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Ultrasound-Triggered Prodrug Activation via Sonochemically 
Induced Cleavage of a 3,5-Dihydroxybenzyl Carbamate Scaffold
Xuancheng Fu,a Bowen Xu,a Hirusha Liyanage,a Cijun Zhang,a Warren F. Kincaid,a Amber L. Ford,a 
Luke G. Westbrook,a Seth D. Brown,a Tatum DeMarco,a James L. Hougland,a,b John M. Franck,a 
Xiaoran Hu*a

Spatiotemporal control of drug release in deep tissues is crucial for targeted treatment precision and minimized systemic 
side effects. Ultrasound is a non-invasive and clinically safe stimulus capable of deep-tissue penetration without requiring 
optical transparency. Here, we introduce an innovative strategy for controlling cargo release via ultrasound-triggered 
sonochemical cleavage of a 3,5-dihydroxybenzyl carbamate (DHBC) prodrug platform. We demonstrate that low-intensity 
therapeutic ultrasound (LITUS) effectively generates hydroxyl radicals in aqueous solutions, which hydroxylate DHBC to 
initiate spontaneous cleavage and cargo release. Using a prototype chemotherapy prodrug (ProDOX) as a proof-of-concept, 
we show that LITUS irradiation triggers doxorubicin release to kill cancer cells in vitro. Remarkably, this sonochemical 
activation was successfully achieved through 2 cm of chicken breast, highlighting the deep-penetrating capability of our 
approach. Extending this strategy, we developed ProR848, a sono-activable prodrug of the Toll-like receptors (TLR) agonist 
R848, enabling remotely triggered, on-demand immune cell activation. Collectively, our results establish a novel and 
versatile sonochemical cleavage platform for ultrasound-targeted prodrug activation, offering significant potential for 
applications including controlled therapeutic release and responsive biomaterials

Introduction
Achieving spatiotemporal control over cleavage chemistries 
deep within biological tissues is critically important for 
biomedical applications, such as site-specific drug release and 
dynamically tunable biomaterials.1–3 However, current methods 
for remotely controlling chemical bond cleavage in deep tissue 
remain limited. Photo-responsive chemistry has been widely 
used to control drug release in vitro and on skin surfaces, but 
the limitation of tissue penetration hampers its application in 
deep tissues.4,5 Radiation-controlled drug release has received 
increasing attention due to its deep-penetrating ability,6–8 but it 
requires specialized equipment, and managing radiotherapy-
associated side effects remains a significant concern. 
Ultrasound (U/S), mechanical sound waves beyond human 
hearing (20 kHz to MHz range), is widely used in biomedical 
fields such as deep-tissue imaging and oncology treatment.9–12 
Ultrasound as a stimulus features a unique combination of 
advantages: it operates remotely and non-invasively, 
penetrates deep tissues without needing optical transparency, 
offers precise targeting, and utilizes cost-effective setups that 
have been proven safe in clinical applications.

Conventional ultrasound-targeted drug delivery systems 
harness the physical effects of acoustic waves, such as 

sonoporation (i.e., ultrasound-induced formation of transient 
pores in cell membranes, improving membrane permeability) 
and enhanced extravasation, to improve local pharmacokinetics 
and drug biodistribution.13 However, the utilization of active 
drugs still poses a risk of off-target side effects. An emerging 
strategy14 addresses this challenge by employing ultrasound-
controlled cleavage chemistry (Figure 1) to activate covalently 
modified, nontoxic prodrugs exclusively at the target site, 
enabling localized activation of therapeutic effects while 
minimizing systemic drug exposure. One such approach (Figure 
1a) utilizes the sonodynamic effect (i.e., ultrasonic generation 
of reactive oxygen species from sonosensitizers15–21) to induce 
chemical transformations for drug release.22–26 However, the 
requirement for sonosensitizers increases formulation 
complexity in sonodynamic-based prodrug delivery systems. On 
the other hand, another ultrasound-mediated bond cleavage 
strategy (Figure 1b) leverages the ultrasound-induced shear 
force field in solution to mechano-chemically activate force-
sensitive structures, resulting in bond cleavage and cargo 
release.27–33 Despite recent advancements in the field,34–36 
conventional polymer-mechanochemistry approaches often 
involve harsh, high-intensity ultrasonication conditions and 
necessitate the incorporation of long polymers to prodrug 
structures (restricting drug loading to <1 wt%), presenting 
challenges for clinical applicability.

