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anic solids for harsh environments
via machine learning

Jacob C. Hickey,ab Arman M. Karimaghaei,a Matt Flores,a Sally Hoang,a Roy Arrieta,ab

Amit Kumar,a Gonzalo Cuervo,a Peter Zhua and Jakoah Brgoch *ab

Developing multifunctional materials with superior mechanical properties, including high hardness and

oxidation resistance, remains essential for aerospace, defense, and industrial applications. Machine

learning offers a powerful, data-driven pathway for discovering new hard, oxidation-resistant materials

for these uses, providing an efficient and scalable alternative to conventional materials discovery

methods. Here, we present a pair of extreme gradient boosting (XGBoost) models, trained on

compositional and structural descriptors. A Vickers hardness (HV) model was developed using a curated

dataset of 1225 while a model for predicting the oxidation temperature (Tp) was constructed using 348

compounds. The model was subsequently validated against a diverse dataset of 18 inorganic

compounds, including borides, silicides, and intermetallics, with previously unmeasured oxidation

temperatures. Integrating the updated structure-informed hardness model with the new oxidation model

enabled the identification of multifunctional materials that simultaneously exhibit superior hardness and

enhanced oxidation resistance. This work highlights the potential of machine learning to accelerate

materials discovery and provides a robust framework for identifying compounds capable of withstanding

extreme environments.
1. Introduction

Developing materials that resist oxidation at elevated temper-
atures while maintaining their mechanical properties (hard-
ness) under harsh conditions is critical for advancing
technologies in aerospace, energy, defense, and industrial
manufacturing.1 Traditional methods for developing oxidation-
resistant materials remain costly and time-consuming oen
requiring multiple synthesis cycles, detailed characterization,
and challenging scale-up.2,3 To address these limitations,
researchers are adopting more efficient and targeted strategies
that can be used to discover new materials by modifying known
systems through compositional tuning, forming composites,4

and investigating underexplored and chemically complex phase
spaces.5,6

Early efforts to accelerate the discovery of new structural
materials relied on rst-principles methods like density func-
tional theory (DFT), which have transformed materials property
predictions across diverse application spaces.7 However, DFT
oen struggles to provide accurate quantitative predictions of
specic mechanical properties, particularly oxidation resistance
and hardness. Oxidation is a complex, dynamic, temperature-
ston, Texas 77204, USA. E-mail: jbrgoch@
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the Royal Society of Chemistry
dependent process that extends beyond DFT's static, ground-
state framework, involving gas-phase interactions, defect
formation, and interfacial reactions. Furthermore, modeling
idealized surfaces or perfect stoichiometries limits predictive
reliability for real-world oxidation behavior. Likewise, hardness
arises from complex deformation mechanisms, such as dislo-
cation motion and grain boundary interactions, which are
difficult to capture accurately with conventional DFT due to its
limited treatment of long-range strain and non-equilibrium
processes.

Machine learning offers a data-driven framework capable of
overcoming many of these limitations by capturing complex
relationships across composition, structure, processing, and
functional properties. For example, prior studies demonstrated
the utility of machine learning for predicting a range of thermal,
electronic, and mechanical properties, including hardness,8–10

elastic moduli,11–14 creep,15 fatigue,16,17 and plastic
deformation.18–20 Our group previously developed a machine
learning model for Vickers hardness (HV) based solely on
compositional descriptors, enabling the prediction of load-
dependent hardness without requiring structural, microstruc-
tural, or processing information. This model has been used to
quantitatively determine HV for virtually any given composition,
even large or disordered unit cells, a priori. Nevertheless, this
initial approach could not distinguish between polymorphs and
allotropes. Machine learning is also increasingly practical for
predicting the oxidation behavior of materials. Recent studies
Chem. Sci., 2025, 16, 20601–20611 | 20601
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have shown that machine learning models outperform tradi-
tional methods in estimating oxide scale stability,21 enabling
the rapid screening of multicomponent oxide catalysts for
oxygen reduction.22 They have also shown promise in guiding
the design of oxidation-resistant alloys, including high-entropy
alloys23 and Ni-based superalloys.24 These advances highlight
exciting progress in the eld; however, most models remain
limited in scope and are not easily generalized across compo-
sitional spaces and structural complexity.

Motivated by these studies, the work here introduces
a machine learning framework that couples three predictive
models to accelerate the discovery of multifunctional materials
with high hardness and oxidation resistance. The rst set of
models predicts the bulk and shear moduli of compounds via
an extreme gradient boosting (XGBoost) approach.25 The pre-
dicted values are then incorporated as descriptors in a second
model that extends our load-dependent Vickers microhardness
with structural and compositional features. In parallel, we
construct a third model that can predict the oxidation temper-
ature of a material, using a similar integrated set of structural
and compositional descriptors. This general oxidation model is
trained on a dataset of 275 literature-reported compounds,
expanded with 71 newly synthesized materials. This model was
experimentally validated against 17 additional unreported
compounds. Combining both models, the framework was
applied to a screening set of 15 247 pseudo-binary and ternary
compounds, yielding at least three candidates with high hard-
ness and oxidation resistance. This work demonstrates the
utility of structural descriptors in capturing complex materials
behavior and highlights the potential of machine learning to
accelerate the discovery of next-generation multifunctional
materials.

