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In pursuit of an efficient solvation approach for the halogen bonded complex between molecular iodine and
tetramethylthiourea that reliably reproduces experimental trends, we investigated a range of solvent
models, from implicit representations to periodic metadynamics simulations alongside micro-solvation
and ONIOM-based methods as robust alternatives. Implicit solvent models fail to describe halogen-
bonded complexes in high-polar solvents but provide surprisingly accurate estimates of binding free
energies in all low to moderately polar solvents. For accurate and reliable modeling, especially in polar
media, explicit solvent representations are essential. Periodic metadynamics simulations typically provide

enhanced accuracy in calculating free energy differences, particularly for systems with complex solvation
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However, they are computationally demanding and restricted to generalized gradient

approximation functionals (GGA). To overcome this limitation and improve accuracy, we employed the

DOI: 10.1039/d55c06336a machine learning perturbation theory technique, enabling the estimation of free energies at levels of
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Introduction

The solvent environment plays a critical role in modulating
halogen bonding (X-bonding), significantly affecting both the
strength and geometry of these noncovalent interactions.
Understanding and modelling these solvent effects is crucial, as
they impact a wide range of applications,” including drug
design,*® supramolecular self-assembly,” protein engineering,
catalysis, molecular recognition, and chemical sensing.®®

In aqueous or other polar environments, noncovalent inter-
actions are often attenuated due to competitive solvation by the
surrounding solvent molecules. However, it is evident that the
effect of the solvent largely depends on the nature of the
interactions between the subsystems. When electrostatic inter-
actions are predominant, the dielectric constant of the medium
plays a crucial role, as polar solvents tend to screen these
interactions, thereby weakening them. Systems dominated by
polarization are moderately affected by the solvent, and the
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solvent effect varies proportionally with the extent of polariza-
tion. Charge transfer interactions can be stabilized or destabi-
lized depending on how well the solvent stabilizes the charge-
separated resonance forms. Recently, we have shown that the
stability of neutral hydrogen-bonded (H-bonded) complexes
increases in a more polar solvent, provided there is substantial
charge transfer between the subsystems.'®" This is against the
conventional belief that the stability of H-bonded complexes
decreases in a more polar solvent.”™ In the case of halogen
bonds (XBs), solvent effects do not follow a simple or universal
trend. Research on neutral halogen bonded (X-bonded) systems
in solution is still limited and often contradictory.”**® For
example, Carlsson et al. suggested that neutral XBs are slightly
stabilized with an increase in solvent polarity.”” Hunter et al.
reported that the X-bonded complex between molecular iodine
(I;) and tetramethylthiourea (TMTU) is rather insensitive to
solvent polarity.>® Conversely, Fan-Hagenstein et al. found that
the formation of X-bonded complexes between pyridine and
perfluoroalkyl iodides is significantly influenced by the solvent,
with polar solvents enhancing the stability of these complexes.>
Theoretical investigations into neutral XBs in solution also
remain relatively sparse.”®** For the complexes formed by
a series of aromatic XB acceptors and donors, Frontera et al
found that the interaction energies are less favourable in solu-
tion compared to those in the gas phase.*> However, several
studies by Cabot et al. on perfluorohexyl iodide, and by Li et al.
on BrCl---H,CS and HOX:--H,CS (where X = F, Cl, and Br),
indicate that solvent effects can stabilize XBs."**** Both
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Carlsson et al. and Taylor et al. argued that a purely electrostatic
model fails to adequately describe X-bonding behaviour in
solution.”>*’

Given these diverse findings, identifying an appropriate and
efficient computational solvent model for X-bonded systems is
both timely and necessary. To evaluate computational solvent
models, we utilize the extensive experimental data available for
the TMTU- -1, system investigated by Hunter and co-workers.*
The paper presents data on two H-bonded and two X-bonded
complexes in nine low to moderately polar and six highly
polar solvents. The results are, at first glance, surprising since
binding free energies of X-bonded complexes measured in
various solvents differ by less than 2 kcal mol™* and, further-
more, they are systematically larger in low to moderately polar
solvents. This paper serves as a unique source of high-quality
binding free energy data for X-bonded complexes across
different solvents. The complexity of solvent interactions,
particularly in biological contexts, makes the accurate model-
ling of XB behaviour in solution challenging and underscores
the need for quantum mechanical (QM) methods. Implicit
solvent models are widely employed across various fields of
chemistry and biochemistry due to their computational effi-
ciency and cost-effectiveness. While implicit solvent models®**~*’
capture general solvent trends, they oversimplify solute-solvent
interactions by treating the solvent as a uniform dielectric
continuum.*® This prevents accurate modelling of competitive
binding scenarios, in which solvent molecules interact directly
with donor or acceptor sites. As a result, explicit solvation
models are often required to account for specific, localized
solute-solvent interactions that can alter both the binding
strength and geometry.

