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ies for free-energy calculations in
a halogen-bonded complex: implicit, explicit, and
machine learning approaches

Jaroslav Vacek, abc Dávid Vrška, ad Debashree Manna, *a Rabindranath Lo *a

and Pavel Hobza *ab

In pursuit of an efficient solvation approach for the halogen bonded complex betweenmolecular iodine and

tetramethylthiourea that reliably reproduces experimental trends, we investigated a range of solvent

models, from implicit representations to periodic metadynamics simulations alongside micro-solvation

and ONIOM-based methods as robust alternatives. Implicit solvent models fail to describe halogen-

bonded complexes in high-polar solvents but provide surprisingly accurate estimates of binding free

energies in all low to moderately polar solvents. For accurate and reliable modeling, especially in polar

media, explicit solvent representations are essential. Periodic metadynamics simulations typically provide

enhanced accuracy in calculating free energy differences, particularly for systems with complex solvation

behavior. However, they are computationally demanding and restricted to generalized gradient

approximation functionals (GGA). To overcome this limitation and improve accuracy, we employed the

machine learning perturbation theory technique, enabling the estimation of free energies at levels of

theory beyond the GGA.
Introduction

The solvent environment plays a critical role in modulating
halogen bonding (X-bonding), signicantly affecting both the
strength and geometry of these noncovalent interactions.
Understanding and modelling these solvent effects is crucial, as
they impact a wide range of applications,1–3 including drug
design,4–6 supramolecular self-assembly,7 protein engineering,
catalysis, molecular recognition, and chemical sensing.8,9

In aqueous or other polar environments, noncovalent inter-
actions are oen attenuated due to competitive solvation by the
surrounding solvent molecules. However, it is evident that the
effect of the solvent largely depends on the nature of the
interactions between the subsystems. When electrostatic inter-
actions are predominant, the dielectric constant of the medium
plays a crucial role, as polar solvents tend to screen these
interactions, thereby weakening them. Systems dominated by
polarization are moderately affected by the solvent, and the
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solvent effect varies proportionally with the extent of polariza-
tion. Charge transfer interactions can be stabilized or destabi-
lized depending on how well the solvent stabilizes the charge-
separated resonance forms. Recently, we have shown that the
stability of neutral hydrogen-bonded (H-bonded) complexes
increases in a more polar solvent, provided there is substantial
charge transfer between the subsystems.10,11 This is against the
conventional belief that the stability of H-bonded complexes
decreases in a more polar solvent.12–19 In the case of halogen
bonds (XBs), solvent effects do not follow a simple or universal
trend. Research on neutral halogen bonded (X-bonded) systems
in solution is still limited and oen contradictory.20–26 For
example, Carlsson et al. suggested that neutral XBs are slightly
stabilized with an increase in solvent polarity.27 Hunter et al.
reported that the X-bonded complex between molecular iodine
(I2) and tetramethylthiourea (TMTU) is rather insensitive to
solvent polarity.25 Conversely, Fan-Hagenstein et al. found that
the formation of X-bonded complexes between pyridine and
peruoroalkyl iodides is signicantly inuenced by the solvent,
with polar solvents enhancing the stability of these complexes.23

Theoretical investigations into neutral XBs in solution also
remain relatively sparse.28–32 For the complexes formed by
a series of aromatic XB acceptors and donors, Frontera et al.
found that the interaction energies are less favourable in solu-
tion compared to those in the gas phase.32 However, several
studies by Cabot et al. on peruorohexyl iodide, and by Li et al.
on BrCl/H2CS and HOX/H2CS (where X = F, Cl, and Br),
indicate that solvent effects can stabilize XBs.17,33,34 Both
Chem. Sci., 2025, 16, 23129–23138 | 23129
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Carlsson et al. and Taylor et al. argued that a purely electrostatic
model fails to adequately describe X-bonding behaviour in
solution.22,27

Given these diverse ndings, identifying an appropriate and
efficient computational solvent model for X-bonded systems is
both timely and necessary. To evaluate computational solvent
models, we utilize the extensive experimental data available for
the TMTU/I2 system investigated by Hunter and co-workers.25

The paper presents data on two H-bonded and two X-bonded
complexes in nine low to moderately polar and six highly
polar solvents. The results are, at rst glance, surprising since
binding free energies of X-bonded complexes measured in
various solvents differ by less than 2 kcal mol−1 and, further-
more, they are systematically larger in low to moderately polar
solvents. This paper serves as a unique source of high-quality
binding free energy data for X-bonded complexes across
different solvents. The complexity of solvent interactions,
particularly in biological contexts, makes the accurate model-
ling of XB behaviour in solution challenging and underscores
the need for quantum mechanical (QM) methods. Implicit
solvent models are widely employed across various elds of
chemistry and biochemistry due to their computational effi-
ciency and cost-effectiveness. While implicit solvent models35–37

capture general solvent trends, they oversimplify solute–solvent
interactions by treating the solvent as a uniform dielectric
continuum.38 This prevents accurate modelling of competitive
binding scenarios, in which solvent molecules interact directly
with donor or acceptor sites. As a result, explicit solvation
models are oen required to account for specic, localized
solute–solvent interactions that can alter both the binding
strength and geometry.