2. Experimental section
2.1 Machine learning

Three distinct supervised machine learning models were
developed in this work: a set of models for the bulk and shear
moduli of compounds, another for the load-dependent hard-
ness of inorganic materials, and a third for the oxidation
temperature of inorganic materials. The bulk and shear moduli
are subsequently predicted and used as descriptors in both the
hardness and oxidation temperature predictions. Finally,
pseudo-binary and ternary metal compounds extracted from the
Materials Project dataset are screened to identify inorganic
materials that exhibit high hardness and oxidation resistance.
The optimized models, training data, and prediction sets are
provided in the open-source GitHub repository at https://
github.com/BrgochGroup.

2.1.1 Bulk and shear moduli model. First, a training data-
set of binary and ternary compounds with calculated bulk and
shear moduli was extracted from the Materials Project data-
base.26 This Materials Project employs a high-throughput
workow leveraging Density Functional Perturbation Theory27

via the Vienna ab Initio Simulation Package (VASP) to calculate
the elastic tensors.28 The Perdew–Burke–Ernzerhof (PBE)29

functional is applied for exchange–correlation processes, and
20602 | Chem. Sci., 2025, 16, 20601–20611
the DFT + U approach (incorporating the Hubbard parameter) is
adopted for systems with signicant correlation.30 The elastic
tensors are converted into elastic constants (moduli) following
the Voigt–Reuss–Hill approximation.31

The training dataset was meticulously re-cleaned, as out-
lined in our group's earlier work.11 This involved discarding
entries with negative or chemically unsensible bulk and shear
moduli. Compounds containing noble gases were also elimi-
nated. Additionally, compounds containing hydrogen, techne-
tium (Tc), and elements with atomic numbers above 83, except
uranium and thorium, were excluded. The nal training dataset
comprised 7148 compounds, more than doubling the size from
our previous research.11 Each compound's Materials project
Task ID was also included to identify different polymorphs.

Two XGBoost models were then constructed to predict the
bulk and shear moduli. This algorithm is a highly efficient and
scalable method that leverages an ensemble of gradient-
boosted decision trees.32 XGBoost operates by successively
incorporating weak learners to mitigate errors from preceding
iterations, thereby resulting in a robust model that signicantly
enhances prediction accuracy through iterative variance and
bias reduction.25,33 Comprehensive information on feature
generation and selection, hyperparameter optimization, and
model training procedures is available in SI Section 1.1,
including the complete list of features for the bulk and shear
models (Tables S1 and S2). An analysis comparing the hyper-
parameter-optimized models developed here to our previous
(SVM-based) work revealed that the XGBoost model performs
slightly better, based on improved model statistics.11

2.1.2 Load dependent Vickers microhardness model. A
new load dependent Vickers microhardness model was con-
structed that incorporates both structural and compositional
information. The training dataset consists of 1225 HV values
from 606 distinct compounds. These data were obtained from
literature and in-house microindentation experiments con-
ducted under different applied loads. Care was taken to include
Vickers hardness values from only bulk polycrystalline, rather
than hardness data collected on single crystals or collected any
other hardness measurement (e.g., Knoop, Rockwell, etc.).
Hardness values are not easily transferable due to fundamental
differences between hardness techniques, the anisotropic
nature of single-crystals, size effects like the Hall–Petch rela-
tionship, and inherent impurities and defects within poly-
crystalline materials. The dataset encompasses a broad range of
material types and compositions to promote the model's
generalizability. It includes HV data from systems that range
from so to superhard, and covers binary, ternary, and higher-
order phases, along with solid solutions. A detailed analysis of
the dataset is provided in the SI (Table S3), along with complete
descriptions of structure preprocessing, including handling of
partial and split occupancies, descriptor generation (elastic and
structural), and model training workows, such as Grid-
SearchCV and leave-one-group-out cross-validation (LOGO-CV)
(SI Section 1.2).