Ultrasound-induced generation of hydroxyl radicals (·OH) in 
aqueous environments is a well-established phenomenon in 
sonochemistry.37–43 Clinical acoustic conditions are known to 
cause acoustic cavitation both in vivo and in vitro.44–47 This 
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cavitation bubble, essentially a vacuum, collapses near-
adiabatically and results in extreme pressures over 1000 atm 
and temperatures above 5000 K, while only slightly affecting the 
temperature of the bulk liquid. The extreme cavitation 
environment in collapsing cavitation bubbles serves as 
sonochemical micro-reactors and is sufficient to cause the 
pyrolysis of vapor molecules trapped in the bubble, generating 
primary radicals.48–51 For example, Riesz used the methods of 
spin trapping electron spin resonance (ESR) to directly observe 
the formation of ·OH and ·H in the cavitation bubbles.42,47,52,53 
These primary radicals can either recombine or diffuse from the 
gas phase into the vicinity of the bubble and induce a wide 
variety of secondary chemical reactions in the bulk solution.54–

60 However, applying these intrinsic chemical effects of 
ultrasound to drive predictable and constructive chemistry for 
biomedical applications remains an underexplored yet 
potentially transformative research venue.61

The hydroxyl radical (·OH), with a Hammett σ value of -
0.41,62 is known to undergo electrophilic substitution reactions, 
and its ability to hydroxylate aromatic compounds has been 
studied primarily using ·OH generated by Fenton’s reagent63,64 
or water radiolysis.65–67 Recently, Liu and coworkers elegantly 
harnessed ·OH produced from radiolysis to hydroxylate an 
electron-rich 3,5-dihydroxybenzyl carbamate, triggering 
cascade chemical transformations that lead to the release of 
covalently conjugated drugs.65 Inspired by ultrasound’s intrinsic 
ability to generate ·OH radicals and the reactivity of ·OH in 
mediating radical hydroxylation,50,65 we have developed a 
sonochemically controlled cleavage platform based on a 3,5-
dihydroxybenzyl carbamate (DHBC) prodrug scaffold (Figure 
1c). Using a commercially available, FDA-registered low-
intensity therapeutic ultrasound (LITUS) device, sonochemically 
generated ·OH radicals react with the DHBC via radical 
hydroxylation, triggering a subsequent elimination cascade that 
releases the molecular cargo. As a proof-of-concept, we 
synthesized a model prodrug ProDOX incorporating a 
chemotherapy drug doxorubicin (DOX), which is selectively 
activated under LITUS to release DOX and kill cancer cells in 
vitro. To demonstrate the deep-penetration ability of our 
strategy, we successfully activated ProDOX through a 2-cm 
thick chicken breast. Further, we extended the platform to 
immunotherapy by developing ProR848, a sono-activable 
prodrug of the toll-like receptor (TLR) agonist R848, designed to 
mitigate the systemic toxicity associated with TLR-based 
treatments. Upon LITUS irradiation, ProR848 released active 
R848, selectively activating tumor-associated macrophages 
(TAMs) and dendritic cells (DCs), as evidenced by upregulation 
of pro-inflammatory markers and inflammatory cytokine 
secretion. Together, these chemotherapeutic and 
immunotherapeutic applications demonstrate the versatility 
and effectiveness of our deep-penetrating, ultrasound-
triggered cleavage platform, offering significant potential for 
applications ranging from controlled therapeutic release to 
responsive biomaterials.