A rigorous computational modelling is crucial for designing
and optimizing molecules that rely on noncovalent interactions
in solutions, particularly when applied in medicinal chemistry,
enzyme design, or material synthesis.
Computational details
Implicit solvent models

All geometries were initially optimized at the DFT-D39 level
using the PBE0-D3 functional40–42 with zero damping and the
def2-TZVPP basis set.43,44 These calculations were performed
with the Gaussian 16 program package.45 To account for solvent
effects, we employed the COSMO, SMD, and C-PCM continuum
solvation models,35–37 as well as periodic explicit solvent models
and a combined explicit–implicit micro-solvation approach.
The geometries were further rened using the range-separated
hybrid meta-GGA functional uB97M-V, which includes VV10
nonlocal correlation46 and is known to deliver reliable results
for non-covalent systems. These calculations were carried out
with ORCA 6.0.47,48 TheDG values were computed using the rigid
rotor–harmonic oscillator–ideal gas approximation at the PBE0
level, while thermodynamic corrections at the uB97M-V level
were derived using the Quasi-RRHO approach.49

To evaluate the total interaction energies DE (eqn (1)), we
calculated the energy difference between the bound state
23130 | Chem. Sci., 2025, 16, 23129–23138
(complex) and the separated state (monomers). This corre-
sponds to the binding process TMTU + I2 / TMTU/I2.

DE = Ecomplex − Emonomer 1 − Emonomer 2 (1)

Here, Ecomplex, Emonomer 1 and Emonomer 2 denote the electronic
energies of the optimized structures of the complex, monomer 1
(TMTU), and monomer 2 (I2), respectively.

Analogously, the binding free energy differences DG were
obtained according to eqn (2a):

DG = Gcomplex − Gmonomer 1 − Gmonomer 2 (2a)

The following formula was used for Helmholtz free
energy (DA):

DA = Acomplex − Amonomer 1 − Amonomer 2 (2b)

Two different charge models are used to estimate the charge
transfer: CT1, calculated using Hirshfeld charges,50 and CT2,
calculated using Löwdin charges.51,52
Explicit–implicit solvent models

Micro-solvation and ONIOM. For the micro-solvation53–56

studies, 30 explicit solvent molecules were included in combi-
nation with the COSMO implicit solvent model at the PBE0-D3/
def2-SVP level of theory. Dielectric constants (3) of 2.23, 8.93,
and 32.61 were used to represent CCl4, CH2Cl2, and CH3OH,
respectively. The critical step represents the size of the solvation
shell. Considering the complex, TMTU with iodine is small, as it
consists of only ten heavy atoms; however, its solvation shell
contains 30 solvent molecules. Evidently, for a larger complex,
the number of solvent molecules in the solvation shell
dramatically increases, making the respective QM calculations
prohibitively expensive. One way to solve the problem is to use
the ONIOM (Our own N-layered Integrated molecular Orbital
and molecular Mechanics) approach.57 The method was
employed to assess the strength of the X-bonded complex in the
presence of up to 50 explicit solvent molecules, treating the
complex as the high layer and the solvent molecules as the low
layer. The high layer was treated at the PBE0-D3/def2-TZVPP
level of theory, while the low layer was described using the
PM7 (ref. 58) method.

The binding free energy was computed as the energy
difference,

GONIOM/MS
binding = GONIOM/MS

close − GONIOM/MS
far .

Here, close means the bound state, and for far, we have
considered a distance of 6 Å between the monomers. For the
micro-solvation method, the same formula was used for the
calculation of binding free energy.
Periodic models

The TMTU/I2 complex was simulated with more sophisticated
periodic descriptions of solvents. Due to the high computa-
tional cost of this approach, the number of solvent molecules
© 2025 The Author(s). Published by the Royal Society of Chemistry
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was limited to 24 per system for carbon tetrachloride and di-
chloromethane solvents. For methanol, 28 explicit solvent
molecules were used. Including more solvent molecules would
have exceeded our available computational resources.

At the beginning, the TMTU/I2 complex solvated with 24
molecules of the solvents, which were placed in a large unit cell
(50 Å × 50 Å × 50 Å). Initial geometry optimizations were per-
formed using classical force elds via the QuantumATK
package.59,60 Subsequently, the system was pre-equilibrated
using force-eld molecular dynamics (MD) in the NpT
ensemble, employing the Martyna–Tobias–Klein (MTK) algo-
rithm61 keeping the pressure p and the temperature T constant.
The number of particles N is constant by design.