2.1.3 Oxidation temperature model. The supervised
machine learning model was initially trained using XGBoost
based on the same structural (17 features), compositional
© 2025 The Author(s). Published by the Royal Society of Chemistry
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descriptors (140 features), and MBTR descriptors as the hard-
ness model. CIFs were downloaded for each compound in the
training set and prepared for their respective compounds and
structural descriptors were generated. A GridSearchCV facili-
tated the optimization of critical hyperparameters: the
maximum depth of trees in the range of [3, 4, 5, 6, 7], the
learning rate in a range of [0.01, 0.02, 0.03, 0.05, 0.07], column
subsampling rate per tree of [0.6, 0.7, 0.8, 0.9], a minimum child
weight in the range of [4, 5, 6, 7], the subsample ratio in each
tree in the range of [0.6, 0.7, 0.8, 0.9], and gamma regularization
of [0, 0.1, 0.01, 0.001, 0.0001]. Following the initial optimiza-
tion, the feature set was rened with CV-RFE, ultimately
retaining 34 of the most important features (see SI Table S6). A
bagging strategy was incorporated with n = 5. A 10-fold cross-
validation was performed across ve random states, gener-
ating multiple out-of-sample predictions for each target value.
The average of the cross-validated predictions across all folds
and random states was used to derive the nal predictions.34

The nal model yielded an R2 value of 0.82 and a root mean
squared error (RMSE) of 75 °C.
2.2 Synthesis

Polycrystalline samples were synthesized by arc melting the
constituent elements under owing argon on a water-chilled
copper hearth. Raw starting materials were weighed in stoi-
chiometric and near-stoichiometric ratios, with total masses
ranging between 0.125 g and 0.25 g. The addition of excess
boron, carbon, or silicon was periodically required to mitigate
the formation of unwanted thermodynamically favored binary
phases and promote phase purity of the more complex phases,
as the excess compensates for any loss of the main group
element through volatilization or spattering, for example, and
shis the equilibrium toward the target phase. The elements
were loaded into a 6 mm die with a drop of hexanes to promote
elemental binding and pressed into a pellet. The pellets were
initially reacted with currents ranging from 10 A to 17 A.
Depending on the constituent elements of the sample, the
current was maintained throughout the synthesis or was
incrementally increased up to 200 A. No noticeable deposition
formed in the chamber during synthesis. The silicides were
synthesized at lower currents, whereas boron-rich samples
required higher currents. The samples were ipped at least once
before re-melting the sample to promote sample homogeneity.
The appearance of the as melted samples varied from dull, dark
ingots to lustrous, faceted buttons. The mass of all samples was
recorded pre- and post-synthesis to track potential mass loss.
The mass loss was never greater than 5%; otherwise, the sample
was remade. Select samples underwent an additional annealing
step to promote solid–solid diffusion, ensuring the products are
near thermodynamic equilibrium with respect to decomposi-
tion into competing phases. The annealing involved wrapping
the ingots in tantalum foil, vacuum-sealing the samples in
fused silica tubes, and annealing for one week to one month, at
temperatures varying from 800 °C (silicon-containing samples)
to 1000 °C (boron-containing samples) in Lindberg/Blue™ box
furnaces.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2.3 Powder X-ray diffraction

Each arc-melted button was broken into two pieces. One half
was pulverized into a ne-grained powder with a CerCo Di-
amonite™ mortar and pestle for X-ray diffraction analysis. The
powder X-ray diffraction data were obtained using a PANalytical
X'Pert Pro diffractometer, featuring Cu Ka radiation at a wave-
length of 1.54183 Å from 5° 2q to 90° 2q. Scans collection times
were up to 1 h to analyze product purity. The resulting di-
ffractograms were then indexed against known phases in the
International Center for Diffraction Data (ICDD) database using
the HighScore soware and manually indexed against patterns
from PCD for potential phases in the sample. Accurate lattice
parameters and conrmation of phase purity were achieved by
performing Le Bail renements using the EXPGUI35 interface for
the General Structure Analysis System (GSAS).36
2.4 Vickers microhardness

The other half of the crushed polycrystalline ingots were
embedded in EpoxiCure 2 Epoxy Resin, and the surface was
polished to achieve a smooth, mirror-like nish. Initial polish-
ing with a diamond disc exposed the ingot surfaces, followed by
sequential polishing with 800–1200 grit SiC plates in alternating
orientations to minimize surface imperfections. Final polishing
was performed manually using progressively ner diamond
pastes until all visible striations were eliminated. This process
helps to remove pits and voids on the surface that could inter-
fere with accurate indentation measurements.

The polished ingots were subjected to Vickers micro-
hardness testing to measure their hardness. The ingots were
indented at different locations using the LECO AMH55,
LM810AT Vickers microhardness indenter to ensure sample
coverage. While the hardness values are expected to be consis-
tent, slight variations may occur due to different underlying or
secondary phases that might inuence the material's resistance
to deformation. Scanning electron microscopy (SEM) can help
identify suitable areas of the target phase for indentation when
dealing with multiphase samples or those featuring cracks or
voids.