Results and Discussion

We first investigated the sonochemical production of ·OH 
radicals using an FDA-registered, commercially available 
ultrasound device. Under our standard LITUS conditions 
(frequency: 1 MHz; power: 1.0 W/cm2; duty cycle: 50%) (see SI 
for mechanical index calculations and biosafety discussions), 
the generation of ·OH in the acoustically irradiated PBS buffer 
solutions was monitored using ESR with 5,5-dimethyl-1-
pyrroline-N-oxide (DMPO), a ·OH-specific spin trap that forms a 
well-understood DMPO-OH spin adduct in presence of ·OH 
radicals.53 LITUS irradiation produced a new set of four-line 
peaks (Figure 2a) which are characteristic of the hyperfine 
coupling in the DMPO–OH adduct, while DMPO–OOH signals 
were not seen. Comparison with reported hyperfine coupling 
constants68 as well as simulated ESR spectrum (Figure S1) 
confirms that these new peaks correspond to the expected 
DMPO-OH spin adduct. From ESR spin-counting analysis (see SI 
for details), the concentration of DMPO-OH was determined to 
be 18.8 μM after 5 min sonication of a 5 mM DMPO solution. 

We further performed a quantitative study of ultrasonic ·OH 
generation using an established terephthalic acid (TA) 
dosimetry method—the nonfluorescent TA readily reacts with 
·OH to yield fluorescent 2-hydroxy terephthalic acid (hTA).69,70 
The fluorescence emission of an irradiated TA solution linearly 
increased in the first five minutes of ultrasonication (Figure 2b 

Fig. 1 An overview of ultrasound-mediated prodrug activation strategies. This 
work introduces a sonochemical approach that harnesses the intrinsic 
chemical effects of ultrasound in aqueous solutions to activate DHBC prodrugs 
via a radical hydroxylation mechanism. Figure 1a is adapted with permission 
from ref 24. Copyright 2022, Springer Nature.
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and 2c), indicating the steady sonochemical conversion of TA to 
hTA. It is understood that about 35% of sonochemical ·OH 
radicals react with TA to produce hTA,71,72 and therefore, the 
concentration of ·OH produced in 5 minutes of ultrasonication 
was calculated to be 20.4 μM (4.1 μM/min), which aligns closely 
with that estimated by ESR. To confirm the radical nature of the 
observed hydroxylation of TA, we conducted a control 
experiment using a highly reactive radical quencher, 
hydroquinone (rate constant of 11 × 109 M-1 s-1 with ·OH).73 The 
addition of 100 mM hydroquinone into a 20 mM TA solution 
near completely inhibited TA hydroxylation, confirming the key 
role of radicals (Figure S5).

Following the sonochemical TA dosimetry experiments, we 
explored the potential of harnessing sonochemical ·OH to 
trigger the radical hydroxylation and cascade molecular release 
from a DHBC-based model prodrug Pro1. Electron-rich DHBC 
motifs are designed to react with sonochemically generated ·OH 
through a radicalphilic reaction, triggering a cascade elimination 
process that releases the 4-nitroaniline payload (Figure 3a).65 

The release of 4-nitroaniline results in the emergence of a 
characteristic absorption around 400 nm, providing a 
convenient signal for monitoring its release using UV-vis 
spectroscopy. As shown in Figure 3b, ultrasound irradiation of a 
50 μM solution of Pro1 in PBS results in an absorbance increase 
around 400 nm, corresponding to nitroaniline release. HPLC 
measurements further confirmed the identity of 4-nitroaniline 
(Figure 3c). The rate of 4-nitroaniline release in the first 5 min 
was estimated at 2.4 µM/min based on absorbance 
measurements (Figure 3d), indicating this model DHBC prodrug 
was effectively activated under our sonochemical conditions to 
release the cargo molecules. The release of 4-nitroaniline 
plateaued at approximately 22 µM after 20-min sonication 
(Figure S8). The incomplete conversion is anticipated due to 
nonspecific sonochemical side reactions—sonochemical 
degradation of both Pro1 and the released nitroaniline can 
occur in or near the cavitation microbubbles, which feature 
extreme environments. Currently, we are unable to identify the 
sonochemical byproduct(s). 

Fig. 2 (a) ESR spectra of a 5 mM solution of DMPO in PBS before and after sonication. (b) Sonochemical conversion of TA (20 mM in PBS) to hTA monitored by 
fluorescence spectroscopy. (c) Concentration of sonochemical ·OH as a function of sonication time, calculated by multiplying the concentration of hTA by 1/0.35.