The resulting pre-equilibrated structures were further opti-
mized using the Vienna Ab initio Simulation Package (VASP),62–64

followed by ab initioMD in the NpT ensemble. For this purpose,
the Parrinello–Rahman algorithm65,66 was used. Aer NpT
equilibration, a nal ab initio MD simulation was performed in
the NVT ensemble – number of particles, volume, and temper-
ature (the Nosé–Hoover thermostat67–70 was employed) were
constant, using the average unit cell volume obtained from the
previous NpT run. Final cell volumes for each investigated
system are summarized in Table S1 in the SI.

All ab initioMD and metadynamics simulations were carried
out using the VASP at the PBE-D3 level of theory, with the
Becke–Johnson damping function.39,71,72 A plane-wave basis set
was employed to describe the valence electron region, while the
projector-augmented wave (PAW) method73,74 was used to treat
the core electrons. The ALGO = Fast was employed and the
energy cutoff and precision mode parameters were set as
follows: ENCUT = 400 eV and PREC = NORMAL. To determine
the equilibration period of the MD trajectories (see Table S2 in
the SI), we employed the Mann–Kendall tests.75

Once equilibrium was reached, the resulting structure was
used as the starting point for ab initiometadynamics.76,77 The S–
I distance was chosen as the collective variable (CV) for the
TMTU/I2 system. A very ne bias potential was applied to
ensure high precision in the metadynamics simulations: the
height of the Gaussian hill was set to 0.0005 eV and the width of
the Gaussian hill was 0.005 Å, added aer every two steps in
a metadynamics run.

Since the canonical (NVT) ensemble is used, we work with
Helmholtz free energy A instead of Gibbs free energy G. We
report the free energy of reaction DA(R/P) (in our case, the
binding process of TMTU with the iodine dimer from separated
TMTU + I2 (R) to bound TMTU/I2 (P) in different solvents)
dened in eqn (3):

DAR/P ¼ Axref ;R/xref ;P � kBT ln

 
P
�
xref;R

�
P
�
xref ;P

�
!
; (3)

where the term DAxref,R/xref,P
is the reversible work needed to shi

the CV, x, from xref,R to xref,P. This contribution can be
obtained e.g. from metadynamics simulations, where the CV
(S–I distance) is gradually driven from the reactant (xref,R) to the

product (xref,P.) state. The second term, �kBT ln

 
Pðxref;RÞ
Pðxref;PÞ

!
;

© 2025 The Author(s). Published by the Royal Society of Chemistry
represents a correction that accounts for the normalized prob-
abilities of observing the specic reactant P(xref,R) and product
P(xref,P) conguration. These probabilities are obtained from
molecular dynamics trajectories, for instance using histogram
methods. Although the specic values xref,R and xref,P can be
chosen arbitrarily, in practice we select the maximum value of
the corresponding normalized histograms. Here, kB denotes the
Boltzmann constant and T is the thermodynamic temperature
of simulation (340 K in our case). The statistical errors were
determined using the block averaging method78 with a 95%
condence interval. The overall sum of errors was calculated as
follows:

Sum of errors ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sbound2 þ sseparated2

q
(4)

where sbound and sseparated represent errors for the bound and
separated state, respectively.
Machine learning perturbation theory

For free energy calculations in an improved level of theory, the
Machine Learning Perturbation Theory (MLPT)79–81 technique
was employed. This approach connects D-ML82 where a model is
trained to predict energy differences of the target level (i.e.more
accurate and computationally more demanding method), rela-
tive to a reference method (i.e. computationally low-cost,
production method), with thermodynamic perturbation theory
(PT).83

In our case, the production method is the GGA-type PBE
functional supplemented by the Grimme dispersion correction
and the Becke–Johnson damping function D3(BJ). As target
methods, we selected two DFT functionals from the hybrid rung
of Jacob's ladder,84 both enhanced with D3(BJ) corrections:
range-separated HSE06 (ref. 85) and unscreened PBE0.40–42 For
these target functionals in all solvents, we chose a time step
value of TIME = 0.7 within the Damped algorithm, and we set
the energy cutoff (ENCUT) of 520 eV and “Accurate” precision.

Thus, MD data were generated using the PBE-D3(BJ) func-
tional (for more details, see Section “Periodic models”) with
a Hamiltonian H(p,x). Using MLPT, simulation at the target
levels described by the Hamiltonian ~H(p,x) requires only a few
dozen single-point calculations (we selected every (Ndata/100)-th
conguration, where Ndata is the total number of congurations
obtained from the production MD run) for training the ML
model. The rest of the simulation is predicted based on this
training. In this way, MLPT enables simulations that are several
orders of magnitude faster without sacricing accuracy.

