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cial intelligence for materials
discovery: application to catalysts for the HER and
ORR

Valentin Vassilev-Galindo †*a and Javier LLorca*ab

The extraordinary progress of strategies coupling ab initio calculations and machine learning (ML) has

opened the door for both fast and accurate chemical/physical property predictions and for the virtual

design of materials. However, these techniques are very often used as a “black box” with the sole

objective of obtaining high accuracy with scarce or no special attention on how ML models obtain their

predictions. This can be improved by leveraging explainability of ML models, which, at the same time,

would increase the chance of ML to offer new insights into the chemistry and physics of materials.

Hence, the next generation of ML models in these realms must guarantee explainability by embedding

explainable artificial intelligence (XAI) tools into their pipelines. Specifically, ML-assisted materials

discovery and design can take great advantage of the use of XAI. Enabling explanations would increase

the impact of these approaches by providing not only a set of candidates, but also insights into what

makes a given material better than others. With this in mind, using the example of heterogeneous

catalysts for hydrogen production and energy generation, here we propose a novel strategy for materials

design based on counterfactual explanations. We were able to find materials featuring properties close

to the design targets that were later validated with density functional theory calculations. Explanations

were devised by comparing original samples, counterfactuals, and discovered candidates. Such

explanations allowed us to unveil subtle relationships between the most relevant features, other, in

principle, less important features, and the target property. Since this approach can be applied to different

applications, this work provides an alternative to already available designing strategies, such as high-

throughput screening or generative models, but that, for the first time, incorporates explainability as its

main driving mechanism.
1 Introduction

The extraordinary progress of strategies coupling ab initio
calculations and machine learning (ML) has opened the door
for both fast and accurate chemical/physical property predic-
tions and for the virtual design of materials.1–4 The available
literature is populated with a plethora of examples: prediction
of electronic properties (e.g., band gap, atomization energy, and
adsorption energies),5–10 modeling of potential-energy
surfaces,11–13 discovery of new materials with desirable
properties,14–16 and designing of drugs with specic targets,17,18

among others. However, such ML methods and models are very
oen used as a “black box” with the sole objective of obtaining
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high accuracy or a desired designed target with scarce or no
special attention on how the predictions are obtained. Such
a scenario can lead to the so-called “Clever Hans” effect, in
which a model gets accurate predictions for the wrong reasons
(e.g., by learning spurious correlations). This problem can be
mitigated by leveraging interpretability and explainability of ML
models.

Interpretability in ML means that the mapping process from
input to the output prediction can be understood. Some ML
methods used in computational chemistry (e.g., decision trees
and their derived methods) are interpretable by design19–21 and
model-specic techniques have been applied to enable some
interpretability in more complex ML architectures, such as
neural networks.22,23 Nevertheless, explainability, which refers
to the assessment of prediction outcome patterns to understand
why a model makes specic decisions, is only partially and not
consistently addressed in the eld. Indeed, there are only a few
investigations where the terms Explainable Articial Intelli-
gence (XAI) or explainable ML are employed.23–27 This is striking
because, without explainability, one cannot ensure that
predictions are obtained through rigorous chemical and
© 2026 The Author(s). Published by the Royal Society of Chemistry
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physical grounds, and one hinders the possibility for ML
models to offer new insights into the chemistry and physics of
materials. Hence, the next generation of ML models must
guarantee explainability by embedding explainable ML tools
into their pipelines.

Currently, mostly the only approach for explainability that is
employed is the assessment of feature importances.28–30 It helps
in identifying how each feature contributes to the nal predic-
tion. This is an effective approach to gain insights into the
chemical/physical concepts and trends learnt by the model, but
it is not sufficient. The explanations brought by feature
importance analysis are not actionable (i.e., they do not tell how
a given input can be changed in order to modify the output).
Actionability is a robust attribute of XAI approaches that can
lead to valid hypothesis by providing an intuitive understanding
of predictions and, thus, can offer unprecedented insights in
materials science and chemistry. One example of such an
actionable XAI approach is counterfactual explanations. They
provide insights into model operation by determining examples
or cases that explain the difference between a desired outcome
and actual outcome.31 Despite their potential application,
counterfactual approaches are just a recent topic in computa-
tional chemistry and there are only very few examples related to
molecular and medicinal chemistry in which they have been
applied.32–36 In these studies, counterfactual explanations have
been used to unveil through ML predictions in which structural
modications (e.g., addition or removal of functional groups
and atomic species) promote or hinder blood–brain barrier
permeation, solubility in water, toxicity, HIV activity, or protein
kinase inhibitors. Therefore, there is a need for extending the
use of counterfactual explanations to other chemical systems
and applications.

Specically, ML-assisted molecular/material discovery and
design can take great advantage of the use of counterfactual
explanations. Typical strategies, such as generative models and
high-throughput screening,16 have been successfully used to
nd new potential catalysts,37,38 drugs,39,40 and photovoltaics41 to
name a few examples, but they do not offer information on why
a given candidate and not others is found to have the desired
target property. Enabling those explanations would increase the
impact of discovery and design strategies by providing not only
a set of candidates, but also insights into what makes a given
molecule/material better than others. Also, these insights can
implicitly lead to the development of “recipes” of how to modify
a material in order to improve or deplete a target property.
Motivated by this, here we introduce an XAI strategy for mate-
rials design and discovery that uses counterfactual explanations
as the cornerstone for nding new candidates with desired
properties. Explainability in the designing process is ensured by
construction since every candidate found can be linked to the
original sample from which the counterfactual was generated.
Hence, one can analyze which features and how they changed
from the original sample in order to get the sought outcome. We
tested our strategy on the example of heterogeneous catalysts of
two reactions, the hydrogen evolution reaction (HER) and
oxygen reduction reaction (ORR), that are critical for hydrogen
production and energy generation, respectively. We were able to
© 2026 The Author(s). Published by the Royal Society of Chemistry
nd materials featuring properties close to the design targets
(the adsorption energies of H, O, and OH on Pt). Density func-
tional theory (DFT) calculations for the designed candidates
conrmed our predictions, hence validating the proposed XAI
strategy. Moreover, explanations to gain insights into why the
discovered surfaces are better than others were devised by
comparing original samples, counterfactuals, and discovered
candidates. Such explanations allowed us to unveil subtle
relationships between the most relevant features, other, in
principle, less important features, and the Eads. This approach
can be applied to different target properties and materials. For
instance, in other elds related to catalysis (e.g., photocatalysis
and organometallic chemistry), where adsorption energies also
play a relevant role, the application of our approach would be
straightforward since the same features could probably be used
as descriptors to train the MLmodels. Therefore, only a suitable
target for the generation of counterfactuals would need to be
selected. For other applications in materials science, the use of
our approach would also require an analysis of the best features
to train the models since the target property might be different
(e.g., the band gap in photovoltaics) and an adaptation of the
steps and lters during the retrieval of candidates that suits the
obtained set of features. Hence, this work provides an alterna-
tive to already available designing strategies, such as high-
throughput screening or generative models, but that for the
rst time incorporates explainability as its main driving
mechanism.