Each sample was indented at various loads to establish
a load response curve. At least ten indentations were made at
the 0.49 N (50 gf) applied load, and a minimum of ve inden-
tations were made at 0.98 N (100 gf), 1.96 N (200 gf), 2.94 N (300
gf), and 4.9 N (500 gf) applied loads. Indentations deviating
from the standard square-based pyramid shape of the Vickers
indenter tip were excluded from the hardness calculations to
ensure accuracy and consistency. Moreover, brittle materials
may develop sinkholes or cracks that emanate from the indent
when subjected to higher loads. These responses made
obtaining full load response curves in some samples chal-
lenging. The acceptable indents were measured both by eye and
digitally using the LECO Cornerstone AMH55L soware, and
hardness values were calculated following eqn (1),37

HV ¼ 1:854
F

Davg
2

(1)
Chem. Sci., 2025, 16, 20601–20611 | 20603
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where F represents the applied force (in gram-force) and Davg
2

denotes the average diagonal length of the Vickers indenter
imprint (in millimeters).
2.5 Thermogravimetric analysis

The oxidation resistance of the samples was assessed by ther-
mogravimetric analysis (TGA) using an EXSTAR 600 TG/DTA
6300 instrument. Phase purity was essential, as multiphase
samples were excluded due to the difficulty of evaluating their
complex oxidation kinetics. Approximately 10 mg to 15 mg of
powder was taken from the same samples used for powder X-ray
diffraction and loaded into an alumina crucible. The powders
were heated from 25 °C to 870 °C at a rate of 20 °C min−1 under
owing puried air. The observed weight changes were plotted
as a function of temperature to construct TGA curves. The rst
derivative peak temperature (Tp), representing the point of
maximum weight change rate, was used to determine oxidation
resistance. Tp was obtained from the rst derivative of the TGA
curve, excluding the initial and nal temperature regions. There
are multiple ways that oxidation temperatures could be
considered, such as the onset oxidation temperature (To), which
is oen dened as a 5% increase in the baseline; however, the
rst derivative value was found to be the most consistent
between the in-house measurements and the literature
measurements. The alumina crucibles were stored in a drying
oven at 175 °C to reduce moisture absorption.

Generally, metal powders exhibit weight gain due to oxida-
tion. However, in some instances, like with Mo-containing
samples, weight loss was observed due to the volatilization of
the product during oxidation. Changes in the powders' color
and consistency were noted as early indicators of oxidation.
Samples where obvious oxidation temperatures (Tp values)
could not be obtained were excluded from subsequent analysis.

Caution! The oxidation of elements like chromium, boron,
molybdenum, and osmium can produce hazardous oxides
requiring proper precautions: chromium oxides (CrO3, Cr2O3,
CrO2) and osmium tetroxide (OsO4) are highly toxic, potent
oxidizers, and volatile, with risks of severe irritation to eyes,
skin, and respiratory systems. Boron oxide (B2O3), which is
a strong desiccant, and molybdenum trioxide (MoO3) can cause
eye, skin, and respiratory tract irritation. They require handling
in a fume hood with appropriate PPE, including gloves and eye
protection. In the event of exposure, immediate medical atten-
tion is necessary. Follow all institutional safety protocols and
OSHA guidelines.
Fig. 1 Predicted versus DFT-calculated elastic moduli for the (a) bulk
modulus (B) and (b) shear modulus (G) using the extreme gradient
boosting model trained on 7148 inorganic compounds. DFT-calcu-
lated values were obtained from the Materials Project database. Model
performance was evaluated using 10-fold cross-validation. The red
dashed line represents the ideal 1 : 1 parity line.
3. Results and discussion

This study develops supervised machine learning models based
on XGBoost to predict Vickers microhardness and the Tp
oxidation temperature using compositional and structural
descriptors. The approach begins by training models to predict
bulk and shear moduli, which are physically grounded proxies
for mechanical response.11 These predicted moduli are then
incorporated as input features in the nal hardness and
oxidation models, enabling the capture of complex, underlying
20604 | Chem. Sci., 2025, 16, 20601–20611
relationships between structure, chemistry, and target
properties.
3.1 Machine learning prediction of elastic moduli

Materials with high resistance to volumetric compression and
shear deformation exhibit high bulk and shear moduli, which
are key indicators of mechanical robustness. These elastic
properties are characteristic of superhard materials such as
diamond and serve as critical design targets for developing next-
generation hard materials. Fortunately, Density Functional
Perturbation Theory (DFPT) provides a reliable framework for
calculating the effects of elastic strain, and DFPT-derived
moduli for a wide range of inorganic compounds are available
through the Materials Project database. By leveraging this
information, machine learningmodels can be trained to predict
elastic behavior and enable the use of this information as
a descriptor in the subsequent prediction of mechanical
properties.