Several applications of the MLPT technique in the efficient
determination of various properties, such as adsorption
enthalpies,79,81,86 free activation energies80,87 or fully anharmonic
dimerization thermodynamics at challenging target levels,
including CCSD(T)88 have been found.

The formula for the target free energy difference between two
stable states D~AR/P is known (see, for instance, ref. 80 and 89):

D ~AR/P ¼ DAR/P � kBT ln

�hexp½ �DVðrÞ=kBT �iP
hexp½ �DVðrÞ=kBT �iR

�
; (5)
Chem. Sci., 2025, 16, 23129–23138 | 23131
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where the DAR/P term is the free energy of the reaction ob-
tained using the production method (see eqn (3)). The second
term represents ensemble averages over initial h/iR and nal
h/iP stable states. To evaluate these terms, the second-order
cumulant expansion was employed (for details, see the excel-
lent textbook by Chipot and Pohorille90), which assumes
a Gaussian-shaped function of the potential energy
distribution:�

exp

�
� DVðrÞ

kBT

	

z exp

"
� hDVðrÞi

kBT
þ
�
DV 2ðrÞ�� hDVðrÞi2

2ðkBTÞ2
#

(6)

Note that the term DV(r) in eqn (5) and (6) denotes the
difference in potential energy between the target and the
production Hamiltonians. More generally, DH(r,p) represents
the Hamiltonian difference, but if the two Hamiltonians differ
only in their potential energy contributions, the free energy
expression can be written equivalently using DV(r) instead of
DH(r,p): ~H(r,p) − H(r,p) = ~V (r) − V(r) = DV(r).

The statistical errors were determined using the block aver-
aging method78 in the same way as in the case of the production
method (see eqn (4)).

A kernel ridge regression91 model trained on a small set of
target-level calculations is used to predict energy differences
DV(r) for the full ensemble, employing the REMatch kernel92

with SOAP descriptors93 as implemented in the DScribe94 and
scikit-learn94,95 libraries, respectively.

Details about minimizing errors in ML predictions are pre-
sented in Tables S3 and S4 in the SI.

Results and discussion
Implicit models

Although implicit solvent models do not capture specic
solvent–solute interactions as accurately as explicit models, they
provide a very reasonable approximation for bulk solvation
effects, like electrostatic stabilization, solvation free energy, and
dielectric screening. Therefore, we begin by evaluating the
Table 1 The interaction energy (DE), Gibbs free energy (DGcalc.) and Hel
complex in various solvent media with the COSMO solvent model c
association constants25 (Ka, M

−1) and free energies25 are given for compa

Solvent
Dielectric constant
(3) DE

n-Octane 1.94 −16.94
Carbon tetrachloride 2.23 −17.19
Toluene 2.38 −17.31
Chloroform 4.81 −18.50
1,1,2,2-Tetrachloroethane 8.4 −19.27
Dichloromethane 8.93 −19.34
Acetone 20.7 −20.02
Methanol 32.61 −20.24
Acetonitrile 37.5 −20.27
Water 78.4 −20.47

a From ref. 25, measured by UV/vis. b From ref. 25, measured by 1H NMR
deviation from multiple titration repeats.

23132 | Chem. Sci., 2025, 16, 23129–23138
performance of the implicit COSMO35 solvation models against
the experimentally observed trends in binding free energies DG.
These experimental DG values are derived from association
constants reported by Hunter and co-workers.25 Table 1 presents
the interaction energies (DE), Gibbs free energies (DG) and
Helmholtz free energies (DA) at temperature T = 298 K, of the X-
bonded TMTU/I2 complex in different solvents at the PBE0-D3/
def2-TZVPP level of theory. The results indicate that the stability
of the TMTU/I2 complex increases steadily with increasing
solvent polarity. However, this trend is supported by experi-
mental data only for low to moderately polar solvents (Table 1
and Fig. 1a). When a highly polar solvent is used, the correlation
between polarity and stability of the complex is lost. Thus, an
implicit solvent model can only be used for low to moderately
polar solvents, where its performance is incredible. The corre-
lation between calculated and experimentalDG for six non-polar/
low-polar solvents with 3 between 1.9 and 8.9 is as high as 0.960
(Table 1 and Fig. 1b). A strong correlation was also observed
between the experimental and calculated DG values and the
solvent dielectric constant (Fig. 1b). Nevertheless, this relation-
ship deteriorates markedly in the case of highly polar solvents.
To elucidate the underlying reasons for this deviation, a more
detailed investigation was undertaken using three representative
solvents, each chosen to reect a distinct range of dielectric
properties. Carbon tetrachloride (CCl4) was selected as a low-
polar solvent (3 = 2.23), dichloromethane (CH2Cl2) as a moder-
ately polar solvent (3 = 8.93), and methanol (CH3OH) as a high-
polar solvent (3 = 32.61). We started with evaluating the perfor-
mance of three widely used implicit solvation models (COSMO,
SMD, and CPCM) against the experimental DG trends, as
summarized in Table 2. All implicit solvent models examined
yielded consistent results, predicting a steady increase in
complex stability with increasing solvent polarity; none captured
the trend observed formore polar solvents. Tables 2 and S5 in the
SI also list the S/I bond lengths (r) and charge transfer (CT)
values. To assess the functional dependency, values are also re-
ported with the uB97M-V functional with the COSMO solvation
model in Table S6 in the SI. Tables 2 and S5 in the SI further
show a signicant charge transfer from I2 to TMTU upon
mholtz free energy (DAcalc.) (in kcal mol−1, T = 298 K) of the TMTU/I2
alculated at the PBE0-D3/def2-TZVPP level of theory. Experimental
rison

