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of Chemistry How can you tell if a sorbent material will be good for any gas separation process — without having to do

detailed simulations of the full process? We present new metrics to evaluate solid sorbent materials for
Direct Air Capture (DAC), a particularly challenging gas separation problem, based entirely on intrinsic
properties of the sorbent material. These new metrics provide a theoretical upper bound on CO,
captured per energy as well as a theoretical upper limit on the purity of the captured CO,. These metrics
apply to any adsorption-refresh cycle design. The only inputs are the path adsorption-refresh cycle in
terms of thermodynamic variables and the intrinsic materials properties (primarily the equilibrium uptake,
and heat capacity) along that path. In this work we demonstrate the use of these metrics with the
example of temperature—pressure swing refresh cycles. To apply these metrics on a set of examples, we
first generated approximations of the necessary materials properties for 11660 metal-organic
framework materials (MOFs). We find that the performance of the sorbents is highly dependent on the
path through thermodynamic parameter space. These metrics allow for: (1) finding the optimum
materials given a particular refresh cycle, and (2) finding the optimum refresh cycles given a particular
sorbent. Applying these metrics to the database of MOFs lead to the following insights: (1) start cold —
the equilibrium uptake of CO, diverges from that of N, at lower temperatures, and (2) selectivity of CO,
vs. other gases at any one point in the cycle does not matter — what matters is the relative change in
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1 Introduction

Direct Air Capture (DAC) seeks to capture CO, from the atmo-
sphere. As such it is one of the most challenging industrial gas
separation problems, since the target gas species (CO,) has
a concentration of 410 pmol mol " (ppm).* There are pilot DAC
facilities, such as ClimeWorks, Carbon Engineering, and Global
Thermostat, that have recently started operations.” The scale of
proposed fully realized DAC implementations imposes strict
and challenging demands on the performance of these facili-
ties, especially in terms of energy.® For these facilities, the
performance metrics and design considerations of DAC are well
defined. These include:

e The CO, capture efficiency: how much CO, is captured per
energy used.

e The CO, capture output: how much CO, is captured in
a given length of time.

e The refresh cycle time: the time it takes to perform one
refresh cycle.
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e The purity of the captured CO,: the concentration of the
CO, in the output.

e The sorbent stability: the structural stability - especially
(for DAC applications) in the presence of water vapor.

e The sorbent synthesizability: the ease and economic
viability of synthesizing the sorbent on an industrial scale.

e The sorbent longevity: the time or number of refresh cycles
the sorbent can experience before degrading to the point of
needing to be replaced.

However, many of these performance metrics are difficult to
calculate or predict without detailed simulations of a particular
process or the construction of a pilot plant. It can often be
unclear what sorbent material properties will lead to good
facility performance. In the synthesis of solid sorbents, much
emphasis was put on achieving the synthesis of materials with
high gravimetric or volumetric surface areas.** The motivation
for this seems to be that higher surface areas should allow for
more interactions, since the sorbent interacts with the sorbate
(gas to be adsorbed) at the surface. But these purely geometric
measures incorporate no information about the interaction
between the sorbent and sorbate. Another popular character-
istic for comparing sorbents is working capacity. This is the
difference in equilibrium uptake gas between two conditions -
the amount of gas adsorbed and then desorbed on one refresh
cycle. Working capacity does provide some information about
the interaction between the sorbent and the sorbate, but
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working capacity is not enough to determine if a material will
perform well as a sorbent. A sorbent with a small working
capacity — but with little energy needed to cycle, or that could be
cycled quickly - could be much better in a DAC facility than one
with a large working capacity. Furthermore, working capacity is
typically presented for conditions with a single sorbate (e.g:
a pure CO, environment at different partial pressures). Air,
however, is a mixed gas. Therefore, the mixed gas adsorption
behavior must be considered in DAC applications.

There have been efforts to develop performance indicators
for sorbents. Jain et al.® developed a set of heuristics based on
parameters such as particle size and time in the adsorption bed
to aid in the design of pressure swing adsorption systems.
Neumann et al.” use a detailed model of the adsorption process
in a gas separation column to calculate performance metrics for
the sorbent. Similarly, Young et al® developed a machine
learning model as a surrogate for detailed simulations of
adsorption columns which allows them to screen many mate-
rials for that process, and provide insights into the sorbent and
process design. While these can provide an accurate estimate of
the performance metrics for that process, it depends on
particular design choices of the adsorption process - such as
the feed gas velocity, adsorption column design, and packing
density. Ajenifuja et al.,’ created a model for screening sorbents
for temperature swing based adsorption. While this model is
more directly relevant than using the selectivity or working
capacity, it assumes that the adsorption system is a packed
powder bed and, therefore, depends on extrinsic parameters
such as the packing density. It further assumes that the refresh
cycle is purely a temperature swing, which limits the general-
izability to other thermodynamic spaces and can therefore not
account for different paths through those spaces during refresh
cycles, such as the increasingly popular temperature-vacuum
swing adsorption cycles,'” or to electro-swing adsorption
cycles." Recently, Charalambous et al.*> developed a holistic
platform for evaluating carbon capture systems. They do this by
not only considering some of the aforementioned traditional
sorbent performance indicators, but also additionally consid-
ering performance indicators of the process, a techno-economic
assessment, and a life-cycle assessment. At the materials level,
they primarily use the ratio of Henry's constants to indicate the
performance, then feed the materials properties information
into detailed simulations of an adsorption column process. The
performance metrics we present in this work could readily be
included into the platform developed by Charalambous et al.**
at the materials level to provide more informative sorbent
performance indicators, and aid in the design of the processes -
without the need to perform detailed process simulations. In
general, the previous methods evaluating the performance of
adsorption systems depend on extrinsic factors (such as the
design of the gas separation column and consequential fluid
dynamics). Furthermore, these previous methods typically only
apply to a particular choice of refresh cycle - they would be
difficult to generalize to other choices of refresh cycle, or even to
other choices of process parameters.