Building on our group's prior work,11 which successfully
screened for superhard materials using machine learning
models trained on DFT-derived elastic moduli, we redeveloped
two models to predict bulk and shear moduli using values
sourced from theMaterials Project. The training set consisted of
7148 curated binary and ternary inorganic compounds,
prepared following the workow described in the Experimental
section. Both models employed a bagged extreme gradient
boosting ensemble with 10 estimators and nal feature sets
comprising 71 and 144 descriptors for bulk and shear models,
respectively.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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As shown in Fig. 1a and b, both models exhibit strong
agreement with DFT reference values, achieving R2 scores of
0.97 for the bulk modulus model and 0.85 for the shear model
with corresponding mean absolute errors (MAEs) of 7.47 GPa
and 9.9 GPa, respectively. Approximately 22% of bulk predic-
tions and ∼11% of shear predictions fall within 1 GPa of the
reference values. High prediction accuracy was observed for
intermetallics such as ZrNi2P2 and AlPt2, as well as chalcogen-
ides like CsCuSe4 and NaTbSe2. Notably, the shear model per-
formed especially well for alkali and alkaline earth compounds,
potentially due to their relatively simple ionic bonding envi-
ronments. The most signicant prediction errors were observed
in nitrides, borides, and select transition metal compounds.
These systems oen feature rigid crystal structures or
pronounced bonding anisotropy, which may not be fully
captured by the current descriptor set. While absolute errors
exceeding 90 GPa were rare, such discrepancies underscore the
need for improved feature representations that more explicitly
account for bonding character, crystal symmetry, and elastic
anisotropy.
Fig. 2 Experimentally measured Vickers microhardness (HV,exp)
plotted against the predicted values (HV,pred) from the XGBoost model
for 1225 inorganic compounds. Error bars represent the standard
deviation across three bagging estimators. The red dashed line indi-
cates the ideal fit.
3.2 Predicting Vickers microhardness

Load-dependent Vickers microhardness has previously been
predicted with high accuracy using a composition-based
machine learning model.9 However, a signicant limitation of
this model, which relied on composition-only descriptors, is the
inability to distinguish between polymorphs and allotropes.
Materials that share identical chemical compositions can still
exhibit vastly different hardness values depending on the
structure, with the obvious example of graphite's layers held
together by weak van der Waals forces, resulting in a so and
easily cleavable structure compared to diamond's three-
dimensional covalent network.38,39 A new model was therefore
developed here to address this limitation, expanding beyond
the limited composition-only model by using a descriptor set
that explicitly encodes crystal structure information through the
Many-Body Tensor Representation (MBTR). MBTR captures
structural information through geometry-based functions,
where the k = 1 term encodes atomic identities, while the k = 2
term captures pairwise interatomic distances. The structure-
aware model also includes the predicted bulk and shear
moduli and derived quantities like Poisson's ratio as the
mechanical property descriptors.

An analysis of elemental frequency, hardness distribution,
and applied loads for the training dataset of 1225 compounds
revealed that over half of the dataset contains boron. Most
compounds exhibit Vickers hardness values within or near the
10–15 GPa range, while only 20 unique materials meet the
superhard threshold ($40 GPa). The dataset is also skewed
toward low-load measurements, with 400 compounds tested at
0.49 N. This distribution reects the available data in the
literature and highlights the frequent challenge of data imbal-
ance when applying data-driven methods to materials research.

The model was trained using extreme gradient boosting and
optimized via hyperparameter tuning. Cross-validated recursive
feature elimination reduced the feature set to 11 key structural
© 2025 The Author(s). Published by the Royal Society of Chemistry
and physical features with the LOGO-CV strategy to ensure
generalization and prevent data leakage. Three bagging esti-
mators were employed, grouping data by composition while
allowing variation in applied load. This ensured the evaluation
of entirely unseen chemical systems. The nal model, shown in
Fig. 2, achieved strong predictive performance, with an
ensemble-averaged R2 of 0.83 and an MAE of 3.0 GPa. It effec-
tively captured load-dependent hardness across diverse
systems, including simple binaries, solid solutions, and
complex boron-rich phases such as YB41.2Si1.42. High accuracy
was observed for ternary intermetallic borides such as AlLiB14

and AlMgB14, consistent with their dense bonding networks
and well-dened structure–property relationships. In contrast,
the structure-aware model overestimated hardness for so,
layered compounds like graphite and h-BN, and signicantly
underestimates superhard materials (HV > 60 GPa) such as
diamond and c-BN. This reects challenges in capturing
extremes in hardness, particularly when the crystal structures of
such materials are not well represented in the training data.