A rigorous computational modelling is crucial for designing
and optimizing molecules that rely on noncovalent interactions
in solutions, particularly when applied in medicinal chemistry,
enzyme design, or material synthesis.

Computational details
Implicit solvent models

All geometries were initially optimized at the DFT-D** level
using the PBE0-D3 functional**** with zero damping and the
def2-TZVPP basis set.*>** These calculations were performed
with the Gaussian 16 program package.* To account for solvent
effects, we employed the COSMO, SMD, and C-PCM continuum
solvation models,**?” as well as periodic explicit solvent models
and a combined explicit-implicit micro-solvation approach.
The geometries were further refined using the range-separated
hybrid meta-GGA functional wB97M-V, which includes VV10
nonlocal correlation®® and is known to deliver reliable results
for non-covalent systems. These calculations were carried out
with ORCA 6.0.*”** The AG values were computed using the rigid
rotor-harmonic oscillator-ideal gas approximation at the PBEO
level, while thermodynamic corrections at the wB97M-V level
were derived using the Quasi-RRHO approach.*

To evaluate the total interaction energies AE (eqn (1)), we
calculated the energy difference between the bound state
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(complex) and the separated state (monomers). This corre-
sponds to the binding process TMTU + I, — TMTU:-I,.
AE = Ecomplex - - Emonomer 2 (1)

Emonomer 1

Here, Ecomplexs Emonomer 1 @A Emonomer 2 denote the electronic
energies of the optimized structures of the complex, monomer 1
(TMTU), and monomer 2 (I,), respectively.
Analogously, the binding free energy differences AG were
obtained according to eqn (2a):
AG = Gcomplex - (Za)

Gmonomer 1= Gmonomer 2

The following formula was used for Helmholtz free
energy (AA):

AA = Acomplex - (Zb)

Amonomer 1= Amonomer 2

Two different charge models are used to estimate the charge
transfer: CT;, calculated using Hirshfeld charges,* and CT,,
calculated using Lowdin charges.®>**

Explicit-implicit solvent models

Micro-solvation and ONIOM. For the micro-solvation®-°
studies, 30 explicit solvent molecules were included in combi-
nation with the COSMO implicit solvent model at the PBE0-D3/
def2-SVP level of theory. Dielectric constants (¢) of 2.23, 8.93,
and 32.61 were used to represent CCl,, CH,Cl,, and CH3;0H,
respectively. The critical step represents the size of the solvation
shell. Considering the complex, TMTU with iodine is small, as it
consists of only ten heavy atoms; however, its solvation shell
contains 30 solvent molecules. Evidently, for a larger complex,
the number of solvent molecules in the solvation shell
dramatically increases, making the respective QM calculations
prohibitively expensive. One way to solve the problem is to use
the ONIOM (Our own N-layered Integrated molecular Orbital
and molecular Mechanics) approach.”” The method was
employed to assess the strength of the X-bonded complex in the
presence of up to 50 explicit solvent molecules, treating the
complex as the high layer and the solvent molecules as the low
layer. The high layer was treated at the PBE0-D3/def2-TZVPP
level of theory, while the low layer was described using the
PM7 (ref. 58) method.

The binding free energy was computed as the energy
difference,

ONIOMMS _ GONIOM/MS _ ;ONIOM/MS
Here, close means the bound state, and for far, we have
considered a distance of 6 A between the monomers. For the
micro-solvation method, the same formula was used for the
calculation of binding free energy.

Periodic models

The TMTU---I, complex was simulated with more sophisticated
periodic descriptions of solvents. Due to the high computa-
tional cost of this approach, the number of solvent molecules

© 2025 The Author(s). Published by the Royal Society of Chemistry
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was limited to 24 per system for carbon tetrachloride and di-
chloromethane solvents. For methanol, 28 explicit solvent
molecules were used. Including more solvent molecules would
have exceeded our available computational resources.

At the beginning, the TMTU---I, complex solvated with 24
molecules of the solvents, which were placed in a large unit cell
(50 A x 50 A x 50 A). Initial geometry optimizations were per-
formed using classical force fields via the QuantumATK
package.>*® Subsequently, the system was pre-equilibrated
using force-field molecular dynamics (MD) in the NpT
ensemble, employing the Martyna-Tobias-Klein (MTK) algo-
rithm®* keeping the pressure p and the temperature 7 constant.
The number of particles N is constant by design.