Fig. 3 (a) Ultrasonic activation of Pro1 mediated by sonochemical ·OH radicals. For simplicity, only the hydroxylation reaction at the 4-position is depicted, 
although hydroxylation at the 2-position is also possible (Figure S6).65 Structures of control molecules are also shown. (b) Absorption spectra of a 50 μM solution 
of Pro1 in PBS as a function of sonication time. The dashed curve corresponds to the absorbance of a separately prepared 50 µM solution of 4-nitroaniline. (c) 
Sonolysis of Pro1 monitored by HPLC. (d) The concentration of free 4-nitroaniline in the Pro1 solution in the first 5 minutes of ultrasound irradiation, calculated 
from the absorbance increase at 400 nm.
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We conducted a series of control experiments to validate 
the proposed sonolysis mechanism. By introducing 100 mM 
hydroquinone (radical quencher) into the Pro1 solution, 
ultrasound-triggered cargo release from Pro1 was inhibited 
(Figure S10), supporting that the observed sonochemical 
activation of Pro1 is through a radical mechanism. Additionally, 
we designed Control-1/2/3 molecules where the electron-rich 
3,5-dihydroxybenzyl motif was replaced: Control-1 and Control-
2 contain a less ·OH-reactive benzyl motif and 3,5-
bis(trifluoromethyl)benzyl motif, respectively, while Control-3 
comprises a 2,4,6-trimethylbenzyl group, whose hydroxylation 
product is inactive toward the elimination cascade (Figure  S12). 
Irradiation of Control-1/2/3 molecules under identical acoustic 
conditions as used for Pro1 lead to minor increase in 4-
nitroaniline absorbance (Figure S11). HPLC analysis also 
confirmed the absence of cargo release from sonicated control 
molecules (Figure S12). 

As a proof of concept, we demonstrated ultrasound-
triggered release of a cytotoxic chemotherapy drug DOX from 
the sonochemically responsive DHBC prodrug platform (Figure 
4a). This prototype model prodrug ProDOX was exposed to 
standard LITUS irradiation, with the reaction monitored by HPLC 
equipped with a UV detector (monitored at 254 nm). The 
sonicated solutions displayed a distinct peak at around 4.3 min 
elution time, corresponding to free DOX released from the 
activated prodrug (Figure S14). The DOX peak steadily increased 
during the first five minutes of ultrasonication, reaching a peak 
concentration of around 0.5 μM. However, prolonged 
sonication reduced the DOX concentration, presumably due to 
the nonspecific sonolysis of DOX under cavitational conditions 
(Figure 4b). The appearance of the inflection point for DOX 

concentration matches the trend observed for 4-nitroaniline 
release from Pro1 (Figure S8). Given the electron-rich, 
anthraquinone structure of DOX, it is particularly susceptible to 
non-specific degradation under sonochemical conditions 
(Figure S15). 

While future research will explore the structure-activity 
relationships affecting the sonochemical stability of 
therapeutically active structures and will identify candidates 
with enhanced resistance to sonolysis, the efficacy of our 
current prototype model prodrug is sufficient to demonstrate 
the ultrasound-controlled DOX release for in vitro cancer 
treatment. HeLa cells were treated in vitro by solutions of 
ProDOX, with or without ultrasonic irradiation (Figure 4c, left). 
Only the sonicated ProDOX (yellow bar) exhibited significant 
cytotoxicity, confirming that ultrasonic irradiation activated the 
cytotoxicity of ProDOX. Meanwhile, control groups with DOX 
masked by various benzyl derivatives showed limited toxicity 
both in the presence and in the absence of sonication, with 
HPLC confirming no DOX release (Figure S14).