DGcalc./DAcalc. DGexp. Ka
c

−6.52/−7.83 −5.38 8800 � 900a

−6.74/−8.07 −5.27 7300 � 600a

−6.84/−8.17 −5.51 11 000 � 1600a

−7.88/−9.25 −5.86 20 000 � 1000a

−8.62/−10.00 −6.46 55 000 � 15 000a

−8.68/−10.07 −6.50 58 000 � 10 000b

−9.35/−10.74 −4.47 1900 � 300b

−9.58/−10.97 −4.68 2700 � 200b

−9.61/−11.00 −4.70 2800 � 70b

−9.81/−11.21 — —

titration. c From ref. 25, the errors were determined as 2× the standard

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Plots of (a) DG (kcal mol−1) vs. 3 from experimental and calculated free energy values and (b) DGexp. (kcal mol−1) vs. DGcalc. (kcal mol−1).

Table 2 The interaction energy, DE (kcal mol−1), Gibbs free energy, DG, Helmholtz free energy, DA (kcal mol−1, T= 298 K), halogen bond length,
r (Å), and charge transfer (CT1, calculated from Hirshfeld charges; CT2, calculated from Löwdin charges) of the TMTU/I2 complex in various
solvents calculated with implicit solvent models at the PBE0-D3/def2-TZVPP level of theory. Experimental free energies25 are given for
comparison

Solvent

COSMO SMD CPCM Exp.

DE DG/DA r CT1/CT2 DE DG/DA r CT1/CT2 DE DG/DA r CT1/CT2 DGexp.
a

Carbon
tetrachloride

−17.19 −6.74/
−8.07

2.724 −0.408/
−0.376

−17.86 −7.55/
−8.81

2.731 −0.416/
−0.383

−17.08 −6.79/
−8.08

2.735 −0.413/
−0.381

−5.27

Dichloromethane −19.34 −8.68/
−10.07

2.610 −0.549/
−0.510

−20.84 −11.05/
−12.28

2.631 −0.545/
−0.507

−18.84 −8.43/
−9.76

2.637 −0.536/
−0.499

−6.50

Methanol −20.24 −9.58/
−10.97

2.574 −0.607/
−0.564

−21.98 −13.02/
−14.26

2.599 −0.593/
−0.552

−19.52 −9.18/
−10.52

2.606 −0.580/
−0.540

−4.68

a From ref. 25.
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complex formation. Additionally, the S/I bond length decreases
systematically with increasing solvent polarity, while the corre-
sponding charge transfer (CT) values increase substantially. All
the charge models (Hirshfeld, Löwdin, NBO and CM5) consis-
tently indicate that the CT values for this complex are indeed
signicant. The strong charge-transfer nature of the interaction
is further supported by the UV/Vis spectrum of the TMTU/I2
complex, which displays a distinct charge-transfer band in the
330–340 nm range.25 Previously, we have shown that when the
charge transfer (CT) between the subsystems is signicant, it
leads to stabilization of the X-bonded complex with increasing
solvent polarity.96 However, when the CT is low, the opposite
trend may be observed. Since the CT is signicant for the
TMTU/I2 complex, its stabilization with increasing solvent
polarity is consistent with our expectations, provided there are no
substantial specic solvent–solute interactions.

In contrast, for the tetramethylurea/I2 complex, another
system studied by Hunter and co-workers,25 both experimental
and computational results show destabilization with increasing
solvent polarity. We have demonstrated that the CT values for
this complex are signicantly lower, which in turn leads to this
opposite trend (Table S7, SI).
Explicit–implicit solvent models

Micro-solvation and ONIOM. The continuum solvent models
characterized solely by dielectric constants have some
© 2025 The Author(s). Published by the Royal Society of Chemistry
limitations – particularly when signicant specic interactions
occur between the solvent molecules and the complex. These
limitations can be addressed through natural renement
involving a more detailed representation of the rst solvation
shell. This is typically achieved by explicitly including a few
solvent molecules around the complex, embedded within an
implicit solvent environment – a method commonly referred to
as the cluster–continuum approach or micro-solvation
model.53–56 The inclusion of the implicit environment in the
micro-solvation framework allows for the necessary treatment
of long-range electrostatic interactions. It is essential to have
enough number of explicit solvent molecules to ensure accurate
representation of the complex within the micro-solvation model
for both bound and separated states.