The resulting pre-equilibrated structures were further opti-
mized using the Vienna Ab initio Simulation Package (VASP),%**
followed by ab initio MD in the NpT ensemble. For this purpose,
the Parrinello-Rahman algorithm®*® was used. After NpT
equilibration, a final ab initio MD simulation was performed in
the NVT ensemble - number of particles, volume, and temper-
ature (the Nosé-Hoover thermostat®””® was employed) were
constant, using the average unit cell volume obtained from the
previous NpT run. Final cell volumes for each investigated
system are summarized in Table S1 in the SI.

All ab initio MD and metadynamics simulations were carried
out using the VASP at the PBE-D3 level of theory, with the
Becke-Johnson damping function.**”*”> A plane-wave basis set
was employed to describe the valence electron region, while the
projector-augmented wave (PAW) method””* was used to treat
the core electrons. The ALGO = Fast was employed and the
energy cutoff and precision mode parameters were set as
follows: ENCUT = 400 eV and PREC = NORMAL. To determine
the equilibration period of the MD trajectories (see Table S2 in
the SI), we employed the Mann-Kendall tests.”

Once equilibrium was reached, the resulting structure was
used as the starting point for ab initio metadynamics.”®”” The S—
I distance was chosen as the collective variable (CV) for the
TMTU---I, system. A very fine bias potential was applied to
ensure high precision in the metadynamics simulations: the
height of the Gaussian hill was set to 0.0005 eV and the width of
the Gaussian hill was 0.005 A, added after every two steps in
a metadynamics run.

Since the canonical (NVT) ensemble is used, we work with
Helmbholtz free energy A instead of Gibbs free energy G. We
report the free energy of reaction AAr_p) (in our case, the
binding process of TMTU with the iodine dimer from separated
TMTU + I, (R) to bound TMTU---I, (P) in different solvents)
defined in eqn (3):

_ P(gref.R)
Adrp = gy oz — kT In <P(frefp)) ) 3)

where the term AA; is the reversible work needed to shift

SrefR Eref,P
the CV, £, from g to &reep. This contribution can be
obtained e.g. from metadynamics simulations, where the CV

(S-1 distance) is gradually driven from the reactant (,.¢r) to the

P(gref,R)>

product (£.erp.) state. The second term, —kgT In
P(gref,P)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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represents a correction that accounts for the normalized prob-
abilities of observing the specific reactant P(£err) and product
P(£,erp) configuration. These probabilities are obtained from
molecular dynamics trajectories, for instance using histogram
methods. Although the specific values &,¢r and &..¢p can be
chosen arbitrarily, in practice we select the maximum value of
the corresponding normalized histograms. Here, kg denotes the
Boltzmann constant and T is the thermodynamic temperature
of simulation (340 K in our case). The statistical errors were
determined using the block averaging method” with a 95%
confidence interval. The overall sum of errors was calculated as

follows:
Sum of errors = \/ Sboundz + Sseparat::d2 (4)

where Spouna and Sgeparatea represent errors for the bound and
separated state, respectively.

Machine learning perturbation theory

For free energy calculations in an improved level of theory, the
Machine Learning Perturbation Theory (MLPT)”*®** technique
was employed. This approach connects A-ML* where a model is
trained to predict energy differences of the target level (i.e. more
accurate and computationally more demanding method), rela-
tive to a reference method (i.e. computationally low-cost,
production method), with thermodynamic perturbation theory
(PT).*

In our case, the production method is the GGA-type PBE
functional supplemented by the Grimme dispersion correction
and the Becke-Johnson damping function D3(BJ). As target
methods, we selected two DFT functionals from the hybrid rung
of Jacob's ladder,* both enhanced with D3(BJ) corrections:
range-separated HSE06 (ref. 85) and unscreened PBE0.****> For
these target functionals in all solvents, we chose a time step
value of TIME = 0.7 within the Damped algorithm, and we set
the energy cutoff (ENCUT) of 520 eV and “Accurate” precision.

Thus, MD data were generated using the PBE-D3(B]J) func-
tional (for more details, see Section “Periodic models”) with
a Hamiltonian H(p,x). Using MLPT, simulation at the target
levels described by the Hamiltonian H(p,x) requires only a few
dozen single-point calculations (we selected every (Ngata/100)-th
configuration, where Ng,, is the total number of configurations
obtained from the production MD run) for training the ML
model. The rest of the simulation is predicted based on this
training. In this way, MLPT enables simulations that are several
orders of magnitude faster without sacrificing accuracy.