In this work, we develop sorbent performance metrics based
on intrinsic material properties. These metrics directly

© 2025 The Author(s). Published by the Royal Society of Chemistry
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generalize to any gas adsorption process when described in
terms of thermodynamic parameters. Specifically, we develop
the theoretical upper limit on the amount of CO, captured per
unit energy (which we term the Capture Efficiency) and the
purity of the captured CO,. For illustrative purposes, we derive
this model using the example of temperature vacuum swing
adsorption cycle, which we visualize with an idealized piston.
While this model is not how DAC facilities are likely to operate
in practice, this framing of the problem elucidates all the rele-
vant thermodynamic terms. Much in the same way the Carnot
cycle is a theoretical upper limit on the efficiencies of heat
engines, these metrics are the theoretical upper limit of the
capture efficiency and purity for gas separation processes based
on adsorption. Inverting the capture efficiency is equivalent to
estimating the theoretical lower limit of the energy cost needed
to capture an amount of CO,.

For the purposes of this work, we will approximate air as 400
pmol mol~" of CO, with the balance of N,. This binary mixture
is the minimum complexity example that still demonstrates the
full considerations for this analysis technique, and was chosen
as the target sorbate of interest, CO,, and the majority compo-
nent of air, N,. However, we also show how this analysis can be
extended to consider arbitrary gas mixtures. Practical DAC
systems would need to consider the effects of H,O in the inlet
stream. Such practical considerations could be included in
more detailed studies of individual sorbents if there were pair
potentials for H,O of sufficient accuracy, or otherwise accurate
sources of mixed gas adsorption behavior for mixtures that
include H,O. For the present high-throughput study, the next
section details both how we generate the necessary materials
data for this analysis considering our binary mixture of CO, and
N, as well as how we develop the thermodynamic analysis of an
intrinsic DAC cycle.

2 Modeling

2.1 Generating the data

The goal of the metrics we develop in these works is provide
a fair comparison between sorbent materials, and between
thermodynamic refresh cycles. As such the thermodynamic
analysis we use is based on intrinsic materials properties. Chief
among those is the equilibrium uptake of each of the gas
species in the mixture. In addition, we also require the heat of
adsorption for each gas species to compute the heating and
cooling duties. Lastly, because many refresh cycles include
a temperature swing, we also require the heat capacities (Cy) of
sorbent materials in order to determine the energy require-
ments associated with temperature changes during the CO,
capture cycle. As a set of example materials, we generate all the
needed materials property data for the 11 660 metal-organic
framework materials (MOFs) that are in both the Cambridge
Structural Database (CSD) database™ and the Computation
Ready Experimental MOF (CoRE MOF) database' of experi-
mentally realized MOFs. It is worth noting that while we apply
these metrics to MOFs, they could just as easily be applied to
zeolites, covalent-organic framework materials, hybrid systems,
or any other solid sorbent system.

Chem. Sci., 2025, 16, 18352-18363 | 18353
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2.1.1 Equilibrium adsorption properties. The equilibrium
uptake of CO, in a sorbent is a function not only of temperature
(T) and the partial pressure of CO, (Pco,), but also the partial
pressure (i.e., composition) of the other gases - in this case the
partial pressure of N, (Py,). That is nco/(T, Pco,, Pn,), and
similarly ny (T, Pco,, Px,)-

However, there is very little multicomponent gas adsorption
data available,” and even single-component adsorption
measurements for most sorbents exhibit poor reproducibility.'®
We therefore turn to simulations to estimate the equilibrium
uptake. However, to fully characterize the temperature, pres-
sure, and composition dependence of equilibrium uptake, we
would require simulations across the relevant ranges of those
variables for every material (11600 in total) in our study,
incurring significant computational expense. Therefore, we
exploit a series of simplifications that reduce the necessary
computational effort. As a first simplification, we approximate
the multicomponent equilibrium uptake using Ideal Adsorbed
Solution Theory (IAST)" applied to the simulation-derived,
single-component adsorption isotherms. This simplification
eliminates the need for multicomponent simulations across the
necessary range of gas compositions, allowing us to focus on
single-component simulations at appropriate pressure.

Our second simplification is based on the relevant pressure
range of our cycle analysis. Since the typical pressures for DAC
are low (near or sub-atmospheric), we can approximate the
isotherms for many sorbents by the (linear) Henry's Law
Isotherm, where Ky is the Henry's law constant. As is well-
known,"® the Ky for a particular sorbate, sorbent, and temper-
ature combination may be computed using the rapid (compared
to full Monte Carlo simulation) Widom-insertion approach,*®
which we implemented in the Free Energy and Advanced
Sampling Simulation Toolkit (FEASST).>*>*

To complete the data set for equilibrium uptake, we must
also address the temperature-dependence of K. Recently,
Siderius et al.*®> demonstrated that Ky may be represented by
a high-order polynomial extrapolation function of inverse

1

temperature (8 = T
where the extrapolation coefficients are related to moments of
the internal energy observed in a Widom-insertion calculation.
Thus, as a third simplification we additionally used FEASST to
collect the extrapolation coefficients for Ky, ultimately yielding
Ky for relevant temperatures by a simple polynomial function of
(. We note that this technique, via an appropriate derivative of
Ky, also provides the heat of adsorption at infinite dilution®
(gaas)- Thus, for each sorbent considered, we ran two Widom-
insertion simulations, one for CO, at 350 K and the other for
N, at 300 K, yielding Ky ; and g.qs; (Where i = CO, or N,) as
polynomial functions of 8. The CO, simulation was done at
higher temperature since that sorbate is likely to reach satura-
tion at higher temperatures. Details of these calculations and
example scripts are given in Section 2 of the SI.