2 Results and discussion
2.1 Example application: adsorption energies in the catalysis
of the HER and the ORR

The production of hydrogen and the generation of green energy
depend on two key reactions, respectively: the HER, which in
acidic media involves the following steps:

Hþ þ *þ e�/H*

H*þHþ þ e�/*þH2

2H*/2*þH2

; (1)

and the ORR, whose dissociative mechanism in acidic media is
composed of

1

2
O2 þ */O*

O*þHþ þ e�/HO*

HO*þHþ þ e�/H2Oþ *

; (2)

where * represents a site on the surface of the catalyst and X*
represents the atom/molecule adsorbed.

According to Sabatier's principle,42 the variation in the Eads of
adsorbates involved in a reaction (in this case, H for the HER
and O and OH for the ORR) can serve to assess the activity of
a catalyst. Namely, it states that the Eads should be neither too
high nor too low for reactions passing through an adsorbed
intermediate. If the Eads is too high (endothermic), adsorption
is slow and limits the overall rate, whereas the catalyst surface
becomes poisoned and desorption is limited if the Eads is too
low (exothermic). In terms of water splitting electrocatalysis,
Chem. Sci., 2026, 17, 1058–1072 | 1059
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this principle leads to the conclusion that the free energy of
adsorption should be close to zero at the equilibrium poten-
tial.43,44 Because of this, the magnitude of Eads obtained from
DFT calculations can be used to determine the overall rate of the
reaction with

Gads = Eads + EZPE − TDS (3)

where Gads, Eads, EZPE, and DS stand for the variation of the free
and adsorption energies, the zero point energy and the entropy,
respectively, during the adsorption of the intermediate species,
and T is the absolute temperature. This relationship should be
evaluated for each intermediate species that appears in the
catalytic process (only H in the HER and O and OH in the ORR),
taking into account that the process with the highest free energy
barrier will limit the rate of the reaction. Therefore, knowing the
Eads of the intermediate species on a material is a rst funda-
mental step to assess a candidate catalyst. An accurate
computation of Eads is, however, not a trivial task.45 Given the
explosion of computational cost with the size of the system for
the more accurate post-Hartree–Fock methods, most rst-
principles calculations in heterogeneous catalysis are done with
DFT. The key challenge within the DFT formalism is the
exchange–correlation functional since the exact form is still
unknown. Hence, different approximations made to dene
such a functional lead to a hierarchy of DFT functionals with
increasing complexity and computational requirements. Due to
the computational needs imposed by system sizes, many of the
calculations in heterogeneous catalysis are performed with
semi-local functionals. They oen yield a decent account of
covalent bonds and geometric structures but they face some
issues. One of them is the spurious electron delocalization that
arises from an incomplete cancellation of repulsive Coulomb
self-interaction contributions by the approximate exchange
energy given by the employed functional. This articial delo-
calization promotes, for instance, overestimation of the binding
of gas-phase molecules relevant to catalysis (e.g., the PBE
functional can overestimate O2 binding energy by 1 eV (ref. 46)).
Thus, it is important to be cautious when modelling the inter-
action of such molecules with solid surfaces since it is primarily
error cancellation that allows a reasonable accuracy (∼0.1–0.3
eV) to be reached. Another challenge comes from the pseudo-
potential (PP) used to model the electrons.47 PPs are used in
plain-wave (PW)-based calculations for smearing the nuclear
charge and modelling the core electrons. Each PP contains the
minimum energy cutoff that might be used in the calculations,
characterized by a “core radius”. Depending on the magnitude
of such a core radius, there are “hard” (with a small core radius,
needing more PW basis functions and higher cutoff energies for
describing the region beyond the core radius) or “so” (with
a larger core radius, requiring lower cutoff energies and fewer
PW basis functions) PPs. Although so PPs are less computa-
tionally demanding, too large a core-radius could compromise
the quality of the calculations. However, it has been demon-
strated that the use of ultraso PPs or those based on the
projector augmented-wave (PAW) method are in good agree-
ment with those from all-electron calculations.48
1060 | Chem. Sci., 2026, 17, 1058–1072
Regardless of the level of theory employed to perform
calculations, the value of the Eads depends on the site where the
atom/molecule gets adsorbed during the reaction. Different
surfaces have different adsorption sites (for instance, see Fig. 2
in ref. 49). The most probable site where an adsorbate will be
adsorbed is the one that is more energetically favorable (i.e., the
one featuring the most negative Eads). Hence, the characteriza-
tion of the Eads of an adsorbate can be done, in the most general
manner, based on the identity of the catalyst and the adsorption
site. In a previous study,49 we dened a set of geometric and
electronic features that describe different properties associated
with the identity of the catalyst and the adsorption site: the
generalized coordination number (GCN),50 J,51 the weighted
atomic radius (WAR), weighted electronegativity (WEN),
weighted rst ionization energy (WIE), and the outer electrons.

The GCN and J describe the geometry conguration of the
adsorption site and the chemical environment around the site,
respectively, and can be obtained as

GCN ¼
Pn
i¼1

CNi

CNmax

(4)

where CNi is the coordination number of the i-th rst or second
nearest neighbor of the adsorbate, N is the total number of
atoms composing the sets of rst and second neighbors, and
CNmax is the maximum coordination number for a given crystal
lattice;

J ¼

�Qn

i¼1 Si

� 2
N

�Qn

i¼1 ENi

� 1
N

(5)

whereN is the number of atoms at active centers, whereas Si and
ENi are the outer electrons and the Pauling electronegativity of
the i-th atom at active centers.

From the remaining features, WEN, WIE, WAR, and the outer
electrons are related to the identity of the material and how the
stoichiometry affects relevant electronic and geometric properties.

We used these features to construct a dataset of the Eads of H,
O, and OH on several binary intermetallic materials and pure
metals calculated with DFT calculations for the training of ML
models (Fig. S1 in the SI histograms of Eads for each of the
datasets where it is evident that they provide a good represen-
tation of different ranges of the target property). In addition to
the aforementioned features, we also included the unit cell
volume of the bulk crystal and the strain (we computed the Eads
considering the application of different elastic strains on the
surfaces). Although additional descriptors (such as the d-band
center and the d-band width) can provide a better description of
the local chemical environment,52–54 they require expensive DFT
calculations that would hinder an efficient utilization of any
trained ML model.

This dataset was used in this work to train the ML models
used to test our XAI strategy for materials discovery and design.
Further details of the dataset can be found in Section S1 in the
SI and the original publication.49
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06442b


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
8/

20
26

 1
0:

15
:4

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
2.2 XAI materials design and the discovery strategy

We consider that for an XAI design and discovery strategy to be
successful it needs to fulll certain requirements: (i) be founded
on an MLmodel that provides accurate predictions of the target
property, (ii) such predictions need to be reliable (i.e., are ob-
tained through rigorous chemical and physical grounds and are
not the result of spurious correlations), and (iii) the design and
discovery task needs to provide explanations on why amolecule/
material is a good candidate compared to others. Because of
this, we propose the workow shown in Fig. 1a. It consists of
three main steps, model selection, model validation, and the
XAI design, each accounting for one of the aforementioned
requirements. In the following, we are going to briey
summarize the specic tasks we performed in each of the parts
of the workow. However, please note that our workow is very
exible and that the methods and tools employed within each
block (green boxes in Fig. 1a) can be changed by others.