Several applications of the MLPT technique in the efficient
determination of various properties, such as adsorption
enthalpies,”*"*¢ free activation energies®***” or fully anharmonic
dimerization thermodynamics at challenging target levels,
including CCSD(T)*® have been found.

The formula for the target free energy difference between two
stable states AAg_, p is known (see, for instance, ref. 80 and 89):

- . (exp[ —AV(r) /kpT])p
S (e O

Chem. Sci., 2025, 16, 23129-23138 | 23131
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where the AAg_,p term is the free energy of the reaction ob-
tained using the production method (see eqn (3)). The second
term represents ensemble averages over initial (---)g and final
(---)p stable states. To evaluate these terms, the second-order
cumulant expansion was employed (for details, see the excel-
lent textbook by Chipot and Pohorille®®), which assumes
a Gaussian-shaped function of the potential energy
distribution:

AV (r) (AV(r)

(ool - S5 = o | - 525

(AV2(r)) — (AW (r))
2(ksT)*

(6)

Note that the term AV(r) in eqn (5) and (6) denotes the
difference in potential energy between the target and the
production Hamiltonians. More generally, AH(r,p) represents
the Hamiltonian difference, but if the two Hamiltonians differ
only in their potential energy contributions, the free energy
expression can be written equivalently using AV(r) instead of
AH(r,p): H(r,p) - H(rp) = V{r) - V() = AV(P.

The statistical errors were determined using the block aver-
aging method”® in the same way as in the case of the production
method (see eqn (4)).

A kernel ridge regression®* model trained on a small set of
target-level calculations is used to predict energy differences
AV(r) for the full ensemble, employing the REMatch kernel®?
with SOAP descriptors® as implemented in the DScribe®* and
scikit-learn®*® libraries, respectively.

Details about minimizing errors in ML predictions are pre-
sented in Tables S3 and S4 in the SI.

Results and discussion
Implicit models

Although implicit solvent models do not capture specific
solvent-solute interactions as accurately as explicit models, they
provide a very reasonable approximation for bulk solvation
effects, like electrostatic stabilization, solvation free energy, and
dielectric screening. Therefore, we begin by evaluating the
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performance of the implicit COSMO* solvation models against
the experimentally observed trends in binding free energies AG.
These experimental AG values are derived from association
constants reported by Hunter and co-workers.>® Table 1 presents
the interaction energies (AE), Gibbs free energies (AG) and
Helmholtz free energies (AA4) at temperature T = 298 K, of the X-
bonded TMTU:--I, complex in different solvents at the PBE0-D3/
def2-TZVPP level of theory. The results indicate that the stability
of the TMTU:--I, complex increases steadily with increasing
solvent polarity. However, this trend is supported by experi-
mental data only for low to moderately polar solvents (Table 1
and Fig. 1a). When a highly polar solvent is used, the correlation
between polarity and stability of the complex is lost. Thus, an
implicit solvent model can only be used for low to moderately
polar solvents, where its performance is incredible. The corre-
lation between calculated and experimental AG for six non-polar/
low-polar solvents with ¢ between 1.9 and 8.9 is as high as 0.960
(Table 1 and Fig. 1b). A strong correlation was also observed
between the experimental and calculated AG values and the
solvent dielectric constant (Fig. 1b). Nevertheless, this relation-
ship deteriorates markedly in the case of highly polar solvents.
To elucidate the underlying reasons for this deviation, a more
detailed investigation was undertaken using three representative
solvents, each chosen to reflect a distinct range of dielectric
properties. Carbon tetrachloride (CCl,) was selected as a low-
polar solvent (¢ = 2.23), dichloromethane (CH,Cl,) as a moder-
ately polar solvent (¢ = 8.93), and methanol (CH;OH) as a high-
polar solvent (¢ = 32.61). We started with evaluating the perfor-
mance of three widely used implicit solvation models (COSMO,
SMD, and CPCM) against the experimental AG trends, as
summarized in Table 2. All implicit solvent models examined
yielded consistent results, predicting a steady increase in
complex stability with increasing solvent polarity; none captured
the trend observed for more polar solvents. Tables 2 and S5 in the
SI also list the S---I bond lengths (r) and charge transfer (CT)
values. To assess the functional dependency, values are also re-
ported with the wB97M-V functional with the COSMO solvation
model in Table S6 in the SI. Tables 2 and S5 in the SI further
show a significant charge transfer from I, to TMTU upon