Given the simplifications noted above, we ran additional
simulations to identify thermodynamic boundaries within
which those simplifications are adequate or appropriate. Our
first consideration is the linearity simplification, particularly for

where Ky is the Boltzmann constant),
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N, uptake. As an approximation to atmospheric conditions, we
will consider an input total pressure of 101.3 kPa (1 atm) with
a CO, concentration of 400 pmol mol ™' (400 ppm) with the
balance of N,. Under this approximation of atmospheric
conditions the partial pressure of CO, is very low and thus likely
well within the linear regime of the isotherm, since most of the
total pressure is due to the balance of N,. We also expect that
the pure N, isotherms for most sorbents are also linear up to
101.3 kPa, since the temperatures examined herein are far
above the critical temperature of N,. To verify that the N,
isotherm is sufficiently linear, we performed Grand Canonical
Monte Carlo (GCMC) simulations of pure N, in each sorbent
material at P = 101.3 kPa for comparison with the linear
isotherm at 300 K. The linear isotherm based on Ky, was
considered an adequate approximation when its uptake +10%
was within the 95% confidence interval of the uptake obtained
by direct GCMC calculation. Those materials where these two
predictions do not agree will require more sophisticated
approximations, and should be the subject of future studies.
Second, since CO, will reach saturation at higher temperatures
than N,, we also considered the adsorption saturation of CO, to
ensure that the linear isotherm does not grossly overestimate
the CO, uptake. To estimate the adsorption saturation of CO, in
each material, we ran an additional simulation of pure CO, in
each sorbent at 350 K and at increasing pressure until the
uptake of CO, converges. Then, we restrict the DAC cycle anal-
ysis to temperatures where Ky x Pgo, is below the saturation
uptake, g, co,; this effectively sets a lower bound on the valid
temperature range. Detailed description of these simulations
are provided in Section 2 of the SI. Third, the extrapolation
functions that represent Ky must be restricted to thermody-
namically consistent temperatures; that is, Ky must be
a monotonic, increasing function of temperature. This condi-
tion may impose an upper limit on the temperature range of the
extrapolated Ky and, hence, the CO, and/or N, linear isotherms.

Ultimately, the molecular simulations listed above yield the
pure-component Henry Law isotherms of CO, and N, for each
material at arbitrary temperature, subject to restrictions on the
temperature range that follow from thermodynamic and
saturation-loading considerations. With these isotherms in
hand, we can then use IAST to obtain the mixed gas equilibrium
uptake at arbitrary temperatures and partial pressures of each
gas and, with linear Ky isotherms, IAST can be applied analyt-
ically. In the SI we derive the equilibrium uptake along the
desorption path in Step 2 of the intrinsic refresh cycle. We show
this derivation for three cases: analytically solving IAST for the
binary mixture of CO, and N,, a correction for finite volume of
the desorption chamber, and the generic case of non-linear
adsorption behavior in multi-component gas mixtures (given
the known functions 7n,(7, Pa, Pg, Pc, --.), ns(T, Pa, Pg, Pc, -..),
nc(T, Pa, Pg, P, ...), where A, B, C, ...refer to arbitrary gas
species).

2.1.2 Sorbent heat capacity. In ref. 23, Moosavi et al. trained
machine learning models, specifically XGBoost> models, to
predict the Cy of MOFs and zeolites. These models were trained
against a computational workflow that involved density func-
tional theory calculations and molecular dynamics simulations

© 2025 The Author(s). Published by the Royal Society of Chemistry
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for the force of atom displacements, phonon modes of the
material, and subsequent calculations of the Cys. The computa-
tional workflow allows for the integration of the phonon modes
across temperature to obtain the temperature dependence of the
Cys. In their work, Moosavi et al. used separate ensembles of
XGBoost models to predict the Cys at several different tempera-
tures (250 K to 400 K in 25 K increments). In this work, we use the
pre-trained ensembles of 100 XGBoost models for each temper-
ature from ref. 23 and their code repository® for the predictions
and uncertainties of the Cys.

To interpolate and extrapolate the Cy predictions to arbitrary
temperatures, we use a heteroscedastic Gaussian Process
regressor (hGPR), implemented using ref. 26. This hGPR prop-
agates the uncertainties from the Cy predictions from the
XGBoost model to make new predictions of the Cy with quan-
tifiable uncertainty at arbitrary temperatures. This hGPR model
therefore allows us to predict the Cy of the MOF sorbents at
each step of the refresh path discussed in the next section.

2.2 Thermodynamic model

2.2.1 Model. In order to envision all the thermodynamic
terms, it is helpful to consider a model. For this, we will use an
idealized piston in Fig. 1.

This idealized piston system allows for the visualization of
all of the terms in the energy and mass balances. Real DAC
systems are typically packed columns of sorbent, and the
performance of these systems depends on many extrinsic
factors such as the column diameter, the flow rate, and the
packing density in the column. By considering this idealized
piston system, we avoid those factors and instead depend on
intrinsic material properties. This idealized piston makes three
strong assumptions: (1) the system reaches thermodynamic

View Article Online
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equilibrium at each step in the process, (2) the system does not
consider any extrinsic factors like sorbent particle packing
fraction, (3) as the gas is desorbed it leaves the system through
a zero-volume check-valve as discussed in more detail below
(see Section 1.2 of the SI for correction terms for this). With
those assumptions, this system will find the theoretical upper
limit on the capture efficiency as well as the purity of the
captured gas. The utility of this work then is twofold. The
intrinsic refresh analysis can first be used to find optimal
materials for a given thermodynamic process. Secondly, this
intrinsic refresh analysis can be used to find optimal thermo-
dynamic processes for a material. In the derivations in the next
section we show how this work could be extended to consider
real-world extrinsic design considerations such as packing
fraction and waste heat recovery.