2.2.1 Model selection. The rst part of any ML application
is the construction of the model. The objective here is to nd
the most accurate model for predicting the target property. For
achieving this, one needs to test different methods trained on
Fig. 1 (a) General workflow of the proposed XAI discovery and design str
within each block (green boxes) can be changed easily by others. (b) Proce
After counterfactuals are generated for each of the samples available in t
Explainability is ensured by construction since every candidate found ca

© 2026 The Author(s). Published by the Royal Society of Chemistry
an equal footing (i.e., same dataset, same training scheme,
assessed with the same metrics, etc.).

In the context of this work, we used as our test example the
search for heterogeneous catalysts for hydrogen production and
energy generation. According to the Evans–Polanyi55 and the
Sabatier principle,42 the adsorption energies (Eads) of the inter-
mediate species determine the suitability of a material to cata-
lyze a given reaction. Asmentioned before, the reference dataset
that we used is the one we recently published containing DFT
Eads of H, O, and OH on binary intermetallic compounds (AxBy)
and pure metals (a description of the dataset can be found in
Section S1 in the SI).49 The Eads is a continuous variable and,
hence, we explored the performance of different regression
models in the prediction of this property. Namely, we tested
extremely randomized trees regression (ET), XGBoost, Gaussian
process regression (GPR), kernel ridge regression (KRR), and
feed-forward neural networks (NNs). The resulting models were
compared through the typical mean absolute error (MAE) and
root-mean squared error (RMSE) metrics, and their perfor-
mance was visualized with parity plots. The best performing
model is the one used in the next steps of the workow.
ategy. The workflow is flexible so that the methods and tools employed
dure followed for the retrieval of candidates within the XAI design step.
he dataset, the candidates are recovered from the set of new features.
n be linked to the original sample.

Chem. Sci., 2026, 17, 1058–1072 | 1061
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2.2.2 Model validation. Here we do not employ the term
“validation” to refer to the process of assessing performance on
unseen data to ne-tune the ML model. Instead, in this step of
the workow, we intend to make a validation of the model by
chemical and/or physical means. The objective is to have more
certainty that the prediction accuracy reached by the selected
model in the previous step is not the result of spurious corre-
lations, but the consequence of the model learning chemical/
physical principles. To this end, we propose the use of feature
contributions for explaining how the ML model obtains its
predictions. Specically, in this work, we chose to analyze
feature contributions by Shapley values56 using SHapley Addi-
tive exPlanations (SHAP).57 This is a method of computing
feature importance weights as a complete explanation (a
broader description of Shapley values can be found in Section
S1 in the SI).

We checked which were the features that contributed the
most to the predictions of our models and analyzed their
chemical/physical signicance. For instance, one can expect
that features such as the area of the adsorption site and the
electronegativity might play an important role in the adsorption
processes involved in catalysis. Hence, we would expect that
a ML model can capture such correlations whenever the
appropriate information is fed into the descriptor. Once the
model is validated through the analysis of feature contribu-
tions, the model is deployed for the design and discovery step.

2.2.3 XAI design. Our proposed XAI design strategy is based
on the use of counterfactual explanations. These explanations
are a tool that provides insights into what changes in input
features would lead to a different prediction outcome. In their
most simple form, counterfactuals are dened, for a regression
task as ours, using the solution of the following constrained
optimization problem:58

minimize distðx; cÞ
such that

���f̂ ðxÞ � f̂ ðcÞ
���$D

(6)

where x is the feature vector of a known sample of the dataset, c
is the feature vector of the counterfactual, dist(x,c) is a measure
of the distance between features and f̂ is the ML model, while D
is a problem specic hyperparameter which denotes the desired
change in the value.

In this work, we employ Diverse Counterfactual Explanations
(DiCE)59 for the generation of counterfactuals. DiCE not only
satises the feasibility/proximity property (minimization of di-
st(x,c)), but also the diversity of counterfactuals to provide
different ways of changing the prediction outcome. This is
achieved by optimizing a combined loss function over all
generated counterfactuals:

CðxÞ ¼ arg min
c1 ;.;ck

1

k

Xk

i¼1

ylossðf ðciÞ; yÞ þ l1

k

Xk

i¼1

distðci; xÞ

� l2 dpp_diversityðc1;.; ckÞ (7)

where ci is a counterfactual example, k is the total number of
counterfactuals to be generated, f(.) is the ML model, yloss(.) is
a metric that minimizes the distance between the prediction of
f(.) for ci and the desired outcome y, x is the original input,
1062 | Chem. Sci., 2026, 17, 1058–1072
dist(.) denotes a distancemetric between the counterfactual and
the original input, dpp_diversity(.) is the diversity metric, and l1

and l2 are hyperparameters that balance the three parts of the
loss function (we refer the readers to the original publication of
DiCE in ref. 59 for a more detailed description).

As a result of the optimization problem, a new set of features
is available for each k-th c, whose prediction outcome is equal,
or at least, close to the dened target value. However, DiCE
cannot nd the identity of the sample. Hence, the next step in
our XAI design strategy is to transform back each c from feature
space to chemical compound space. The procedure to do it is
dependent on the space covered by the dataset and on the
features used to generate the counterfactuals. Therefore, it will
change for different datasets and applications. Please note that
this peculiarity is also found in other design approaches. In
generative models, for instance, the latent space in which the
models seek for new samples is bound to the chemical space
learned by the model (i.e., the space covered by the dataset) and
the process for retrieving the identity of such samples will
always change depending on the specic features in the dataset.

Here, we followed the procedure summarized in Fig. 1b for
retrieving new candidates from the generated counterfactuals.
We carried it out for each adsorbate separately to have three
different tests for our XAI design strategy. The features of the
dataset that we used to generate the counterfactuals can be
gathered in two groups: composition- (weighted electronega-
tivity [WEN], weighted atomic radius [WAR], and weighted
ionization energy [WIE]) and adsorption-related (generalized
coordination number [GCN] and J) features. From the former
we recovered the stoichiometry of the counterfactual candidate,
whereas the latter were used to obtain the information about
the crystal lattice, the surface facet, and the adsorption site.
Although the adsorption site is not part of the identity of the
candidate, it is needed for validating that the Eads is within the
design target. We selected as the target for each adsorbate the
lowest Eads on a Pt fcc (111) surface as found in the reference
dataset (EPtads). We considered such a target suitable for our tests
because Pt-based catalysts are the best performing for the
production of hydrogen and energy generation. Specically, we
set the range of the target as EPtads ± 0.15 eV for O and OH and
EPtads ± 0.10 eV for H. We did not use the number of valence
electrons of the atoms involved in the material (also available in
the dataset) for counterfactual generation because, when used,
DiCE converged most of the time to pure Pt or Pd.

