -effectively
bridging computational design with experimental validation.
Such advances will facilitate the rational development of tailored
spin-manipulation strategies.

5.2 Outlook for future research directions

5.2.1 Promoting deep interdisciplinary integration with
computer science fields such as AI/ML. The deep integration of
AT with scientific disciplines is driving transformative advances
across numerous fields. In the context of spin-related electro-
chemistry, the introduction of AI technology is expected to
provide novel pathways for elucidating electrode reaction
mechanisms and designing high-performance electrode
materials.

Firstly, with the increasing maturity of interdisciplinary
approaches, AI and ML are instigating a fundamental shift in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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research paradigms. Traditional electrochemical research often
relies on a combination of experimental data and theoretical
models. However, the incorporation of Al enables researchers to
utilize large-scale datasets and sophisticated algorithms to
conduct in-depth analysis of electrode reaction mechanisms
from diverse perspectives and dimensions. This transition
towards a more theory-informed, data-driven approach not only
accelerates research progress but also significantly enhances
prediction accuracy and experimental design efficiency.
Consequently, future efforts should focus on establishing
systematic databases for spin-related effects, integrating the
intrinsic relationships between material structure, spin state,
and electrochemical performance, thereby laying a data foun-
dation for the efficient screening of catalysts and energy storage
materials. Leveraging ML and data mining techniques can
extract more instructive structure-activity relationships from
the growing body of computational and experimental data,
steering materials research and development away from tradi-
tional empirical approaches towards precise, theory-guided
design. Although this interdisciplinary field is still in a phase
of rapid development, it has already demonstrated significant
potential. Emerging technologies, notably large-scale language
models and advanced machine learning algorithms, can
deepen the analysis of material structure-activity correlations,
thereby optimizing key steps such as material screening,
synthesis route design, reaction mechanism simulation, scal-
able production, and cost assessment, ultimately leading to
highly efficient utilization of time and resources. For instance,
Al models like random forest and gradient boosting decision
trees can rapidly predict electronic structure characteristics
(e.g., d-band center and spin magnetic moment) based on
theoretical calculation results and identify key descriptors
influencing catalytic activity. A representative case is the work
by Jun et al., who combined density functional theory with AI to
identify the electron spin magnetic moment as a core descriptor
for oxygen reduction reaction activity in iron-based single-atom
catalysts.'*

Secondly, continuous innovation at the algorithmic level is
equally crucial. Future work must prioritize developing capa-
bilities in few-shot learning, enabling the extraction of effective
features from limited data to construct high-precision predic-
tive models, thus reducing reliance on large-scale annotated
experimental datasets. This highlights an urgent issue: high-
quality, standardized experimental and computational data
form the cornerstone of reliable Al models. Promoting data
sharing and establishing collaborative platforms are key
measures for ensuring the healthy development of this direc-
tion. With the refinement of theoretical models, advancements
in technical tools, and deepened interdisciplinary collabora-
tion, AI is expected to significantly accelerate the practical
application of spin-related electrocatalysis in clean energy
conversion and storage. The further application of large
models, in particular, will advance the prediction and optimi-
zation of spin-related properties, enhance the targeting and
efficiency of experiments, and gradually establish a closed-loop
research system of “data-driven design—intelligent predic-
tion—experimental verification.” Ultimately, achieving these
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goals necessitates deep collaboration among materials scien-
tists, chemists, physicists, and Al experts to collectively pioneer
new scientific research paradigms.

5.2.2 Developing novel in situ characterization techniques
with higher resolution. To deeply unravel the evolution of spin
behavior in electrode materials under realistic working condi-
tions, developing novel in situ characterization techniques with
higher spatiotemporal resolution has become a critical direc-
tion for the field.

The primary immediate task is to overcome several limita-
tions of existing in situ setups, such as discrepancies between
the reaction environment and actual conditions, significant
background signal interference from reaction cells, and signal
attenuation caused by cell window materials. Building on this,
sustained breakthroughs and innovation in cutting-edge tech-
nologies should be actively promoted. Technology routes based
on synchrotron radiation sources are advancing towards mini-
aturization and popularization, promising to lower experi-
mental barriers, accelerate research progress, and potentially
enable real-time monitoring of spin dynamics at the atomic
scale.

In the realm of precise magnetic characterization, advanced
magnetic resonance techniques like low-temperature EPR,
pulsed EPR, and in situ Nuclear Magnetic Resonance (NMR)
require further enhancement of detection sensitivity. Mean-
while, emerging quantum sensing technologies, such as
nitrogen-vacancy (NV) center magnetometers, are opening new
research dimensions by virtue of their unique single-spin
detection capabilities.

Furthermore, high priority should be given to innovative
platforms and concepts based on the integration of multiple
techniques. For example, combining scanning probe micros-
copy with various spectroscopic methods can create compre-
hensive characterization systems capable of simultaneously
acquiring structural, electronic, and magnetic information of
materials. The synergistic development of these technologies,
supplemented by new machine learning-assisted data analysis
methods, will progressively establish cross-scale spin analysis
capability—from the atomic level to micro-devices. This will
provide solid support for accurately establishing the structure-
activity relationship between spin state and electrochemical
performance, thereby propelling clean energy materials towards
a new stage of precise design and controllable fabrication.
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