The surfaces of the piston chamber are assumed to be
perfectly insulative; the piston is assumed to be mass-less, and
the valves and check-valves are assumed to have no volume. The
refresh cycle proceeds as follows:

Step 1: Valve 1 is closed and Valve 2 is opened, exposing the
gas to the sorbent. The sorbent isothermally reaches the equi-
librium uptake.

Step 2: Valve 2 is closed, Valve 3 is opened. The temperature
and pressure are changed along a specified path through this
thermodynamic space. The desorbed gas leaves through the
outlet check-valve, Valve 4.

Step 3: Valve 3 is closed, Valve 1 is opened, and the piston is
drawn back. The system returns to the initial temperature and
pressure.

To approximate atmospheric gas, we consider a binary
mixture of N, and CO,. It is important to clarify that, for the
purpose of all the subsequent analyses in this work, the model
will use absolute adsorption as the thermodynamically relevant
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Fig.1 (a) A diagram of a piston model for adsorption process. This diagram shows an example temperature swing adsorption cycle. The diagonal

hashed rectangles represent perfectly insulative walls. The valves are labeled V1 to V4. The steps 1 to 3 are steps of the example temperature
swing adsorption cycle, starting at temperature T;, ending at temperature T, at pressure P;. The blue-to-red color scheme represents the low-
to-high temperature. (b) A sketch of the example temperature swing refresh path in temperature and equilibrium uptake space. The steps 1 to 3

correspond to those in part (a).
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measure. Absolute adsorption includes not only the molecules
of gas interacting with the surface of the sorbent, but also the
molecules of gas in the pores of the sorbent. For a more in-
depth discussion of the measures of adsorption, see ref. 27.
2.2.2 Energy balance. During Step 1, the (refreshed)
sorbent is exposed to the new gas. For DAC this would be
exposing it to the atmosphere, at ambient or slightly above
ambient pressure. The sorbent adsorbs gas until it reaches
equilibrium with the gas in the inlet source. Since adsorbing gas
is exothermic, energy will be spent cooling the system to
maintain the isothermal condition during adsorption. The gas
being adsorbed changes the volume of the system. There is
a work term associated with this gas contracting. Therefore the
energy balance for Step 1 (assuming ideal gas behavior) is:

E) = Qugs,co, + QaasN, — W1
E, = Anco,qads,co,(T1) + Ann,qaasn, (T1) + PiAVeo, + P1A VY,
E\ = Anco, (qaasco,(T1) + RT1) + Anx, (qagsn, (T1) + RTy)

1)

where E; is the energy balance of Step 1, Q.qs is the heat of
adsorption, W; is the work of the gas contracting, P; is the inlet
pressure, AV is the change in volume of the gas, An is the change
in equilibrium uptake of the gas (i.e. the working capacity of that
gas), ¢.as is the molar heat of adsorption, T is the initial
temperature, and R is the ideal gas constant. Note that we know
the initial conditions (T}, Py co,, P1,5,) and can measure or predict
gaas(7) (as seen in the previous section), but do not yet know the
An terms. We can get the initial equilibrium uptake (1, co, and
ny,) from the initial conditions, but the equilibrium uptakes at
the end of the cycle (nena,co,, and #engn,) depend on the path
taken during the desorption in Step 2. This is because, while the
total pressure P.,q can be chosen, the composition of the
desorbing gas changes throughout the refresh cycle since (under
our modeling assumptions) it maintains equilibrium with the
sorbent and remaining sorbate. As we describe in more detail
below, the composition of the captured gas at the end of the
refresh cycle is determined by the integral over these small
changes and is, therefore, highly path-dependent.

During Step 2, the system is now isolated from the atmo-
sphere, and the temperature and pressure are changed, causing
gas to desorb from the sorbent. This desorption is endothermic,
requiring energy to be put into the system. There is a work term
associated with the gas expanding. Energy is required to heat
the gas in the system and the sorbent. Finally, there is the
energy required to change the pressure. The total energy
balance for Step 2 is therefore:

E; = Qags,co, + QaasN, — Waco, — Wan, @)
+Eheat,C02 + Eheat,Ng + Eheat‘sorb + EAP

If we define a path s through (T, P)-space, then we can define

the desorption or refresh cycle as:

T(s)|vs,0= YLer

ds

Py (3)
P(s)|Vs,0= ——eR
($)|Vs,0= LS

18356 | Chem. Sci,, 2025, 16, 18352-18363
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Meaning that T'and P are both functions of the path s, under the
constraint that for all s the change in T with respect to s is a non-
negative real number and the change in P with respect to s is
a non-positive real number. Then we can use eqn (3) to define
any temperature-swing, pressure-swing (including vacuum
swing), or combinations thereof refresh cycles for the desorption.
Under this definition of the desorption path, eqn (2) becomes:

B J.vend (Gads.co, (8)nco,($) + GadsN, ()N, () + RT(s)nco, (s)

s

+RT (s)nn,(s) + gRT(S)"coz(S)

+% RT(S)I’!N2 (?) + CV,sorb (S‘) T(Y)

+(nx,(8) + nco, (5)) RT (s)log(P(s)) ) ds (4)

where Cy sorb(S) is the molar heat capacity at constant volume of
the sorbent as a function of s. Note that here we assume that
there is no change in volume of the sorbent with T, P, or as gas is
adsorbed/desorbed. We approximate the heat capacity of the
adsorbed CO, and N, with the ideal gas theory approximation
for triatomic and diatomic gases, respectively.

During Step 3, the system returns from Teng, and Pepg to Ty
and P;. Since the aim of this work is to develop performance
metrics that depend on the intrinsic properties of materials in
order to directly compare potential sorbent materials, we
assume no energy recovery. Therefore the energy balance for
Step 3 is:

However, real DAC systems will be able to recover energy from
the hot output gas cooling and the total pressure equilibrating.
A simple example of this is using heat exchangers for the hot gas
on the output of one gas separation column to warm another
column. Since those terms are system design dependent, we will
ignore them for this analysis.