Table 1 The interaction energy (AE), Gibbs free energy (AGc,c) and Helmholtz free energy (AAcac) (in keal mol~, T = 298 K) of the TMTU---1,
complex in various solvent media with the COSMO solvent model calculated at the PBEO-D3/def2-TZVPP level of theory. Experimental
association constants? (K, M™!) and free energies? are given for comparison

Dielectric constant

Solvent (8) AE AGcaIc./AAcalc. AGexp. Kac

n-Octane 1.94 —16.94 —6.52/—7.83 —5.38 8800 + 900
Carbon tetrachloride 2.23 —-17.19 —6.74/—8.07 —5.27 7300 % 600“
Toluene 2.38 —-17.31 —6.84/—8.17 —-5.51 11 000 £ 1600°
Chloroform 4.81 —18.50 —7.88/—9.25 —5.86 20000 £ 1000*
1,1,2,2-Tetrachloroethane 8.4 —-19.27 —8.62/—10.00 —6.46 55000 + 15 000°
Dichloromethane 8.93 —19.34 —8.68/—10.07 —6.50 58000 & 10 000"
Acetone 20.7 —20.02 —9.35/—10.74 —4.47 1900 + 300°
Methanol 32.61 —20.24 —9.58/—10.97 —4.68 2700 =+ 200°
Acetonitrile 37.5 —20.27 —9.61/—11.00 —4.70 2800 + 70°
Water 78.4 —20.47 —9.81/—11.21 — e

¢ From ref. 25, measured by UV/vis. b From ref. 25, measured by "H NMR titration. ¢ From ref. 25, the errors were determined as 2x the standard

deviation from multiple titration repeats.
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Table2 The interaction energy, AE (kcal mol™), Gibbs free energy, AG, Helmholtz free energy, AA (kcal mol™, T= 298 K), halogen bond length,
r (A), and charge transfer (CT,, calculated from Hirshfeld charges; CT,, calculated from Léwdin charges) of the TMTU---1, complex in various
solvents calculated with implicit solvent models at the PBEO-D3/def2-TZVPP level of theory. Experimental free energies®® are given for

comparison
COSMO SMD CPCM Exp.
Solvent AE AG/AA r CT,/CT, AE AG/AA r CT,/CT, AE AG/AA r CT,/CT, AGexp.”
Carbon —17.19 —6.74/ 2.724 —0.408/ —17.86 —7.55/ 2.731 —0.416/ —17.08 —6.79/ 2.735 —0.413/ —5.27
tetrachloride —8.07 —0.376 —8.81 —0.383 —8.08 —0.381
Dichloromethane —19.34 —8.68/ 2.610 —0.549/ —20.84 —11.05/ 2.631 —0.545/ —18.84 —8.43/ 2.637 —0.536/ —6.50
—10.07 —0.510 —12.28 —0.507 —9.76 —0.499
Methanol —20.24 —9.58/ 2.574 —0.607/ —21.98 —13.02/ 2.599 —0.593/ —19.52 —9.18/ 2.606 —0.580/ —4.68
—10.97 —0.564 —14.26 —0.552 —10.52 —0.540

¢ From ref. 25.

complex formation. Additionally, the S---I bond length decreases
systematically with increasing solvent polarity, while the corre-
sponding charge transfer (CT) values increase substantially. All
the charge models (Hirshfeld, Léwdin, NBO and CM5) consis-
tently indicate that the CT values for this complex are indeed
significant. The strong charge-transfer nature of the interaction
is further supported by the UV/Vis spectrum of the TMTU---I,
complex, which displays a distinct charge-transfer band in the
330-340 nm range.> Previously, we have shown that when the
charge transfer (CT) between the subsystems is significant, it
leads to stabilization of the X-bonded complex with increasing
solvent polarity.”® However, when the CT is low, the opposite
trend may be observed. Since the CT is significant for the
TMTU: -1, complex, its stabilization with increasing solvent
polarity is consistent with our expectations, provided there are no
substantial specific solvent-solute interactions.

In contrast, for the tetramethylurea---I, complex, another
system studied by Hunter and co-workers,* both experimental
and computational results show destabilization with increasing
solvent polarity. We have demonstrated that the CT values for
this complex are significantly lower, which in turn leads to this
opposite trend (Table S7, SI).