Thus, calculations were carried out using 30 explicit solvent
molecules, each embedded in a continuous solvent environ-
ment described by the COSMO implicit solvent model. The
incorporation of explicit solvent molecules signicantly
destabilizes the TMTU/I2 complex in CH3OH, aligning well
with experimental observations (Table 3). In contrast, a slight
stabilization is observed when moving from CCl4 to CH2Cl2.
This is again in line with the experimental trend. The differ-
ences in the S/I bond length, with or without explicit solva-
tion, are negligible (Table 3). We extended the study by using
four more low-energy conformers from MD simulation
trajectories. We used these as starting points to construct
Chem. Sci., 2025, 16, 23129–23138 | 23133

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06336a


Table 3 The Gibbs free energy (DG), Helmholtz free energy (DA) (in kcal mol−1, T = 298 K), and halogen bond length, r (Å) of the TMTU/I2
complex in the micro-solvation approach with 30 explicit solvent molecules in the COSMOmodel calculated at the PBE0-D3/def2-SVP level of
theory and in the ONIOM approach with 50 explicit solvent molecules calculated at the PBE0-D3/def2-TZVPP:PM7 level of theory. Experimental
free energies25 are given for comparison

Solvent

Micro-solvation ONIOM Exp.

DG/DA r DG/DA r DGexp.
a

Carbon tetrachloride −16.10/−16.63 2.691 −12.92/−13.39 2.867 −5.27
Dichloromethane −16.82/−17.08 2.641 −13.69/−14.18 2.461 −6.50
Methanol −7.01/−7.44 2.587 −9.92/−10.48 2.494 −4.68

a From ref. 25.

Fig. 2 The optimized geometries of the TMTU/I2 complex: (a) with the implicit COSMO solvent model in methanol medium, (b) in the complex
formwith 30 explicit methanol molecules included in the COSMOmodel, and (c) as separated systems, also with 30 explicit methanol molecules
included in the COSMO model. The bond lengths are in Å [C: cyan (TMTU); grey (solvent), S: yellow, I: violet, H: white, N: blue, O: red].
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complexes with 30 solvent molecules of CCl4, CH2Cl2, and
CH3OH. Table S8 in the SI shows the free energy order for all
the conformers, and Table 3 lists the DG values for the most
stable conformer with 30 solvent molecules. Destabilization
occurs for the TMTU/I2 complex in CH3OH, as the separated
systems are stabilized by both conventional hydrogen bonding
and bridging hydrogen bonding with CH3OH (Fig. 2c). In
particular, C]S/H and O/I–I types of hydrogen and
halogen bonds formed through the bridging CH3OHmolecule
contribute to the stabilization of the separated systems. Please
note that these calculations are highly computationally
demanding; thus, the number of solvent molecules included
in the micro-solvation model is restricted by computational
cost. Additionally, the ONIOM approach was employed to
evaluate the strength of the X-bonded complex in the presence
of 50 explicit solvent molecules, treating the complex as the
high layer (PBE0-D3/def2-TZVPP) and the solvent molecules as
the low layer (PM7). For each solvent, ve different conformers
are considered in the ONIOM calculations (Table S9, SI), and
the Gibbs free energy (DG) is reported for the most stable
conformation (Table 3). ONIOM calculations also reproduce
the experimental trends (Table 3). However, both micro-
solvation and ONIOM signicantly overestimate the experi-
mental DG values.
23134 | Chem. Sci., 2025, 16, 23129–23138
Calculations of free energies of dimerization of TMTU + I2 in
explicitly dened solvents for temperature T = 340 K in
periodic models

To increase computational accuracy, we investigated the inter-
actions between TMTU and the iodine molecule in a periodic
model. Periodic simulations are generally expected to provide
improved accuracy compared to droplet models, particularly for
systems exhibiting complex solvation behaviour. The periodic
boundary model offers several advantages over the droplet
model approach. For example, it eliminates the risk of mole-
cules “boiling off” during a MD run. Moreover, unlike the
droplet model, the periodic approach has no surface, thereby
avoiding articial interactions between the system and vacuum
that could distort the results. In summary, the periodic
approach enables long MD simulations while preserving
stability and ensuring reliable results.

Metadynamics simulations of the TMTU/I2 molecule
(Fig. 3) were performed in three different solvents: 24 explicitly
dened molecules for two low to moderately polar solvents
(CCl4 and CH2Cl2) and 28 explicit solvent molecules for one
high-polar solvent (CH3OH), under periodic boundary condi-
tions. We initiated the simulations from the more stable
(bound) states and introduced a bias potential constructed in
the space of the CV (x) chosen as the distance between the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The bias potential constructed in the space of the S–I distance
(chosen CV) obtained from ab initio (PBE-D3(BJ)) metadynamics in
three solvents: CCl4, CH2Cl2 and CH3OH. The temperature of meta-
dynamics simulations is T = 340 K.