The total energy balance for the refresh cycle is then simply
the sum of the energies of each step:

Etora = E1 + E> + E3 (6)

We can then define our performance metrics for this
intrinsic refresh cycle using the terms defined above. The purity
of CO, in the output is the mole fraction:

Ancoz
A}’ICO2 + AYZNZ

(7)

Xend,CO, =

The intrinsic capture efficiency is how much CO, was
captured per unit energy:

o Al’lcoz

£= (8)

ETotal

Alternatively, the inverse of £ is the energy cost to capture an
amount of CO,:

© 2025 The Author(s). Published by the Royal Society of Chemistry
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C= l: ETota]
§  Anco,
Note that in order to calculate Xcngq,co, and £ we must first
specify s, then determine n(s) and ga.q45(s) for each gas species, as
well as Cy sorb(s), which were shown in the previous section.

©)

3 Discussion

For ideal gases the enthalpy of mixing is zero - meaning that it
takes zero work to separate ideal gases. This would mean that it
would take zero work to capture the CO, from the atmosphere.
This would therefore imply that there is no upper limit on how
much CO, could be captured per energy. However, the Gibb's
free energy of mixing for ideal gases is negative, which means
that the mixed gases in atmosphere will not spontaneously
separate. What we are modeling with the idealized piston
described above is a way to keep track of all the thermodynamic
terms for an adsorption based process. Indeed, if we recovered
all the waste heat in Step 3 - if we replace eqn (5) to perfectly
recover all the waste heat - then the total in eqn (6) would
necessarily sum to zero. Real-world systems would likely employ
some waste heat recovery and therefore have non-zero (but not
perfectly efficient) E; terms, and could therefore exceed our
stated upper limit of capture efficiency. Since real-world waste
heat recovery systems are not perfectly efficient and would
depend on the process design rather than materials properties,
for the goal of comparing materials based on their intrinsic
properties we ignore any heat recovery. Therefore, this method
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provides an idealized upper bound on the purity and capture
efficiency of sorbent based gas separations, in the absence of
heat recovery - all of which is based off of intrinsic material
properties.

The most critical information for this analysis is the equi-
librium uptake of each component gas as a function of
temperature and the other component gases. Unfortunately
there is very little data on adsorption behavior in mixed gases.™
For the purposes of this initial work, we used thermodynamic
extrapolation of Ky isotherms and IAST to obtain the equilib-
rium uptakes. These simplifying assumptions allowed us to
screen through 11 660 MOF materials found in the CSD data-
base. However, the analysis here could just as easily be applied
to sorbents with strongly non-linear isotherms calculated from
higher levels of theory or from experimental measurements,
such as seen in amine-decorated MOFs.?® All that is needed is
a way to describe the equilibrium uptake of each gas species as
a function of temperature and each partial pressure. However,
as mentioned earlier, there is a significant lack of experimental
measurements of mixed gas adsorption,*'® and a lack of non-
linear adsorption models that account for temperature depen-
dence (extrapolating in temperature from isotherms). This work
further assumes the volume of the sorbent does not change with
adsorption. Many MOF sorbents being considered for DAC
applications are flexible and/or have nearly step-wise
isotherms.” To accurately consider flexible materials, the
work associated with the sorbent volume change would need to
be accounted for in the energy balance and specific heat
calculations in eqn (1) and (4).
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(a) A plot of 3 paths through (T, P)-space for the refresh cycle. These are three possible paths that could be used for Step 2 of the refresh

cycle (as depicted in Fig. 1). Path 1 and 3 are the extreme examples. Path 1 can be thought of as heating first then pulling vacuum. Path 3 is the
opposite, pulling vacuum first then heating. Path 2 heats and pulls vacuum concurrently, both at constant rates. (b) The performance metrics of
the sorbent (LETQAEOQ1_ion_b) along each of the 3 paths. For this material, given the binary mixture of CO, and N at the inlet at 400 pmol mol™*
of CO,, both the intrinsic capture efficiency (from eqgn (8)) and purity of the captured CO, (from eqgn (7)) are optimized by heating first then pulling
vacuum. The error bars represent plus or minus one standard deviation as estimated from a Monte Carlo based uncertainty propagation from the
initial GCMC calculations of both Ky co,. and K, as well as the machine learning prediction of Cy. up through the IAST calculations for mixed
gas adsorption behavior, and the intrinsic DAC analysis from egn (1) and (4) and ultimately to the performance metrics.
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That being said, linear, non-interacting isotherms are good
approximations for many MOF sorbents. For this study we
considered the MOFs from the CSD." Out of the 11 600 mate-
rials studied in this work, there were 8 759 materials where the
Ky are good approximations of the isotherms. This was deter-
mined by comparing the equilibrium uptake of N, at 101.3 kPa
(1 atm) and 300 K using the Ky v, versus a direct GCMC calcu-
lation. A table categorizing all the completion mechanisms of
our analysis is given in Section 3 of the SI.

The performance of the sorbent depends on the path
through thermodynamic space during the refresh cycle. Fig. 2a
shows three example paths through (T, P)-space during Step 2.
Each of these paths has the same starting and ending condi-
tions, but take different paths through (T, P)-space to get there:
heating first then pulling vacuum (Path 1, blue line), heating
and pulling vacuum simultaneously (Path 2, orange line), and
pulling vacuum first then heating (Path 3, green line). In Fig. 2b,
we show the purity of the captured CO, and the intrinsic capture
efficiency for one sorbent material, LETQAEO1_ion_b, for each
of these paths. For this material, the performance in both
metrics is optimized by heating first then pulling vacuum. The
reason that the performance is path dependent is that, as the
gas desorbs at one infinitesimal point along the path it is in
equilibrium with the gas that desorbed at the previous infini-
tesimal point in the path.