Once we generated the counterfactuals, the retrieval of
candidates was done in two steps, each of which was followed by
a validation stage. In the rst step of the retrieval process, we
performed least-squares (LS) optimization on the following set
of equations to nd the stoichiometry of the material (i.e.,
subscripts x and y in AxBy):

ENAX þ ENBY ¼ WEN
0

ARAX þARBY ¼ WAR
0

IEAX þ IEBY ¼ WIE
0

(8)

where EN is the electronegativity, AR is the atomic radius and IE
is the ionization energy, while X and Y are the proportions of A
and B in the candidate, respectively, and the values for which we
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Average Eads prediction accuracy on the test set for all
methods used in this work over all cross-validation tasks in terms of
MAE and RMSE for H, O, and OH. Errors are in eV. Bold font is used to
indicate the lowest error among the methods

Adsorbate Metric ET XGBoost KRR GPR NN

H MAE 0.10 0.11 0.13 0.15 0.18
RMSE 0.21 0.21 0.24 0.25 0.26

O MAE 0.25 0.27 0.34 0.34 0.33
RMSE 0.43 0.47 0.54 0.55 0.52

OH MAE 0.20 0.23 0.27 0.41 0.33
RMSE 0.33 0.37 0.42 0.60 0.49
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solved the LS optimization. Therefore, the values of x and y were
equal to the smallest integers holding the proportions (e.g., if X
= 0.34 and Y = 0.66, then x = 1 and y = 2). WEN0, WAR0, and
WIE0 are the weighted electronegativity, the weighted atomic
radius, and the weighted ionization energies from the coun-
terfactual. As we kept constant the number of electrons of the
original sample when generating the counterfactuals, we solved
eqn (8) considering all possible pairs of A and B. For instance, if
the number of valence electrons in the original sample was 12
for A and 4 for B, we found the solution of eqn (8) for all valid
(i.e., atoms that were available in at least one material in the
dataset) pairs between groups 12 and 4 of the periodic table:
ZnxTiy, ZnxZry, ZnxHfy, CdxTiy, CdxZry, and CdxHfy. Aer
obtaining a stoichiometry, we validated the candidate through
two lters. The rst one consisted in conrming the existence of
the candidate by searching in the Materials Project database.60

If the candidate existed, we updated the WEN, WAR, and WIE
values of the counterfactual with the real values from the
candidate. The stoichiometry was obtained through LS opti-
mization and, hence, the features are not exactly the same as the
ones found during counterfactual generation. Because of this,
as a second lter we used our ML model to predict the Eads of
the updated counterfactual. If the predicted Eads remained
within the EPtads ± 3 range (where 3 is a predened threshold. In
our case, 3 was set to 0.10 eV for H and 0.15 eV for O and OH),
the candidate was kept for the second step of the retrieval of
candidates.

For all valid candidates obtained in the rst step, we
considered all possible crystal lattices (cubic, hexagonal,
tetragonal, etc.) as found in the Materials Project and con-
structed surface slabs for different (hk(i)l) facets (e.g., (111),
(0001), and (100)) using the Atomic Simulation Environment
(ASE).61 We tried to keep everything as simple as possible, so we
only considered the most common (i.e., small numbering) fac-
ets. We set the highest integer for h, k, and l equal to 2 for
hexagonal lattices (knowing that i = −(h + k)) and 3 for all other
lattices. The surfaces were constructed with 4 layers as most
surfaces in the reference dataset. We discarded all surfaces that
had large gaps between atoms and those with a unit cell con-
taining more than 32 atoms (8 atoms per layer). Then, we
identied all available adsorption sites on the selected surfaces
and computed for each of them the values of the GCN (eqn (4))
and J (eqn (5)).

Finally, we compared the GCN and J values of each
adsorption site to the GCN and J values of the counterfactual.
If both values lied within a predened threshold from the
counterfactual values (we set these thresholds to be 20% of the
counterfactual value for the GCN and 15 units for J), we
updated the values of the GCN andJ of the counterfactual with
the values from the actual candidate. For validating the nal
candidates, we used again our ML model to predict the Eads for
the updated set of features. Analogously to the rst validation
stage, we only kept the information (stoichiometry, crystal
lattice, facet, and adsorption site) of those candidates whose
predicted Eads was within the EPtads ± 3 range (in this second
validation, we kept 3 equal to 0.10 eV for H, but we were more
stringent with O and OH by also setting 3 to a value of 0.10 eV).
© 2026 The Author(s). Published by the Royal Society of Chemistry
The set of candidates obtained aer this validation stage was
the outcome of our XAI design strategy. DFT calculations were
then performed to conrm their Eads.
2.3 ML models for the prediction of adsorption energies

We tested several ML methods (ET, XGBoost, GPR, KRR, and
NNs) in order to obtain the most accurate models for predicting
the Eads of H, O, and OH from the dataset of binary intermetallic
compounds (AxBy) and pure metals. We constructed one model
for each adsorbate separately to have three different design tests
for our XAI design strategy. All our models were constructed
using Scikit-learn,62 except for the XGBoost method that was
used as implemented in the xgboost Python package63 and the
NNs, that were constructed with Keras.64 We split our dataset
with a “pseudo-random” procedure into 85% train/validation
(783 samples for H, 757 for O, and 687 for OH) and 15% test
(138 samples for H, 134 for O, and 121 for OH). The train/vali-
dation partition was then used for hyperparameter optimiza-
tion (the list of optimal hyperparameters and the grids used for
optimization can be found in Section S2 in the SI) through
a “pseudo-randomized” grid search 10-fold cross-validation,
except for the NNs, for which we used the Bayesian optimization
search as implemented in KerasTuner.65 We use the term
“pseudo-random” here because the different sets were not
constructed fully randomly. Similar to what was done in ref. 49,
we decided to have in our training sets all samples of pure
metals and all samples of single-element adsorption sites (e.g.,
ontop-A and longbridge-B) for which there were no pure
surfaces of the given element. For instance, there is no pure Al
in the dataset and we forced all ontop-Al samples into our
training sets. We justify this approach because the Eads on pure
metal surfaces are already known and on the single-element
positions of the metals without pure surfaces the adsorption is
normally very energetically unfavorable. However, they do
provide valuable information about the adsorption processes
for our ML model. Please note that aer adding these initial
samples to the training sets, the remaining samples for
training, as well as the samples for validation and testing, were
randomly selected.

Table 1 shows the average mean absolute errors (MAEs) and
root-mean squared errors (RMSEs) on the test sets over all cross-
validation tasks of all the tested methods with optimized
Chem. Sci., 2026, 17, 1058–1072 | 1063
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hyperparameters (the values of the hyperparameters are avail-
able in Section S2 in the SI). For the case of H, all tested
methods performed similarly, with differences of only 0.08 eV in
MAE and 0.05 eV in RMSE between the best (ET) and the worst
(NN) methods. Indeed, both the ET (MAE = 0.10 eV; RMSE =

0.21 eV) and the XGBoost (MAE = 0.11 eV; RMSE = 0.21 eV)
methods have practically the same prediction accuracy. The
trend observed in terms of accuracy is ET < XGBoost < KRR <
GPR < NNs. Such a trend slightly changes for the prediction of
the Eads of O, since the NN is now more accurate than the KRR
and GPR models. KRR and GPR present the worst performance
with a MAE as high as 0.34 eV and RMSEs of 0.54 and 0.55 eV,
respectively. The ET was again the best performing method with
a MAE and RMSE of 0.25 and 0.43 eV, respectively. Finally, for
OH, ET was still the method with the lowest prediction errors
(MAE= 0.20 eV; RMSE= 0.33 eV). GPR was the worst method as
with the other adsorbates with errors that doubled those of ET,
while KRR presented a higher accuracy than the NN model.
Henceforward, we will only focus on the ET method, which was
the most accurate for the prediction of Eads for all the adsor-
bates. Please note that we later explored a more rened grid
than that shown in Section S2 in the SI for the number of tted
sub-estimators in the ET method to ensure that we had indeed
the best possible model. We found that there is a saturation
behavior, where performance gains seem to diminish rapidly
aer a certain point and no models with a better performance
than those in Table 1 were obtained.