Explicit-implicit solvent models

Micro-solvation and ONIOM. The continuum solvent models

characterized solely by dielectric constants have some

© 2025 The Author(s). Published by the Royal Society of Chemistry

limitations - particularly when significant specific interactions
occur between the solvent molecules and the complex. These
limitations can be addressed through natural refinement
involving a more detailed representation of the first solvation
shell. This is typically achieved by explicitly including a few
solvent molecules around the complex, embedded within an
implicit solvent environment — a method commonly referred to
as the cluster-continuum approach or micro-solvation
model.*®*¢ The inclusion of the implicit environment in the
micro-solvation framework allows for the necessary treatment
of long-range electrostatic interactions. It is essential to have
enough number of explicit solvent molecules to ensure accurate
representation of the complex within the micro-solvation model
for both bound and separated states.

Thus, calculations were carried out using 30 explicit solvent
molecules, each embedded in a continuous solvent environ-
ment described by the COSMO implicit solvent model. The
incorporation of explicit solvent molecules significantly
destabilizes the TMTU:--I, complex in CH;0H, aligning well
with experimental observations (Table 3). In contrast, a slight
stabilization is observed when moving from CCl, to CH,Cl,.
This is again in line with the experimental trend. The differ-
ences in the S---I bond length, with or without explicit solva-
tion, are negligible (Table 3). We extended the study by using
four more low-energy conformers from MD simulation
trajectories. We used these as starting points to construct

Chem. Sci., 2025, 16, 23129-23138 | 23133
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Table 3 The Gibbs free energy (AG), Helmholtz free energy (AA) (in kcal mol™, T = 298 K), and halogen bond length, r (A) of the TMTU--I,
complex in the micro-solvation approach with 30 explicit solvent molecules in the COSMO model calculated at the PBEO-D3/def2-SVP level of
theory and in the ONIOM approach with 50 explicit solvent molecules calculated at the PBEO-D3/def2-TZVPP:PM7 level of theory. Experimental

free energies® are given for comparison

Micro-solvation ONIOM Exp.
Solvent AG/AA r AG/AA r AGey.”
Carbon tetrachloride —16.10/—16.63 2.691 —12.92/-13.39 2.867 —5.27
Dichloromethane —16.82/—17.08 2.641 —13.69/—14.18 2.461 —6.50
Methanol —7.01/—7.44 2.587 —9.92/—-10.48 2.494 —4.68
“ From ref. 25.
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Fig.2 The optimized geometries of the TMTU- -1, complex: (a) with the implicit COSMO solvent model in methanol medium, (b) in the complex
form with 30 explicit methanol molecules included in the COSMO model, and (c) as separated systems, also with 30 explicit methanol molecules
included in the COSMO model. The bond lengths are in A [C: cyan (TMTU); grey (solvent), S: yellow, |: violet, H: white, N: blue, O: red].

complexes with 30 solvent molecules of CCl,, CH,Cl,, and
CH;OH. Table S8 in the SI shows the free energy order for all
the conformers, and Table 3 lists the AG values for the most
stable conformer with 30 solvent molecules. Destabilization
occurs for the TMTU---I, complex in CH;OH, as the separated
systems are stabilized by both conventional hydrogen bonding
and bridging hydrogen bonding with CH3;OH (Fig. 2c). In
particular, C=S---H and O---I-I types of hydrogen and
halogen bonds formed through the bridging CH;OH molecule
contribute to the stabilization of the separated systems. Please
note that these calculations are highly computationally
demanding; thus, the number of solvent molecules included
in the micro-solvation model is restricted by computational
cost. Additionally, the ONIOM approach was employed to
evaluate the strength of the X-bonded complex in the presence
of 50 explicit solvent molecules, treating the complex as the
high layer (PBEO-D3/def2-TZVPP) and the solvent molecules as
the low layer (PM7). For each solvent, five different conformers
are considered in the ONIOM calculations (Table S9, SI), and
the Gibbs free energy (AG) is reported for the most stable
conformation (Table 3). ONIOM calculations also reproduce
the experimental trends (Table 3). However, both micro-
solvation and ONIOM significantly overestimate the experi-
mental AG values.

23134 | Chem. Sci,, 2025, 16, 23129-23138

Calculations of free energies of dimerization of TMTU + I, in
explicitly defined solvents for temperature T = 340 K in
periodic models

To increase computational accuracy, we investigated the inter-
actions between TMTU and the iodine molecule in a periodic
model. Periodic simulations are generally expected to provide
improved accuracy compared to droplet models, particularly for
systems exhibiting complex solvation behaviour. The periodic
boundary model offers several advantages over the droplet
model approach. For example, it eliminates the risk of mole-
cules “boiling off” during a MD run. Moreover, unlike the
droplet model, the periodic approach has no surface, thereby
avoiding artificial interactions between the system and vacuum
that could distort the results. In summary, the periodic
approach enables long MD simulations while preserving
stability and ensuring reliable results.