Fig. 3a shows each of the terms in the energy balance from
eqn (4) along the progress of Step 2 for Path 2 in Fig. 2a. The
heat of adsorption of N, decreases as the cycle progresses, while
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the heat of adsorption of CO, increases as the cycle progresses.
By far, the largest term in this energy balance is the energy
required to heat the sorbent. Fig. 3b shows the equilibrium
uptake of both CO, and N, along this refresh cycle, analogous to
the diagram in Fig. 1b. The equilibrium uptake along Step 1 is
the vertical portion, while the equilibrium uptake along Step 3
is the horizontal portion. The working capacities are differences
between equilibrium uptakes at the start and end of Step 2
(equivalently, the length of the vertical portion for Step 1).

We then consider a single path for the refresh cycle and
examine the intrinsic refresh for all of the MOF materials in the
CSD. This path is the same as Path 1 from Fig. 2a — which starts
at 250 K and 101 325 Pa, warms isobarically to 350 K, then pulls
vacuum isothermally to 40530 Pa. The 2D histogram of the
performance metrics of all of the sorbents considering this path
is shown in Fig. 4a. While there is a high density of sorbents
that perform poorly by both metrics (toward the bottom left),
there are still some sorbents that have impressive performance
(toward the top right). Fig. 4b shows the set of Pareto optimal
materials for this refresh cycle, which are also detailed in Table
1. Given Path 1 from Fig. 2a and the approximated atmospheric
conditions, these are the optimal sorbents to use with respect to
the intrinsic capture efficiency £, and purity of the captured CO,
Xend,co, based on their intrinsic materials properties.

Next, we consider optimizing the path for each material. The
refresh path need only be monotonic in temperature and total
pressure. However, to simplify the parametrization of the path
for the purposes of this study, we narrow the search space to
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(a) A plot of each term in the energy balance from egn (2) for the sorbent LETQAEO1_ion_b along Step 2 of the refresh cycle specified by

Path 2 from Fig. 2a. Q_CO, and Q_N, are the heats of adsorption of CO, and Np, W_CO, and W_N, are the work associated with the change in
volume of the desorbed CO; and N,, E_CO, and E_N, are the energies required to heat the adsorbed CO, and N, E_sorb is the energy required
to heat the sorbent, and E_P is the energy required to change the pressure. The total energy is clearly dominated by the E_sorb term for the
energy required to heat the sorbent. (b) A plot showing the equilibrium uptakes (nco,(s) and ny,(s)) for the sorbent LETQAEO1 ion_b along the
refresh cycle specified by path 2 from Fig. 2a. Since both T and P change concurrently at constant rates during Step 2 of this path, the x-axis is
labeled as the progress along this path. The uptake along Step 1 is shown as the vertical line segment from low uptake to high uptake for each
sorbate. The uptake along Step 2 is shown as the curve from the upper left to the bottom right for each sorbate. The uptake along Step 3 is shown
as the horizontal line segment at constant uptake of each sorbate. This plot is a specific example of the generic plot shown in Fig. 1b.
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Fig. 4 The intrinsic DAC analysis was performed on each sample in the database using Path 1 from Fig. 2a. A 2D histogram of the performance
metrics for this analysis is shown in (a). Note that where there are no sorbents the histogram bin (pixel) is left transparent. The colorbar shows the
count of how many sorbents occupy that bin of performance metrics. Note that there are many sorbents with poor performance, as shown by
the few bright bins at the bottom left corner of the 2D histogram. This shows that there are many sorbents that do not perform well with this
refresh cycle (as defined by Path 1 from Fig. 2a), while a few sorbents do perform well. (b) shows the Pareto front of part (a). This shows the set of
Pareto optimal materials for this refresh cycle. Note that the error bars show plus or minus one standard deviation for each performance metric.
This uncertainty was estimated from a Monte Carlo based uncertainty propagation from the uncertainties in the initial GCMC calculations of both
Kh.co,. and Ky n, as well as the machine learning prediction of Cy, up through the IAST calculations for mixed gas adsorption behavior, and the
intrinsic DAC analysis from eqn (1) and (4) and ultimately to the performance metrics.

Table1 Table of the Pareto optimal materials given a single path (specifically Path 1 from Fig. 2a). With intrinsic capture efficiency £ in (umol 373,
purity of the captured CO5 Xena, and working capacity An in (mol kg™%). Note that the number in the parenthesis represents the uncertainty in the
previous two digits of the nominal value

Name 3 Xend Anco, Any,

jacs.6b06759_ja6b06759_si_003_clean 8.191(99) 0.9554(51) 13.7(17) 0.632(10)
ja5b02999_si_002_clean 7.93(20) 0.962(11) 12.6(32) 0.4641(17)
RAVXIX_clean 7.37(18) 0.9657(97) 33.2(70) 1.115(16)
PUPXIIO1_clean 5.39(37) 0.9664(61) 1.58(26) 0.0534(13)
ZADDA]J_clean 4.86(21) 0.9737(26) 1.42(14) 0.03802(92)
VAXHOR_clean 4.59(35) 0.99539(74) 1.05(17) 0.00473(16)
BOMCUB_charged 2.54(30) 0.999839(29) 0.326(53) 0.0000511(19)

only consider linear paths between starting point (T3, P;) and
ending point (Tend, Pena)- To enforce the monotonic paths we
use the priors:

T ~ uniform(200,400)

Tena = T1 + AT|AT ~ uniform(0, 200)

Py ~ uniform(1.1 x 101 325,101 325),

Pewa = Py + AP|AP ~ uniform(—101 225,0)

(10)

with T in Kelvin, and P in Pascal. We search for Pareto optimal
refresh paths (Pareto optimal Ty, AT, P;, and AP), for each
material in the database. Each sorbent could have several Pareto
optimal refresh paths — multiple paths that find the optimal
tradeoff between £ and x.nq for each sorbent. Fig. 5a shows a 2D
histogram of the performance metrics of all the Pareto optimal
paths for all the MOFs in the database. The best performing
materials are those in the top right of this figure. Despite the