For completeness, a model that combined the MBTR-based
features described here, as well as the complete composi-
tional features used in the original model, was also evaluated.
The resulting overall statistical performance was comparable to
the MBTR-based model; however, closer examination showed
this model exhibited reduced accuracy for carbon and boron
nitride allotropes. This suggests that capturing polymorph- and
allotrope-specic behavior remains challenging even with
structure and composition descriptors both included. Given the
greater complexity of this joint feature (MBTR and composition)
model and the potential risk of overtting from a substantial
number of features on this dataset that is rather limited in size,
Chem. Sci., 2025, 16, 20601–20611 | 20605
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the MBTR-based only model was selected for subsequent
hardness predictions.
3.3 Predicting oxidation temperature

3.3.1 Model performance. The accuracy and reliability of
machine learning models are fundamentally tied to the quality,
consistency, and diversity of the training data. Building
a cohesive collection of oxidation temperatures has not been
done previously. As a result, signicant effort was dedicated to
constructing a robust dataset by combining Tp oxidation
temperatures of compounds synthesized in-house with care-
fully curated literature values. Given that parameters such as
ramp rate, impurity phases, synthesis conditions, particle size,
and sample morphology (e.g., single crystal vs. polycrystalline)
can signicantly inuence oxidation behavior, careful consid-
eration was given to data selection. We, therefore, limited
literature values to those reported by H. E. N. Stone,40–45 whose
experimental methods are well-documented and reliable to
ensure consistency and reproducibility. Additional in-house
measurements were performed using procedures that closely
matched Stone's methods, enabling a high-quality dataset
tailored for model training. In total, the dataset included the
oxidation temperature of 348 compounds.40–45 Of these, 71 that
were synthesized in-house and evaluated by thermogravimetric
analysis (TGA) (see SI Table S5). This dataset covers a wide range
of inorganic material classes, including borides, silicides,
carbides, and aluminides. It contains mostly binary
compounds, but also includes select ternaries, quaternaries,
and solid solutions to support model generalizability.

There are multiple ways to dene the oxidation temperature.
Here we determined the oxidation temperatures (Tp) based on
the rst derivative peaks (dDm/dT) of in-house thermogravi-
metric analysis (TGA) curves. The full set of experimental TGA
curves is shown in Fig. 3a, illustrating the diversity of oxidation
behavior. Some compounds, like ReB2, showed continuous
mass loss upon heating. MoB exhibited initial mass gain fol-
lowed by rapid loss above 700 °C, likely due to volatilization of
Fig. 3 (a) Thermogravimetric analysis (TGA) curves for the training data
a function of temperature. (b) Predicted oxidation temperatures (Tp) from
measured values. The dashed red line denotes a 1 : 1 correlation. Error b

20606 | Chem. Sci., 2025, 16, 20601–20611
molybdenum oxides. In contrast, YB66 showed consistent mass
gain throughout the experiment.

Importantly, compounds with similar dDm/dT values but
differing mechanisms, such as mass loss versus mass gain,
present a challenge for model training. Any phases exhibiting
signicant volatilization were excluded from the training data-
set to mitigate issues related to estimating Tp. Additionally, only
two WB polymorphs (MoB-type and TlI-type) were included, in
contrast to the broader polymorph set used in the hardness
model. The polymorphs showed similar Tp values of 550 °C and
500 °C, respectively, suggesting that phase differences may play
a limited role in Tp for these materials. The complete dataset is
detailed in the SI Table S5.

Several modeling strategies were evaluated to nd the
optimal performance, such as a simple decision tree, as well as
random forest, LightGBM and CatBoost. Models incorporating
dataset separation by source and a weighting factor were also
explored. However, many of these approaches did not yield
models capable of quantitative Tp prediction. XGBoost was
ultimately selected due to its strong performance on small
datasets.25,33 The nal XGBoost model was trained on a reduced
set of 34 descriptors encompassing compositional, structural,
and elastic features, including MBTR terms that encode local
atomic environments, selected using recursive feature elimi-
nation (CV-RFE) as detailed in the Experimental section.
Hyperparameters were optimized using grid search, and ve-
fold cross-validation across multiple random states was
applied to improve robustness. Bagging with ve estimators
further reduced the variance due to data partitioning.

The parity plot for model training using the 348 compounds
were generated using the optimized XGBoost model. As shown
in Fig. 3b, the predicted oxidation temperatures (Tp,pred) align
closely with experimental values, with the error bars providing
further clarity on the uncertainty of the predictions from ve
bagging estimators. The model achieved an aggregated R2 =