Metadynamics simulations of the TMTU:--I, molecule
(Fig. 3) were performed in three different solvents: 24 explicitly
defined molecules for two low to moderately polar solvents
(CCl,; and CH,Cl,) and 28 explicit solvent molecules for one
high-polar solvent (CH;OH), under periodic boundary condi-
tions. We initiated the simulations from the more stable
(bound) states and introduced a bias potential constructed in
the space of the CV (§) chosen as the distance between the

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06336a

Open Access Article. Published on 27 October 2025. Downloaded on 1/13/2026 7:12:23 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article
0
ot S i P NPV RSN
5F
E -10+
?UU _15_
< cCly —
< -20f CHyCl,
CH30H
25+
2 3 8

4 5 6
Collective Variable (§) (S-I)/ A

Fig. 3 The bias potential constructed in the space of the S—I distance
(chosen CV) obtained from ab initio (PBE-D3(BJ)) metadynamics in
three solvents: CCly, CH,Cl, and CH3zOH. The temperature of meta-
dynamics simulations is T = 340 K.

Table 4 The PBE-D3(BJ) free energy differences of the TMTU--I,
system in the three solvents as defined by eqn (3). Experimental free
energies® are given for comparison

Solvents AAR . p)/keal mol ™ AGeyp”
Carbon tetrachloride —11.93 + 1.09 —5.27
Dichloromethane —20.82 + 1.31 —6.50
Methanol —9.59 + 1.32 —4.68

“ From ref. 25.

sulphur and iodine atoms (Fig. 3). This allowed us to reach
a second stable state corresponding to the separated states. It
should be noted that although we considered a binding reaction
(i.e. from the separated state to a bound state), the direction of
the CV change is irrelevant in metadynamics.

After taking into account the probabilities of the occurrence
of the concrete £ values obtained from MD trajectories of both
states, we were able to determine the free energy differences as
functions of CV, AA(£), according to eqn (3). This methodology
successfully reproduces the experimentally observed stability
trends, with the corresponding values summarized in Table 4.

While the approach captures the correct qualitative trend, it
tends to significantly overestimate both absolute (A4) and
relative (AAA) free energy differences compared with the
experimental reference, similar to micro-solvation and ONIOM-
based methods. Moreover, the periodic metadynamics method
is computationally more expensive than micro-solvation or
ONIOM approaches and can accommodate comparatively fewer
solvent molecules. Due to computational cost, we restricted this
approach to the PBE-D3(B]) level of theory.

Free energy finite-T calculations beyond GGA functionals

MLPT. Table 5 presents the target-level free energy differ-
ences for the binding process of TMTU + I, in three different
solvents. When compared with experimental data (last column
in Table 5), both HSE06-D3(BJ) and PBE0-D3(B]) functionals
reproduce the experimental trend: in absolute values, A4 is the
smallest for CH;OH, followed by CCl,, and the largest for
CH,CL,.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

Table 5 The MLPT-assisted high-level DFT free energy differences
(AAmethod) (in kcal mol™) for the binding process of TMTU-I, in
different solvents. The temperature is 340 K. Values in bold indicate the
DFT results closest to the experimental reference AGe,,. Experimental
free energies® are given for comparison

Solvent MHSEO&-DB(B]] AAPBEO-D3(BJ) AGexp.a
Carbon tetrachloride —10.34 +1.35 —13.98 + 1.28 —5.27
Dichloromethane —19.38 + 1.37 —18.66 +1.37 —6.50
Methanol —7.53 £ 1.09 —7.14 +1.09 —4.68

¢ From ref. 25.

The MLPT-corrected free energy differences, AAHSEOG_M(BD,
yield values closer to the experimental references compared to
the AApgg.ps(sy) baseline (see Table 4) across all three solvents.
By contrast, the ML-correction with the PBE0-D3(B]J) functional,
MPBEO,D3(BJ), exhibits a larger deviation from the experimental
reference in CCl, than the corresponding baseline value.