© 2025 The Author(s). Published by the Royal Society of Chemistry

optimization there is high concentration of materials that do
not perform well by either metric (as seen by the few bright
histogram bins in the bottom left of Fig. 5a), which shows that
these materials are likely poor candidates for DAC. However, in
comparison to Fig. 4a, there is a much higher density of
sorbents that perform well. This shows the utility of optimizing
the refresh path for each sorbent. Fig. 5b shows the set of Pareto
optimal sorbents with their respective Pareto optimal refresh
paths, which are also summarized in Table 2. It is interesting to
note that for many materials, refresh paths can be optimized to
capture nearly pure CO,. Furthermore, the capture efficiencies
achieved after the path optimization are much higher than
those seen in the single path considered in Fig. 4. There are
a few sorbents with intrinsic capture efficiencies above 1.0 x
107" mol J~* for their Pareto optimal paths. To put some of the

Chem. Sci., 2025, 16, 18352-18363 | 18359
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Fig. 5 For each sorbent material in the database, we found Pareto optimal refresh paths within the bounds defined by egn (10) based on the
intrinsic DAC analysis. (a) shows A 2D histogram of the performance metrics for this analysis. Note that each sorbent material could have multiple
Pareto optimal paths. The histogram shows the performance metrics for all Pareto optimal paths for all materials in the database. The colorbar
shows the count of how many combinations of sorbent and refresh path occupy that bin of performance metrics, where there are none the bin
(pixel) is left transparent. Despite individually optimizing the refresh paths, there are many sorbents with poor performance, as shown by the few
bright bins in the bottom left of the histogram. (b) shows the Pareto front of part (a). This shows the set of Pareto optimal sorbents with their
respective Pareto optimal refresh paths. Note that the error bars show plus or minus one standard deviation for each performance metric. This
uncertainty was estimated from a Monte Carlo based uncertainty propagation from the uncertainties in the initial GCMC calculations of both
Kh,co,, and Ky n, as well as the machine learning prediction of Cy, up through the IAST calculations for mixed gas adsorption behavior, and the
intrinsic DAC analysis from eqn (1) and (4) and ultimately to the performance metrics.

Table 2 Table of the Pareto optimal materials and their Pareto optimal paths. With intrinsic capture efficiency ¢ in (umol J7%), purity of the
captured CO» Xenq, Working capacity An in (mol kg™3), temperature T in (K), and pressure P in (Pa). Note that the number in the parenthesis
represents the uncertainty in the previous two digits of the nominal value

Name 3 Xend Anco Any, T, Tend Py Peng

VANNIK_clean 11.259(38) 0.9392(27) 29.1(11) 1.878(50) 200.7 384.3 101950 60 838
VANNIK_clean 11.223(41) 0.9392(29) 30.0(13) 1.935(55) 200.9 371.2 106 080 29443
LETQAEO1_ion_b 11.22(18) 0.9827(33) 137(24) 2.346(30) 200.2 391.2 101786 61381
BEVQID_clean 9.186(66) 0.99287(37) 3.17(13) 0.02273(65) 210.5 308.7 100 868 10036
BEVQID_clean 9.156(68) 0.99409(29) 3.75(16) 0.02224(67) 210.2 338.9 97326 7838
FASJAL_clean 8.186(69) 0.99517(36) 4.20(29) 0.02032(58) 236.6 316.7 99 144 2432
FASJAL_clean 8.148(62) 0.99594(23) 4.64(25) 0.01890(51) 235.3 344.9 87503 4609
FASJAL_clean 8.028(69) 0.99623(22) 4.78(24) 0.01804(44) 235.0 364.1 82 466 3243
IFUDAO_charged 7.26(29) 0.999715(46) 1.61(22) 0.000450(19) 217.7 307.3 100 360 9733
IFUDAO_charged 7.00(28) 0.999767(31) 2.02(24) 0.000463(18) 217.7 345.7 102 382 14 448
MAXHEA_clean 6.84(36) 0.9999511(83) 0.99(15) 0.0000471(26) 213.1 300.3 110012 12457
MAXHOK_clean 6.56(41) 0.9999731(52) 0.93(15) 0.0000243(12) 212.9 302.5 93225 9613
MAXHOK_clean 6.26(52) 0.9999739(63) 1.04(20) 0.0000259(12) 213.8 331.7 101126 17 833
PARFOF_clean_h 6.12(52) 0.9999911(19) 1.14(21) 0.00000974(45) 203.6 311.7 102 499 8995

capture efficiency values in perspective, the average CO, emis-
sions by the US grid is about 2.46 x 10 ® mol J " according to
the US Energy Information Administration® - meaning at these
idealized performances, many sorbents could potentially enable
net-negative emissions with systems powered by the US grid. Of
course these idealized efficiencies do not account for the real-
world efficiencies of DAC systems - which would incur losses
due to friction and other non-idealities, but could also include
waste heat recovery. McQueen et al.”> states example systems

18360 | Chem. Sci,, 2025, 16, 18352-18363

currently operating with capture efficiencies of 2.27 x 10~° mol
J~'. However, that system was mostly powered by natural gas,
which results in net positive emissions. In any case, this anal-
ysis provides an idealized upper limit on the capture efficiency
which shows that real-world systems have potential for effi-
ciency gains.