0.82 and a root-mean-square error of ∼75 °C. Prediction accu-
racy was highest between 400 and 800 °C, corresponding to the
most populated region of the dataset.
set, measured in air up to 870 °C, showing normalized weight gain as
the optimized machine learning model plotted against experimentally
ars correspond to the standard deviation of the bagging estimators.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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As observed in the structure-based hardness model,
systematic deviations occurred at the extremes, with low Tp
values tending to be overpredicted and high Tp values oen
underpredicted. This trend likely results from data imbalance
and limited representation of compounds exhibiting extreme
oxidation behavior. Despite these challenges, the model showed
excellent performance for several families. For instance, Zn-
containing compounds such as TiZn3 and GdZn2 were pre-
dicted within 2 °C of experimental values. Ternary and higher-
order borides, including Y2OsB6, (TaHfZr)Ru5B2, and LaIr2B2-
C, were also predicted with high accuracy. This is likely due to
the dataset's boron-rich composition which accounts for
approximately 25% of the samples. Aluminum-containing
materials posed greater difficulty. Some, like AlNd3 and Al4Ir,
were predicted with <0.5 °C deviation. Others, such Al2Au and
Al3Tb, had errors exceeding 300 °C. Although Al-containing
compounds comprise more than 25% of the training dataset,
they disproportionately contributed to the total error. This is
likely due to aluminum's complex oxidation behavior, which
may involve passivating Al2O3 layer formation in some compo-
sitions but not others; this phenomena not captured by the
current descriptors. Nevertheless, the model's performance is
clearly sufficient form making Tp predictions of unknown
compounds.

3.3.2 Experimental validation of oxidation temperature.
Rigorous model performance was validated against a series of
unseen compounds spanning diverse chemistries, including
binary and ternary systems. This in-house dataset served as an
independent benchmark, enabling direct assessment of
predictive accuracy under strictly controlled experimental
conditions. Each compound was synthesized using direct
reaction of the elements (seal tube reactions or arc melting) and
characterized through Le Bail renements of the powder X-ray
diffractograms (Fig. S1–S5). Most of the compounds are single
phase, with only minor secondary phases occasionally indexed.
The oxidation temperatures were experimentally determined by
TGA (Fig. 4a) and compared to predictions from the ensemble
Fig. 4 (a) Thermogravimetric analysis curves for the validation dataset, m
Correlation of experimental Tp oxidation temperature with predictions fo
a 1 : 1 correlation. Error bars indicate the standard deviation across bagg

© 2025 The Author(s). Published by the Royal Society of Chemistry
model. As shown in Fig. 4b, the validation set shows strong
agreement with an R2 of 0.76 and an RMSE of ∼72.8 °C, closely
matching the training performance and conrming the model's
generalizability.

Table 1 provides several boron- and silicon-containing
binaries, such as LaB6, Er5Si3, and the ternary compound
ScRuGe were predicted with high accuracy. The lone Al-
containing compound in the validation set continued to chal-
lenge the model, likely due to surface effects. YAg, a low Tp
material, was also overpredicted. Nonetheless, most validation
compounds oxidized between 400 and 800 °C, and predictions
in this range clustered tightly around the 1 : 1 line. Overall,
these results demonstrate that the model effectively predicts
oxidation temperatures for a broad range of inorganic mate-
rials, while also highlighting the need for better surface- and
kinetic-aware descriptors to improve accuracy at the extremes.

3.4 Screening ternary compounds for multifunctional
candidates

Once the two primary machine learning models (hardness and
oxidation) were optimized, they were deployed to identify theHV

and Tp of multifunctional materials with robust mechanical
response and thermal stability. Specically, this study focuses
on the underexplored phase spaces of pseudo-binary and
ternary compounds. This restriction is intentional, as these
systems are well represented and structurally reliable within the
Materials Project, making them an appropriate space to
demonstrate the framework. Future work will extend the
approach to higher-order systems, which will require additional
validation of structural data and model performance. The
structures were obtained from the Materials Project to enable
high-throughput screening. The screening strategy prioritized
light elements such as B, C, and Si due to their roles in forming
hard materials46,47 and promoting oxidation resistance,
primarily through the formation of protective SiO2 layers in
silicon-containing compounds.48 Rare earth elements were
selected for their contribution to oxidation resistance via the
easured in air up to 870 °C, showing normalized weight gain profiles. (b)
r the optimized machine learning model. The dashed red line denotes
ed estimators.
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Table 1 Experimental Tp for the validation dataset compared with
aggregated model predictions. Reported uncertainties correspond to
the standard deviation across bagged estimators

Formula Actual Tp Pred. Tp (Agg.) Pred. Std.

AlMnGe 630 783.6 17.6
DyB4 773 793.1 10.9
Er3Ru 430 472.2 12.6
Er5Si3 534 555.5 11.6
Hf9Re4B 486 568.3 39.8
LaAu2 360 401.0 23.4
LaB6 765 775.0 14.5
NdB6 800 752.3 16.3
ScRuGe 591 588.8 21.0
Sc2Cr3Si4 711 680.1 17.5
TaB2 640 681.9 20.2
Ta2Si 686 654.9 43.9
YAg 310 524.0 21.9
YCr2Si2 712 674.9 41.8
Y3Si5 684 739.5 14.5
ZrB2 770 726.7 9.1
ZrSi2 775 732.9 14.8
Zr5Si4 780 753.5 19.7 Fig. 5 Predicted Vickers microhardness (HV) plotted against predicted