This inverse trend arises because the difference between the
target and production methods, calculated via the cumulant
expansion (CE), is evaluated separately for the reactant (sepa-
rated state) and the product (bound state). When the CE value
(i.e., the energy difference between target and production
methods) is more negative for the reactant than for the
product, the resulting correction - defined as the difference
between these two CE values (see the second term of eqn (5)) -
is positive. Adding this positive correction to the (already
negative) Adppp.psmy reduces the absolute value of the free
energy. This scenario applies to CH;0H and CH,CI, for both
the functionals, as well as to CCl, with HSE06-D3(BJ).
Conversely, when the CE value is lower for the product, as
observed with PBE0-D3(B]J) in CCly, the correction is negative,
making the overall free energy even more negative. We attri-
bute this to an artifact arising from the combination of the
unscreened functionals and the solvent, possibly due to
a preference of a (significantly) different density, ie.,
a different unit cell volume for the reactant and/or product.

Apart from this outlier, all other ML-corrected values are
closer to the experimental reference than the PBE-D3(B]) base-
line. The closest agreements are observed as follows: in CCl,
with HSE06-D3(BJ), the error is 5.07 4+ 1.35 kcal mol'; in
CH,Cl, with PBE0-D3(BJ), 12.16 # 1.37 kcal mol'; and in
CH;OH with PBE0-D3(BJ), 2.46 + 1.09 kcal mol . These values
are highlighted in bold in Table 5.

Relative free energy differences between different solvents
(AAA) are overestimated compared with experimental data,
similar to production PBE-D3(BJ]) level results. Among the
functionals, the AAA differences between the two low to
moderately polar solvents are as follows: AAApppo.p3my =
4.68 keal mol™" and AAAgsgos-namy) = 9.04 keal mol™'. The
differences between the high-polar CH;OH and moderately
polar CH,Cl, remain nearly constant, 11.52 kcal mol™! for
PBE0-D3(BJ) and 11.85 kcal mol ' for HSE06-D3(BJ). For
CH3;0H and the low-polarity solvent, CCly, the spread is slightly
wider: 2.81 keal mol " with HSE06-D3(B]J) and 6.84 kcal mol '
with PBE0O-D3(BJ).
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Critical evaluation of different techniques for estimation of
binding free energies of X-bonded complexes in a solvent
provides the following take:

(i) Continuous solvent cannot be used for both apolar and
polar solvents. The model, however, provides very good esti-
mates of AG for low to moderately polar solvents. COSMO and
CPCM provide not only qualitative but even quantitative esti-
mates of AG.

(ii) The micro-solvation and ONIOM models, contrary to the
continuous models, provide reasonable qualitative agreement
of AG for all three solvents considered, though their absolute
values are strongly overestimated.

(iii) Theoretically justified periodic calculations performed at
the PBE level also provide qualitative estimates of AG for all
solvents considered, but their quantitative values are over-
estimated even more than in the previous case.

(iv) Upon considering the ML-corrected values, the situation
is changed only slightly. HSE06 and PBEO methods qualitatively
agree with experimental values, though, again, the respective
absolute values are strongly overestimated.

Conclusions

Solvent effects play a critical role in modulating the XB between
molecular iodine and tetramethylthiourea in solution and their
theoretical estimates are tedious and represent a challenge to
current computational chemistry. The complex exhibits signif-
icant charge-transfer character and are notably stabilized in
low-polarity environments (dielectric constant ¢ =< 10) with
moderate increases in solvent polarity. However, in highly polar
solvents, the XB weakens due to the stabilization of charge-
separated species via competitive solvation of the individual
components. While implicit solvent models are valuable for
identifying general trends and for initial screening of molecular
systems, they inherently oversimplify solute-solvent interac-
tions by neglecting specific, directional, and dynamic solvent
effects. The method cannot be used for high-polar solvents, but
for low to moderately polar solvents, it provides good estimates
of binding free energies. To address these shortcomings,
explicit solvent models are essential. By providing a detailed,
dynamic representation of solvation, explicit models enable
more reliable predictions of free energy trends in solution.

By systematically comparing implicit and explicit solvent
models, incorporating periodic boundary conditions to better
capture realistic solvation environments, and applying
machine learning perturbation theory to balance computa-
tional cost and accuracy, we provide a robust framework for
evaluating solvent effects. Although the current error margins
(2.5-12 kecal mol ") are too large for reliable predictive appli-
cations in catalysis, materials design, or molecular recogni-
tion, the approach effectively captures the trends observed in
experimental association constants across multiple solvents.
More broadly, this study contributes to the development of
general strategies for modeling noncovalent interactions in
complex solvent environments, which is essential for
advancing both fundamental chemistry and practical appli-
cations. We also acknowledge that achieving more quantitative
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agreement is necessary for the direct predictive use of the free
energy data.
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