Table 4 The PBE-D3(BJ) free energy differences of the TMTU/I2
system in the three solvents as defined by eqn (3). Experimental free
energies25 are given for comparison

Solvents DA(R/P)/kcal mol−1 DGexp.
a

Carbon tetrachloride −11.93 � 1.09 −5.27
Dichloromethane −20.82 � 1.31 −6.50
Methanol −9.59 � 1.32 −4.68

a From ref. 25.

Table 5 The MLPT-assisted high-level DFT free energy differences
(D~Amethod) (in kcal mol−1) for the binding process of TMTU–I2 in
different solvents. The temperature is 340 K. Values in bold indicate the
DFT results closest to the experimental reference DGexp. Experimental
free energies25 are given for comparison

Solvent D~AHSE06-D3(BJ) D~APBE0-D3(BJ) DGexp.
a

Carbon tetrachloride −10.34 �1.35 −13.98 � 1.28 −5.27
Dichloromethane −19.38 � 1.37 −18.66 �1.37 −6.50
Methanol −7.53 � 1.09 −7.14 �1.09 −4.68

a From ref. 25.
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sulphur and iodine atoms (Fig. 3). This allowed us to reach
a second stable state corresponding to the separated states. It
should be noted that although we considered a binding reaction
(i.e. from the separated state to a bound state), the direction of
the CV change is irrelevant in metadynamics.

Aer taking into account the probabilities of the occurrence
of the concrete x values obtained from MD trajectories of both
states, we were able to determine the free energy differences as
functions of CV, DA(x), according to eqn (3). This methodology
successfully reproduces the experimentally observed stability
trends, with the corresponding values summarized in Table 4.

While the approach captures the correct qualitative trend, it
tends to signicantly overestimate both absolute (DA) and
relative (DDA) free energy differences compared with the
experimental reference, similar to micro-solvation and ONIOM-
based methods. Moreover, the periodic metadynamics method
is computationally more expensive than micro-solvation or
ONIOM approaches and can accommodate comparatively fewer
solvent molecules. Due to computational cost, we restricted this
approach to the PBE-D3(BJ) level of theory.
Free energy nite-T calculations beyond GGA functionals

MLPT. Table 5 presents the target-level free energy differ-
ences for the binding process of TMTU + I2 in three different
solvents. When compared with experimental data (last column
in Table 5), both HSE06-D3(BJ) and PBE0-D3(BJ) functionals
reproduce the experimental trend: in absolute values, DA is the
smallest for CH3OH, followed by CCl4, and the largest for
CH2Cl2.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The MLPT-corrected free energy differences, D~AHSE06-D3(BJ),
yield values closer to the experimental references compared to
the DAPBE-D3(BJ) baseline (see Table 4) across all three solvents.
By contrast, the ML-correction with the PBE0-D3(BJ) functional,
D~APBE0-D3(BJ), exhibits a larger deviation from the experimental
reference in CCl4 than the corresponding baseline value.

This inverse trend arises because the difference between the
target and production methods, calculated via the cumulant
expansion (CE), is evaluated separately for the reactant (sepa-
rated state) and the product (bound state). When the CE value
(i.e., the energy difference between target and production
methods) is more negative for the reactant than for the
product, the resulting correction – dened as the difference
between these two CE values (see the second term of eqn (5)) –
is positive. Adding this positive correction to the (already
negative) DAPBE-D3(BJ) reduces the absolute value of the free
energy. This scenario applies to CH3OH and CH2Cl2 for both
the functionals, as well as to CCl4 with HSE06-D3(BJ).
Conversely, when the CE value is lower for the product, as
observed with PBE0-D3(BJ) in CCl4, the correction is negative,
making the overall free energy even more negative. We attri-
bute this to an artifact arising from the combination of the
unscreened functionals and the solvent, possibly due to
a preference of a (signicantly) different density, i.e.,
a different unit cell volume for the reactant and/or product.

Apart from this outlier, all other ML-corrected values are
closer to the experimental reference than the PBE-D3(BJ) base-
line. The closest agreements are observed as follows: in CCl4
with HSE06-D3(BJ), the error is 5.07 ± 1.35 kcal mol−1; in
CH2Cl2 with PBE0-D3(BJ), 12.16 ± 1.37 kcal mol−1; and in
CH3OH with PBE0-D3(BJ), 2.46 ± 1.09 kcal mol−1. These values
are highlighted in bold in Table 5.