Although the prediction accuracy of the ET method for the
three adsorbates is good, we decided to take a look in more
detail. For this, we show in Fig. 2 parity plots of the best ET
model out of all cross-validation tasks for each adsorbate. The
performance of the best models shows that MAEs are very close
Fig. 2 Parity plots of the best ET models out of all cross-validation tasks f
the region of errors equal to or lower than the MAE and the green dashed
plus 3 times the standard deviation (s) of AEs on the test set.

1064 | Chem. Sci., 2026, 17, 1058–1072
to the average ones presented in Table 1, while RMSEs are
slightly better (up to 0.03 eV for the prediction of OH Eads). This
means that the prediction accuracy of an ET model trained on
our reference data is quite consistent regardless of the specic
training set employed for its construction. Also, all tested
samples are uniformly scattered to the sides of the perfect
prediction baseline, as conrmed with the R2 values. For the
prediction of the Eads of H, the R2 is low compared to those
obtained for O and OH. However, this is the consequence of the
scale of Eads for H, which is smaller than those of O and OH.

Furthermore, since it is possible to have models with good
overall prediction metrics that are considerably less accurate on
certain samples (i.e., outliers), we were also interested in
ensuring that such a problem was minimal in the case of our
ML models. For this, we dened that an outlier is a sample for
which the AE in prediction is larger than the MAE + 3s, where s
is the standard deviation of all AEs on the test set (swas equal to
0.16, 0.33, and 0.23 eV for H, O, and OH, respectively). As can be
seen in Fig. 2, the three models perform really well with only
a few test (3, 4, and 4 for H, O, and OH, respectively) and vali-
dation (2, 0, and 3 for H, O, and OH, respectively) outliers.
2.4 Validation of ML models through chemical/physical
concepts

We have shown that the ET method was the best performing
among the four methods explored, providing reliable predic-
tions of the Eads for all adsorbates. Nevertheless, we wanted to
be sure that those predictions were obtained by leveraging
chemical/physical concepts and not by the exploitation of
spurious correlations. To this end, we employed SHAP57 to
compute feature contributions and, hence, explain how the ML
models obtained their predictions. The MLmodels used for this
or the prediction of the Eads of H, O, and OH. Black dashed lines delimit
lines delimit the region where errors are equal to or lower than the MAE

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Analysis of the most relevant features. (a) Beeswarm plots of SHAP values for the three most important features for each adsorbate as
obtained from SHAP analysis; (b) partial dependence plots of Eads, in terms of the relative normalized expected Eads (~E

exp
ads −min(~Eexpads)), on the GCN

for each adsorbate; and (c)J value heatmaps for each adsorbate, where all unstrained samples in the datasets are plotted with the components
of J (eqn (5)) and colored according to their normalized Eads (~Eads). A small random displacement is applied to all points for the sake of clarity.
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task were ET models (one for each adsorbate) trained on all
samples of our datasets using the set of optimal hyper-
parameters (see Table S1 in the SI) of the models discussed in
the previous section. Training on all dataset samples is justied
for model deployment. For the XAI discovery and design, we
require the best possible model to ensure accurate predictions
of the unknown set of features generated by DiCE. For gener-
ating the SHAP explainer model we employed 15% of the
dataset. The samples were selected using the internal routine
for sampling available in the SHAP package.
© 2026 The Author(s). Published by the Royal Society of Chemistry
Fig. 3a shows beeswarm plots of the three most important
features for predicting the Eads of each adsorbate according to
the SHAP analysis (plots containing all other features of the
dataset are in Fig. S2–S4 in the SI). If the value of a feature is
related to a positive SHAP value, it means that such value leads
to an increment of the prediction outcome (i.e., a more positive
Eads in our case), while a negative SHAP value indicates
a reduction of the prediction outcome (i.e., a more negative
Eads). We observe that the sets of features are similar between
the three adsorbates. In fact, the number of valence electrons in
Chem. Sci., 2026, 17, 1058–1072 | 1065
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atom A (SA) is relevant for the three adsorbates (the secondmost
important feature for both O and OH, and the third one for H).
The SHAP analysis indicates that, in general, the larger the
number of electrons the more positive the Eads is. We can relate
this to the downshiing of the d-band center with an increasing
number of valence electrons.66 It is well known that a more
negative d-band center leads to more positive Eads,67 making
adsorption less favorable for the three adsorbates. The other
important features, WEN, GCN, andJ, are each shared between
two adsorbates.

In the case of WEN, it is the most important feature for the
ML model to predict the Eads of O and OH. The relevance of this
feature is supported by general chemistry knowledge. O is one
of the most electronegative species (3.44 on the Pauling scale).
Hence, we can expect it to bind stronger to atoms with lower
electronegativity. This is exactly what can be concluded from
our SHAP analysis. The SHAP values of surfaces with a low WEN
are very negative (as low as below −2.0 and −1.0 eV for O and
OH, respectively) and very positive (up to around 1.0 eV for both
adsorbates) for samples with a high WEN.

As per the GCN, which is the most important feature for the
prediction of the Eads of H and the third one for O, we also see
a clear trend. Whenever the GCN is small the adsorption
becomes quite unfavorable (see the positive SHAP values for
both H and O), while it is slightly more favorable for large values
of the GCN. This can be explained by looking at the denition of
the GCN in eqn (4). The value of this feature is dependent on the
coordination of the nearest neighbors of the adsorbate on the
surface. The number of such neighbors and their position on
the surface vary across the different available adsorption sites.
Therefore, the GCN implicitly indicates the type of site where
the adsorbate is adsorbed. Lower values of the GCN represent
sites with lower coordination (e.g., a GCN of around 1 is linked
to ontop positions, whereas values from 1.5 to 2.0 and from 2.0
to around 3.0 correspond to (short)bridge and longbridge sites,
respectively). On the other hand, highly coordinated adsorption
sites, such as threefold, hcp, hollow, and fcc show GCN values
above 3.5, with fcc sites being those with the highest GCNs
(around 5.0). To analyze this with further details, Fig. 3b shows
partial dependence plots on the GCN for the three adsorbates.
We represent the impact on Eads as the relative normalized ex-
pected Eads (~Eexpads − min(~Eexpads)), where Eexpads corresponds to the
average model prediction given a value of the GCN. For calcu-
lating it, we rst applied a min–max normalization to the Eexpads-

values for each adsorbate to obtain a normalized Eexpads (~E
exp
ads). The

minimum and maximum values for normalization employed
for each adsorbate were those of the minimum and maximum
Eads in their corresponding datasets (more details on the
procedure can be found in Section S1 in the SI). Subsequently,
a minimum-value (i.e., min(~Eexpads)) shi was applied to each
value of ~Eexpads, separately. Fig. S7, in the SI, shows a graph of the
data in Fig. 3b before processing to understand the applied
transformation and the need to do it. The use of a relative and
not the actual value of ~Eexpads is to compare the behavior of model
predictions for all the adsorbates from the same baseline. As
suggested by the SHAP values (Fig. 3a), low GCN values lead to
considerably higher Eads (as great as 20% of the range length of
1066 | Chem. Sci., 2026, 17, 1058–1072
Eads) than those predicted for high GCNs for H and O. This
means that the ML model has correctly learned that ontop
positions are normally the least favorable ones, while fcc (for O)
and threefold, hcp, and hollow (for H) sites are usually the most
energetically favorable. Furthermore, our partial dependence
plot allows us to understand why the GCN is not as relevant for
OH as it is for the other adsorbates. The differences in ~Eexpads are
just 0.05 between the sites with low and high coordination.