One of the main conclusions from this analysis is that it is
greatly beneficial to start cold. Fig. 6 shows a histogram of all
the starting temperatures (7; from eqn (10)) of all the Pareto

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 For each sorbent material in the database, we found Pareto
optimal refresh paths within the bounds defined by eqgn (10) based on
the intrinsic DAC analysis. This shows histogram of the starting
temperature (Ty) of those refresh paths. Each sorbent could have
multiple Pareto optimal paths. This histogram shows the distribution of
T, for all the Pareto optimal paths for all the sorbents in the database.
Also note that 200 K was chosen as the lower limit for T;, since that is
well outside likely practical operating conditions for DAC facilities.
Most of the optimized refresh paths start well below ambient
conditions.

optimal paths for all the materials considered. Most of the
materials' adsorption performance were optimized by lowering
the start temperature below ambient. For this study we chose
the lower limit of 200 K for the starting temperature to be
somewhat outside the practical operating conditions of most
DAC facilities, so as to not impose any undue restrictions. Yet
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the performance of many sorbents was often optimized at this
hard limit, suggesting that the performance of some sorbents
could be further optimized by even lower starting temperatures.
We can gain some insight as to why the performance is opti-
mized at low starting temperatures by inspecting the Pareto
optimal paths of one material, LETQAEO1_ion_b. Fig. 7a shows
the Pareto optimal paths for this material, while Fig. 7b, shows
the temperature dependence of the Henry's constants for the
relevant temperature ranges. There is a dramatic increase in the
Ky co, as the temperature is lowered below 250 K, while the
Ky, Temaing comparatively constant. From inspection of eqn
(7), the purity is optimized when ny (s) = constant or equiva-
lently Any, = 0. From inspection of eqn (1) and (4), if ny,(s) =
constant then the terms associated with the heat of adsorption
(Qads,n,) of and work of adsorption (W,y,) of N, tend toward
zero, leaving only the small energy penalty associated with
heating the adsorbed N,. This means that if ny (s) = constant
then only CO, is adsorbed or released, and some of the energy
costs are eliminated. The implication of this is that selectivity
for CO, at any one point in the adsorption cycle is grossly
incomplete information. Nor is the working capacity of CO,
sufficiently informative of the performance. This is evident in
Table 2 where the working capacity of CO, spans more than
three orders of magnitude between the Pareto optimal materials
despite fairly similar performance. The purity of the captured
CO, depends on the working capacity of CO, and, crucially, the
working capacity of N,. Since the dominant term in the energy
balance is typically the heating of the sorbent material (as seen
in Fig. 3), the capture efficiency is optimized by increasing the
working capacity of CO, and/or lowering the Cy sorb-
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Fig. 7 For the sorbent LETQAEQ1_ion_b we discovered Pareto optimal refresh paths. These paths are shown in (a) and labeled with the cor-
responding intrinsic DAC performance metrics: intrinsic capture efficiency £ (mol J=1) and purity of captured CO5 Xena, respectively (£, Xenq). Part
(b) shows the temperature dependence of the Henry's constant (Ky) for CO, and N,. As discussed in Section 2.1.1, the GCMC simulations were
performed at 350 K for Ky co,, and 300 K for Ky v, then extrapolated in 3-space to arbitrary temperatures. The shaded region shows two standard
deviations from the mean, as estimated from a Monte Carlo based uncertainty propagation. Note how Ky co, rapidly increases at lower

temperatures, while Ky n, remains comparatively constant.
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4 Conclusions

In this work we developed performance metrics for sorbents for
DAC based on intrinsic materials properties. These metrics
provide an idealized upper limit on the capture efficiency and the
purity of the captured CO,. In order to evaluate these metrics the
main information required is the equilibrium uptake of each of
the gas species being considered as a function of the thermo-
dynamic parameters (which include each independent partial
pressure and temperature). In order to complete the energy
balance, the sorbent materials properties that affect the relevant
terms are needed. The most important of these - for refresh
cycles involving temperature swings - is the sorbent heat
capacity, which is typically the dominant contribution to the
energy balance. In order to evaluate these metrics on the majority
of the 11 660 MOF materials found in both the CSD and Cor-
eMOF databases, we estimated the equilibrium uptake using
IAST and GCMC calculated Henry's constants. We approximated
atmospheric conditions with 400 umol per mol CO, with the
balance of N,. We obtained estimates of the sorbent heat
capacity at specific temperatures using pre-trained XGBoost
models from ref. 23. We then interpolated and extrapolated these
estimates to arbitrary temperatures using a heteroscedastic
Gaussian Process regressor. These metrics can be used to find
Pareto optimal sorbents for a given DAC refresh cycle — which
could be useful in optimizing sorbent materials for existing DAC
systems. Alternatively, these metrics could be used to find the
Pareto optimal DAC refresh cycle for particular sorbents — which
could be used to design DAC systems to take advantage of
available sorbents. We used our simplified model to find the
(linearly constrained) Pareto optimal refresh paths through (7,
P)-space for the majority of the MOFs in the CSD database. With
these results and an inspection of the energy balance it is clear
that neither the selectivity at any one point along the cycle, nor
the working capacity for CO, are sufficient to describe the
performance of the sorbent for DAC. We also show that due to
the rapid change in the equilibrium uptake of CO, at lower
temperatures, it is beneficial to start the refresh cycles at lower
temperatures. Many Pareto optimal refresh cycles start cold. We
demonstrate the evaluation of these metrics for temperature—
pressure swing refresh cycles, in a binary approximation of
atmospheric conditions, and no waste heat recovery. However, it
would be straightforward to include terms (in eqn (1) and (4)) for
other refresh paths (e.g. electro-swing), for additional gas species
(e.g. Hy0, O,, as is shown in the SI), or for energy recovery
systems in real-world facilities (by adjusting eqn (5)). Further-
more, while we used some simplified linear isotherms, many
promising sorbents for DAC have highly non-linear (sometimes
step-wise) adsorption curves.”** As we show in the derivation
presented in the SI, these non-linear sorbents could be easily
evaluated with the metrics we develop here if the mixed-gas
temperature-dependent adsorption behavior is well described,
but unfortunately that data is not currently available for most
materials. This work, therefore, highlights the need for further
studies on the equilibrium uptake as a function of temperature
and in mixed gas environments.
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