oxidation temperature (Tp) for 15 247 pseudo-binary and ternary
inorganic compounds extracted from the Materials Project. Dashed
lines at 24 GPa and 700 °C represent thresholds for hardness and
thermal stability, respectively. Three target compounds selected for
future experimental validation are highlighted in red.
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reactive element effect (REE),49,50 where interfacial segregation
at the oxide–metal interface enhances scale cohesion,
suppresses void formation, and impedes oxygen penetration.
These mechanisms collectively promote long-term stability in
high-temperature environments. Transition metals were
selected based on the well-documented hardness of binary and
higher-order borides.51 Alkali and alkaline earth elements were
excluded because of their air sensitivity, reactivity, and volatility
during synthesis. Radioactive and otherwise inaccessible
elements were also omitted to maintain experimental synthesis
feasibility. This ltering strategy integrates functionality, liter-
ature precedent, and practical constraints to focus the search on
promising candidates for applications in extreme
environments.

The nal screening dataset comprised 15 247 compounds.
The two independent models (Vickers microhardness and
oxidation temperature) were constructed using features
following the same workow developed during model training.
The resulting predictions for all compounds were then analyzed
using the sorting diagram plotted in Fig. 5, which shows the
predicted hardness values plotted against predicted oxidation
temperatures.

Several extreme cases illustrate the predictive strength of
these models. For instance, REAlB14-type compounds,52 where
RE = Yb, Tb, or Ho, exhibit predicted microhardness values
between 36(1) GPa and 38(1) GPa. These structures feature B12

icosahedra, commonly found in hard and superhard materials,
making them particularly attractive for applications where
resistance to plastic deformation is essential.53–55 Five
compounds in the Al–Ni–Pt ternary system show predicted
oxidation temperatures above 1000 °C, suggesting excellent
thermal stability. The formation of a passivating Al2O3 surface
layer likely drives this behavior, as it is a well-established
oxidation resistance mechanism in Al-containing compounds.56
20608 | Chem. Sci., 2025, 16, 20601–20611
Beyond these most promising phases, the screening focused
on compounds with predicted microhardness values exceeding
24 GPa and oxidation temperatures above 700 °C. These
thresholds effectively narrowed the set of candidates for further
synthesis and characterization. Most of the selected
compounds were boron-rich systems, consisting of complex
rare earth transition metal borides with parent structures such
as Er4NiB13,57 Th2NiB10,58 YCrB4,59 and Y2ReB6

60 and pseudo-
binary transition metal dodecaborides. This outcome reects
chemical intuition, as many of these structure types exhibit
high hardness and allow further tuning through solid solution
effects.61 Indeed, our experimental results conrm that YTMB4

compounds (TM = Ru, Os) with the YCrB4-type structure exhibit
both high oxidation temperatures and signicant hardness,
validating the model's prediction of analogous materials as
multifunctional candidates. The ErNiB4-type structure is stoi-
chiometrically analogous to the YCrB4-type structure but adopts
a distinct, non-isostructural framework, making it a compelling
target for further investigation. Notably, structures such as
Er4NiB13-type and Th2NiB10-type were not included in the
training dataset, making them ideal targets for experimental
validation.

Interestingly, the Th2NiB10-type structure resembles the LaB6

framework, where a nickel atom occupies the 2a Wyckoff site
instead of two boron atoms linking adjacent octahedra.62 Such
structural analogies may contribute to its high predicted
oxidation resistance, consistent with the behavior of LaB6

observed in the validation set of the oxidation model.
Combining rare earth elements and high boron content creates
unique bonding motifs that mirror known hard and thermally
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05800g


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
0:

14
:2

5 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
stable materials. Based on these insights, compounds from the
Gd–Ni–B system, namely Gd4NiB13, Gd2NiB10, and GdNiB4, are
prime candidates for synthesis and validation. As reported in
the literature, researchers have synthesized all these
compounds by arc melting.

4. Conclusion

This work demonstrates that integrating structural, chemical,
and mechanically informed descriptors within a targeted
machine learning framework enables the accurate identica-
tion of materials that simultaneously exhibit high hardness and
oxidation resistance, which are key requirements for structural
materials operating in high-temperature environments. The
models maintain robust performance across a chemically
diverse space by leveraging composition, crystal structure, and
physically grounded properties such as predicted bulk and
shear moduli. Applying the resulting machine learning frame-
work to predict the response of over 15 000 compounds revealed
that rare earth transitionmetal borides are especially promising
candidates, underscoring the power of model-driven screening
to accelerate experimental discovery. Although this screening
focused on pseudo-binary and ternary systems, the framework
is general and can be extended to higher-order chemistries
following appropriate validation. Looking forward, extending
the approach to incorporate complete oxidation pathways
through raw TGA data, in situ phase evolution, and surface
kinetics could yield richer descriptors that move beyond ther-
modynamic thresholds toward a mechanistic understanding of
oxidation resistance, paving the way for the design of truly
resilient materials.
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