Finally, the J feature is found to be of high importance for
the prediction of the Eads of H and OH. The impact on model
output is the contrary to that of the GCN. Low values of J

usually correspond to more negative Eads, whereas high values
of the feature are linked to a less favorable adsorption. The
interpretation ofJ (see eqn (5)), however, is more complex than
that of other features. J can be considered a description of the
chemical environment of the specic binding position of the
adsorbate by means of the electronic properties of the nearest
neighbors. Specically, the chemical environment is described
using the geometric means of the electronegativity
�
ðQN

i¼1 ENiÞ
1
N

�
and the number of electrons

�
ðQN

i¼1 SiÞ
2
N

�
of

the surface atoms at the adsorption site. We plot in Fig. 3c all
samples in our dataset with the strain descriptor equal to zero
(i.e., unstrained samples) as a function of the aforementioned
variables on a heatmap of J values for the three adsorbates.
Each point in our plots is colored according to a normalized Eads
(~Eads). From the plots, it can be concluded that, for H and OH,
adsorption sites with J values between 10 and 30 tend to have,
in general, lower Eads than sites with larger or smaller J values.
In particular, a range between 10 and 20 seems to be the most
favorable for adsorption. Apart from the large Eads that are
found for J values below 10, the results observed are in
agreement with the trends provided by the SHAP analysis
(Fig. 3a). For O adsorption, our plots allow us to explain why J
is not among the three most important features for the
prediction of Eads. It is evident that the plot could be divided
into two sections by a geometric mean electronegativity of 1.75.
Above this value, the Eads of O are quite larger than those below.
This indicates that, regardless of the value of J of the adsorp-
tion site, the electronegativity of the species on the surface will
be the one dening how strongly the O atom will bind to the
surface. A similar trend can be found for OH for values of J
beyond 60 (in agreement with WEN being the most important
feature for describing OH adsorption and J the third one),
while for H such a trend is absent (e.g., for aJ of around 50, we
observe both high and low Eads for different electronegativities).
It is important to remark that some of the general trends of Eads
with respect to changes in J discussed here were found
previously.51
2.5 XAI for designing and discovering new materials

Aer conrming that our ML models provided accurate, reli-
able, and rigorous predictions, we used them for testing our
strategy for the designing and discovery of new materials
through XAI. As mentioned before, we propose the use of
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Candidates discovered and designed with the proposed XAI strategy. Both the ML predicted and reference DFT Eads are shown. Bold
font is used for those candidates that were confirmed as valid after the DFT reference calculations (i.e., the difference between ML Eads and DFT
Eads was below the MAEs shown in Fig. 2). “—” indicates that the adsorption site was found to be unstable. The designing targets were −0.49,
−1.79, and 1.19 eV for H, O, andOH, respectively. TheML Eads shown here is the one obtained using our MLmodel on the final candidate (i.e., after
all filters are passed)

Adsorbate Material Crystal Facet Site ML Eads (eV) DFT Eads (eV)

H CaNi Cubic 101 Bridge-CaNi −0.46 —
YIr Cubic 101 Ontop-Ir −0.45 −0.68
YAu Cubic 100 Hollow −0.47 −0.42
YAu Cubic 101 Hollow −0.53 —

O ZnIr Hexagonal 10−11 Hollow −1.72 −1.93
ZnPt Tetragonal 101 Hollowa −1.76 −1.81

OH CdAu Cubic 101 Longbridge-Au 1.10 1.06
CdAu Hexagonal 0001 Bridge-Au 1.10 0.89

a Aer geometry relaxation the ZnPt bct(101) surface suffered from modications. We used the same coordinates found for the hollow site in the
candidates' retrieval process (based on the unrelaxed surface) to place the O atom on the relaxed slab. Aer geometry relaxation, the adsorbate
relaxed on a bridge-Pt site (see Fig. S8 in the SI for the images of the original and relaxed surface and O site).
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counterfactual explanations as an XAI tool to nd new candi-
dates with desired properties and, at the same time, retrieve
explanations for helping in understanding why certain mate-
rials are better than others. Specically, we employed DiCE59 to
generate the counterfactual explanations. As inputs for DiCE,
we used all unstrained samples in our dataset and set the
maximum number of generated counterfactuals to 4 for each
sample. We selected this number to achieve a trade-off between
computational cost and the amount of generated candidates.
The target in our discovery and design task was the Eads of each
adsorbate on the most energetically favorable site on a Pt fcc
(111) surface as found in the dataset (−0.49 eV for H, −1.79 eV
for O, and 1.19 eV for OH). Among the available approaches in
DiCE for counterfactual generation, we selected the genetic
algorithm method for the cases of H and O, and, due to
computational efficiency, the randomized sampling for OH.

In total, we were expecting to generate more than 1600
counterfactuals for each adsorbate. From this pool of counter-
factual explanations and aer applying the validation lters
summarized in Fig. 1b, we found 8 candidates (i.e., material +
facet) featuring the desired target Eads: 4 for H, 2 for OH, and 2
for O. Even though our search for candidates was successful
using the default weight hyperparameters of DiCE (l1 and l2 in
eqn (7)), we explored the use of different values from the default
ones (0.5 and 1, respectively) on the example of H. However, we
found that, for our case, the generated counterfactuals did not
vary signicantly between different values of l1 and l2 and no
additional candidates were identied. In any case, we suggest
that for different applications, the effect of l1 and l2 in the
generation of counterfactuals should be assessed. All the
candidates found were then validated with DFT calculations
(the computational details of the calculations are given in
Section S1 in the SI). Table 2 shows all relevant information
about the discovered candidates through our XAI strategy, as
well as the ML predicted and the DFT Eads. We considered
a candidate to be valid if the difference between the predicted
Eads and the DFT Eads was within the MAE shown in Fig. 2 (0.10,
0.25, and 0.19 eV for H, O and OH, respectively). Out of the 8
© 2026 The Author(s). Published by the Royal Society of Chemistry
candidates, 4 of them were conrmed using DFT calculations:
YAu bcc(100) for H, ZnIr hcp(10−11) and ZnPt bct(101) for O,
and CdAu bcc(110) for OH. Considering the designing targets
(−0.49, −1.79, and 1.19 eV for H, O, and OH, respectively), the
largest error among the conrmed candidates was of only 0.14
eV for ZnIr hcp(10−11), hence demonstrating the potential of
our proposed approach. Moreover, it is important to highlight
that we did not have any sample in the dataset for the bcc(100)
and hcp(10−11) facets and for the tetragonal crystal lattice. We
proved before (see Fig. 3) that our ML models learned sensible
chemical/physical concepts from our data, and their applica-
bility to unknown crystal structures and surfaces further
conrms this. This knowledge is then successfully exploited
within our XAI approach.