Relative free energy differences between different solvents
(DDA) are overestimated compared with experimental data,
similar to production PBE-D3(BJ) level results. Among the
functionals, the DDA differences between the two low to
moderately polar solvents are as follows: DDAPBE0-D3(BJ) =

4.68 kcal mol−1 and DDAHSE06-D3(BJ) = 9.04 kcal mol−1. The
differences between the high-polar CH3OH and moderately
polar CH2Cl2 remain nearly constant, 11.52 kcal mol−1 for
PBE0-D3(BJ) and 11.85 kcal mol−1 for HSE06-D3(BJ). For
CH3OH and the low-polarity solvent, CCl4, the spread is slightly
wider: 2.81 kcal mol−1 with HSE06-D3(BJ) and 6.84 kcal mol−1

with PBE0-D3(BJ).
Chem. Sci., 2025, 16, 23129–23138 | 23135
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Critical evaluation of different techniques for estimation of
binding free energies of X-bonded complexes in a solvent
provides the following take:

(i) Continuous solvent cannot be used for both apolar and
polar solvents. The model, however, provides very good esti-
mates of DG for low to moderately polar solvents. COSMO and
CPCM provide not only qualitative but even quantitative esti-
mates of DG.

(ii) The micro-solvation and ONIOM models, contrary to the
continuous models, provide reasonable qualitative agreement
of DG for all three solvents considered, though their absolute
values are strongly overestimated.

(iii) Theoretically justied periodic calculations performed at
the PBE level also provide qualitative estimates of DG for all
solvents considered, but their quantitative values are over-
estimated even more than in the previous case.

(iv) Upon considering the ML-corrected values, the situation
is changed only slightly. HSE06 and PBE0 methods qualitatively
agree with experimental values, though, again, the respective
absolute values are strongly overestimated.

Conclusions

Solvent effects play a critical role in modulating the XB between
molecular iodine and tetramethylthiourea in solution and their
theoretical estimates are tedious and represent a challenge to
current computational chemistry. The complex exhibits signif-
icant charge-transfer character and are notably stabilized in
low-polarity environments (dielectric constant 3 # 10) with
moderate increases in solvent polarity. However, in highly polar
solvents, the XB weakens due to the stabilization of charge-
separated species via competitive solvation of the individual
components. While implicit solvent models are valuable for
identifying general trends and for initial screening of molecular
systems, they inherently oversimplify solute–solvent interac-
tions by neglecting specic, directional, and dynamic solvent
effects. The method cannot be used for high-polar solvents, but
for low to moderately polar solvents, it provides good estimates
of binding free energies. To address these shortcomings,
explicit solvent models are essential. By providing a detailed,
dynamic representation of solvation, explicit models enable
more reliable predictions of free energy trends in solution.

By systematically comparing implicit and explicit solvent
models, incorporating periodic boundary conditions to better
capture realistic solvation environments, and applying
machine learning perturbation theory to balance computa-
tional cost and accuracy, we provide a robust framework for
evaluating solvent effects. Although the current error margins
(2.5–12 kcal mol−1) are too large for reliable predictive appli-
cations in catalysis, materials design, or molecular recogni-
tion, the approach effectively captures the trends observed in
experimental association constants across multiple solvents.
More broadly, this study contributes to the development of
general strategies for modeling noncovalent interactions in
complex solvent environments, which is essential for
advancing both fundamental chemistry and practical appli-
cations. We also acknowledge that achieving more quantitative
23136 | Chem. Sci., 2025, 16, 23129–23138
agreement is necessary for the direct predictive use of the free
energy data.
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O. Socha, M. Drač́ınský and P. Hobza, Angew. Chem., Int.
Ed., 2025, 64, e202422594.

12 M. D. Driver, M. J. Williamson, J. L. Cook and C. A. Hunter,
Chem. Sci., 2020, 11, 4456–4466.

13 J. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco and
J. G. Vinter, Angew. Chem., Int. Ed., 2007, 46, 3706–3709.

14 A. J. A. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek
and H. Lischka, J. Phys. Chem. A, 2002, 106, 1862–1871.

15 C. C. Robertson, J. S. Wright, E. J. Carrington, R. N. Perutz,
C. A. Hunter and L. Brammer, Chem. Sci., 2017, 8, 5392–
5398.

16 C. A. Hunter, Angew. Chem., Int. Ed., 2004, 43, 5310–5324.
17 R. Cabot and C. A. Hunter, Chem. Commun., 2009, 2005–

2007.
18 N. Y. Meredith, S. Borsley, I. V. Smolyar, G. S. Nichol,

C. M. Baker, K. B. Ling and S. L. Cockro, Angew. Chem.,
Int. Ed., 2022, 61, e202206604.

19 R. J. Burns, I. K. Mati, K. B. Muchowska, C. Adam and
S. L. Cockro, Angew. Chem., Int. Ed., 2020, 59, 16717–16724.
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