As for the candidates that were not conrmed through DFT
calculations, there were two of them, YIr bcc(110) for H and
CdAu hcp(0001) for OH, for which the differences between DFT
and ML Eads were higher than the expected accuracy of the
models. In both cases, the ML model underestimated the
binding between the adsorbate and the surface at the discov-
ered site by more than 0.20 eV. In the case of YIr bcc(110), the
site found for this candidate was ontop-Ir and, following the
trends shown in Fig. 3b; the model probably assumed that the
low GCN of the site would lead to a more unfavorable envi-
ronment for the H atom than it actually is. For CdAu hcp(0001),
the deviation between the reference DFT Eads and the predicted
one can be related to the fact that (short)bridge positions for OH
are usually unstable (i.e., they are not a minimum in the
potential-energy surface) in binary intermetallic surfaces (as
was found during the construction of the dataset49) leading to
an under-representation of these sites in the dataset. Still, the
error (0.21 eV) is lower than the RMSE (0.30 eV) of the models
assessed in Fig. 2. Given the nding of these large errors
between the DFT Eads and the ML Eads, we explored the possi-
bility of using the variance of the predictions of the individual
sub-estimators of our ET models as an additional lter prior to
DFT calculations. We took as examples the candidates in Table
2 from which the identied adsorption sites were found to be
Chem. Sci., 2026, 17, 1058–1072 | 1067
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Fig. 4 Change of feature values from original samples to counterfactuals to validated candidates. The data are shown for three of the discovered
surfaces: YAu bcc(100) for H, ZnPt bct(101) for O, and CdAu bcc(101) for OH. The Eads shown for the original samples and the candidates are the
Eads calculated with the reference DFT calculations, while the one of the counterfactuals is an Eads predicted with our ML model for the original
counterfactual (i.e., before going to the candidates' retrieval step). The units of the WAR are pm and those of WIE are eV.
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stable (YIr bcc(110) and YAu bcc(100) for H, ZnIr hcp(10−11)
and ZnPt bct(101) for O, and CdAu bcc(101) and CdAu hcp(0001)
for OH). We found (see Table S6 in the SI) that, for H and O,
there is indeed a correlation between the variance of the tted
sub-estimators and the error of the ML model with respect to
DFT but it is not trivial to dene what is a large or small vari-
ance, while for OH, both CdAu candidates show the same
variance despite the rather large difference in accuracy of the
ML model. This small exercise shows that the variance of sub-
estimators in ensemble ML models could be used as an addi-
tional lter to select potential candidates. Nevertheless, its
applicability is conditioned on the denition of a proper
threshold for each adsorbate. This requires further research
and a deeper analysis into the performance of ML models on
a larger number of samples. Although it is worth exploring this,
it is out of the scope of the present work.

For the remaining two candidates that were not conrmed,
CaNi bcc(110) and YAu bcc(110), the adsorption sites found
(bridge-CaNi and hollow, respectively) resulted in being
unstable (i.e., the adsorption site changed during geometry
relaxation). This is not a failure either of the proposed XAI
strategy or of the ML models used. The ML models are only
constructed for the task of predicting Eads and, hence, cannot
foresee the instability of an adsorption site. Analogously, the
XAI design and discovery strategy rely on the available ML
models only and do not include any DFT- or ML-based lter to
help it anticipate possible unstable adsorption sites. The
1068 | Chem. Sci., 2026, 17, 1058–1072
implementation of such a lter in the pipeline of our proposed
strategy is possible but we considered that it is out of the scope
of the present work.

We have demonstrated the potential of our XAI strategy for
the design and discovery of new materials but nothing has been
discussed yet regarding the explanations that we can recover
from it. In this regard, Fig. 4 shows the features of the original
dataset samples, the generated counterfactuals, and examples
of the discovered and validated candidates (YAu bcc(100) for H,
ZnPt bct(101) for O, and CdAu bcc(101) for OH). First, for the
case of YAu bcc(100) found for the adsorption of H, the sample
of the dataset from which the counterfactual was generated was
ScCu bcc(101) with an Eads of −0.37 eV. The counterfactual that
led to the discovery of the YAu surface involved a decrease in J

(from 29.94 to 18.98) and an increase in WEN (from 1.63 to
1.72). Lowering J to reduce the value of the Eads was already
discussed in relation to Fig. 3c, but the impact of the WEN on
the adsorption of H was still unknown. Taking a look at the
scatter plot in Fig. 5a, it can be observed that, in regions close to
J equal to 30, large values of WEN lead to less positive SHAP
values (i.e., less positive Eads), while the trend is the opposite
when J is close to 20 with values of WEN greater than 1.8
presenting the most positive values. Further below a value of J
of 20, any correlation between the value of WEN and the
adsorption energy seems to disappear. This conrms why the
model suggests that a reduction of J together with a slight
increase in the WEN leads to a more negative Eads. In the case of
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Scatter plots of combined SHAP values. The data are plotted as a function of (a)J values with points colored according to their WEN for H,
(b) WAR with points colored according to theirJ values for OH, and (c) WIE with points colored according to their WEN for O. All samples in the
dataset were used to make these plots. For (a), only the range of J values from 9 to 31 was considered for the plot for the sake of clarity. The
combined SHAP values were calculated as the sum of the SHAP values for the two variables considered (e.g., WIE and WEN for O in (c)).
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CdAu bcc(101) found for the adsorption of OH, the original
sample was ZnAu bcc(101) with an Eads of 1.36 eV. The gener-
ated counterfactual from this sample was a decrease inJ (from
60.54 to 50.08) and an increment in the WAR (from 135 to 148
pm). Similar to the case of H, the importance of J on the Eads
was already found by the SHAP analysis (Fig. 3), while the WAR
was not among the most important features. Fig. 5b shows
a scatter plot relating the WAR and J with the impact on the
predicted Eads in terms of the SHAP values. From this plot, it is
evident that for surfaces with WARs between 135 and 140 pm,
adsorption sites with values of J above 50 are quite more
unfavorable than those with smaller values. Moreover, when
moving from this region to values of the WAR from 140 up to
150 pm we observe, in general, lower SHAP values. These
conclusions allow us to understand the result of the counter-
factual. It found a less positive Eads by reducing the value of J
and increasing the WAR of the surface. Finally, a more
complicated counterfactual led to the discovery of ZnPt bct(101)
for the adsorption of O. The original sample was DyPd bcc(101)
with a very negative Eads (−5.15 eV). The generated counterfac-
tual modied four features: WEN (from 1.71 to 2.03), J (from
85.87 to 72.68), WAR (from 157.5 to 135 pm), and WIE (from
7.14 to 9.31 eV). The effects of increasing WEN were already
discussed in the context of the SHAP analysis (Fig. 3). Larger
electronegativities lead to a less favorable adsorption for O. In
the case ofJ, although the feature is not as important as for the
other adsorbates, if we focus in Fig. 3c on values of ðQN

i¼1 SiÞ
2
N

around 120 (a site with a 1 : 1 proportion of the elements will
have this value, since Dy has 12 and Pd has 10 outer electrons)
we observe a strong negative correlation between J values and
the electronegativity of the site. Hence, smaller values of J are
also linked to less negative Eads. The role of the WAR is similar
to the one discussed for OH (the trends found in Fig. 5b are
analogous to those for O in Fig. S5 in the SI). WAR values
between 135 and 140 pm present very positive SHAP values for
adsorption sites with values of J higher than 60. The last
feature, WIE, is the one for which we do not yet have any insight.
In Fig. 5c, we show a scatter plot similar to previous ones where
we show the SHAP values for the different combinations of WIE
© 2026 The Author(s). Published by the Royal Society of Chemistry
and WEN in the dataset. As expected, the surfaces with the
largest WEN values show the most positive SHAP values
regardless of their WIE. However, there is an evident increase in
SHAP values for WIEs above 9 eV that correspond to less
favorable Eads. The analysis of these rather small changes
enables an understanding of why a surface with such charac-
teristics presents a considerable increase in Eads compared to
DyPd bcc(101).

During the process of retrieval of candidates (Fig. 1b), the
features found by the generation of counterfactuals are modi-
ed in order to t existing materials, surfaces, and adsorption
sites. However, we can see from the right-hand side of Fig. 5 that
they do not differ much from their counterfactual values.
Indeed, except for the values of J of YAu bcc(100) and CdAu
bcc(101) that deviate 43% and 20%, respectively, all features
change by less than 8% with respect to their counterfactuals.
Moreover, with the insights obtained from analyzing the
counterfactual explanations, it is easy to understand why the
Eads is as different as it is with respect to the Eads predicted from
the counterfactual features (and, hence, from the original
sample). For YAu bcc(100), a value of J of 10.83 is an indicator
of a more negative Eads than the original value of 29.94 of the
longbridge-Cu site at ScCu bcc(101), but of a slightly less
negative one than that of the counterfactual as can be observed
in Fig. 5a when comparing the general behavior of points in the
ranges ofJ from 10 to 12 and from 12 to∼18. Also, forJ values
around 10, WENs from ∼1.8 (as the one of YAu) might lead to
more positive Eads. In the case of ZnPt bct(101), there are two
changes that point towards a more negative Eads compared to
the one of the counterfactual. Both the WEN and the WIE
decrease. However, these changes are rather small (0.1 for WEN
and 0.13 eV for WIE) and, therefore, it has a very similar Eads as
that of the counterfactual. Finally, the value of J of the long-
bridge-Au site at CdAu bcc(101) is almost the same as the
original value of the longbridge-Au site at the ZnAu bcc(101)
surface. Hence, most of the decrease of Eads can be attributed
solely to the large WAR of the surface (10 pm larger than in
ZnAu). The less positive Eads with respect to the counterfactual
despiteJ being larger (less favorable for adsorption; see Fig. 3a)
Chem. Sci., 2026, 17, 1058–1072 | 1069
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can be linked to a change in WIE from 9.31 eV (for both ZnAu
and the counterfactual) to 9.11 eV for CdAu since the impact of
WIE on the Eads of OH shows similar trends to that on the Eads of
O (the plot for OH can be found in Fig. S6 in the SI for
comparison).

3 Conclusions

We presented a novel strategy for the discovery and design of
new materials based on XAI. Specically, we used counterfac-
tual explanations to get a set of features as close as possible to
those of a known sample in the dataset but with a desired target
value of the property of interest. Explainability is ensured by
construction since every candidate found can be linked to the
original sample from which the counterfactual was generated.
As important steps before a discovery and design task, we
highlighted the need for both a typical model selection process
and validation through chemical and/or physical concepts.

On the example of heterogeneous catalysts for hydrogen
production and energy generation, we trained ML models for
the prediction of Eads of H, O, and OH on binary intermetallic
compounds (AxBy) and pure metals. ET models resulted in
being the most accurate for the prediction of the target property
for all the considered adsorbates, showing both a good global
performance (in terms of MAE, RMSE, and R2) and a low rate of
outlier predictions. SHAP analysis of the ET models further
conrmed their reliability by demonstrating that their predic-
tions are obtained by leveraging chemical and physical
concepts. Local environment features, such as the GCN, that are
strongly related to the size of the adsorption site, or J, which
describes the chemical environment of the adsorption site
through the electronic properties of the nearest neighbors,
resulted in being the determinant for the prediction of Eads.

The coupling of our ML models with DiCE for generating the
counterfactuals within the XAI strategy offered more than 1000
candidates per adsorbate that were reduced to 8 aer the
candidates' retrieval and subsequent validation. Among these
discovered candidates, 4 of them were conrmed through
reference DFT calculations: YAu bcc(100), ZnIr hcp(10−11),
ZnPt bct(101), and CdAu bcc(101). Then, explanations to gain
insights into why the discovered surfaces are better than others
were devised by comparing original samples, counterfactuals,
and discovered candidates. Such explanations allowed us to
unveil subtle relationships between the most relevant features
(as found in SHAP analysis), other, in principle, less important
features, and the Eads. For instance, the WAR and the WIE were
found to be determinants in tuning the Eads to reach the target
values.

The most intricate, oentimes non-intuitive, correlations are
hard to devise not only for human experts, but also with basic
explanation tools (such as global feature analysis). However, as
a well-trained ML model is capable of exploiting them effec-
tively, all the insights and knowledge can be recovered if an
appropriate XAI tool is employed within the ML pipeline. Since
AI-assisted discovery of molecules and materials is meant to
revolutionize several elds (e.g., medicine, energy production,
and industry, among others) by designing new potential
1070 | Chem. Sci., 2026, 17, 1058–1072
compounds with specic properties, the implementation of XAI
for these approaches is a logical next step in their development.
Designing through AI should not be only about discovering new
molecules and materials, but also about understanding why
and how a formerly unknown compound is good, or even better,
for certain application(s) than the currently used ones. These
insights can implicitly lead to the creation of “recipes” of how to
modify a molecule or a material in order to improve or deplete
a target property. In the present study, we have worked towards
that direction by developing an alternative to already available
discovery and design strategies, such as high-throughput
screening or generative models, but that for the rst time
incorporates explainability as its main driving mechanism.
Given the demonstrated reach of our strategy, we expect that, in
the near future, most of the ML endeavors in computational
chemistry will incorporate XAI in one of its forms to achieve
accurate and reliable ML models that can provide knowledge
leading to new insights into chemistry and physics.
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Most data used to make the gures are available in the
supplementary material as independent les. Those gures for
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Although the datasets used to train the ML models in this
work were obtained from ref. 49, we provide, in the supple-
mentary material, all the datasets since, for this work, we split
the original O–OH dataset into two independent datasets and
changed slightly the format of the les for tting our Python
routines.

All models used for performing the XAI discovery and design
task (ET models trained on all samples in the dataset) are
available in the supplementary material. All other models di-
scussed in this work can be easily obtained with the publicly
available Python routines since all training, validation, and test
splits are provided in the supplementary material.

A le in xlsx format is provided in the supplementary
material containing the information of original samples,
counterfactuals, and validated candidates.
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