Then, we demonstrate the tissue-penetration ability of our 
controlled-release techniques by remotely manipulating the 
chemical transformation of prodrugs using LITUS through a 2-
cm-thick chicken breast (Figure 5a). Through the animal tissue, 
our standard 1 W/cm2 LITUS condition successfully triggered 
the hydroxylation of TA as indicated by fluorescence turn-on, 
while moderately increased acoustic intensity at 3 W/cm2 
exhibits more pronounced sonochemical effects (Figure 5b)–
this 3 W/cm2 intensity was used in all tissue-penetrating 
experiments. Ultrasound irradiation applied through the 
chicken breast successfully triggered the release of 4-
nitroaniline from Pro1 (Figure 5c) as well as DOX from ProDOX 

Fig. 4 (a) Structures of ProDOX and control prodrugs. (b) Concentration of 
released DOX from a solution of 10 μM ProDOX in PBS as a function of 
sonication time. (c) MTT viability assay results demonstrate increased 
cytotoxicity in LITUS-irradiated ProDOX solution, compared to a nonirradiated 
ProDOX solution. This ultrasound-induced cytotoxicity is not observed in 
control prodrugs.

Fig. 5 (a) A photograph showing our setup applying LITUS through a 2 cm thick 
chicken breast tissue to a solution. (b) Fluorescence spectra of 20 mM TA 
solutions after 5 min of LITUS irradiation at varied sound intensity (1 MHz, 
50% duty cycle) applied through chicken breast. All traces are normalized 
relative to the fluorescence of a TA solution sonicated (1 W/cm2,  5min) 
without chicken breast (dashed line). (c) Absorption spectra monitoring the 
release of 4-nitroaniline from a 50 μM Pro1 solution as a function of 
sonication (3 W/cm2, through chicken breast). (d) MTT viability assay with 
HeLa cells show LITUS-induced (3 W/cm2, through chicken breast) cytotoxicity 
of ProDOX.
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(Figure S18). Ultrasound applied through chicken breast 
effectively activated ProDOX solutions, enhancing their 
cytotoxicity against HeLa cells in vitro (Figure 5d).

TLR agonists represent potent immunotherapeutic agents 
capable of enhancing immune activation and remodeling 
immunosuppressive tumor microenvironments.74,75 This effect
 is primarily mediated through the activation of immune cells, 
particularly by polarizing tumor-associated macrophages 
(TAMs) from an anti-inflammatory, pro-tumoral M2-like 
phenotype to a pro-inflammatory, anti-tumoral M1-like 
phenotype.76–78 However, systemic administration of TLR 
agonists is limited clinically by severe side effects, notably 
cytokine storm.79 Therefore, strategies enabling targeted 
release of TLR agonists have shown great potential to confine 
immune activation to the tumor site and reduce systemic 
toxicity.80–85 Herein, we leverage our sono-responsive DHBC 
platform to precisely control the release of the TLR agonist 
(R848) under LITUS. Our pro-agonist, ProR848, demonstrates 
outstanding biocompatibility towards TAMs, exhibiting 
negligible toxicity at 10 μM (Figure S19a). Evaluation of 
inflammatory markers CD86 and CD80 revealed that TAMs 
activation by 1 μM ProR848 was minimal (Figure S19b,c), 
indicating its potential for minimizing systemic immune 

activation. Subsequent LITUS-mediated activation of 1 μM 
ProR848 was monitored using HPLC (Figure 6a). Ultrasonicated 
samples exhibited a distinct chromatographic peak at 
approximately 6.6 mins (Figure S20), indicative of the release of 
active R848 cargos. R848 release peaked at approximately 0.07 
μM within the first three minutes of sonication and 
subsequently decreased upon prolonged irradiation (Figure 6a). 

Having confirmed LITUS-triggered R848 release, we 
evaluated its ability to induce TAMs polarization. PBS-treated 
and 0.07 μM R848-treated groups served as negative and 
positive controls, respectively. Flow cytometric analysis 
demonstrated that ultrasound-activated ProR848 (G4, orange 
bars) significantly upregulated pro-inflammatory markers CD86, 
CD80, and inducible nitric oxide synthase (iNOS) in TAMs, 
mirroring the response elicited by free R848 (G2) treatment 
(Figure 6b–d). In contrast, TAMs exposed to non-sonicated 
ProR848 (G3) exhibited marker expression comparable to PBS 
controls (G1), demonstrating that the TAMs polarization was 
due to LITUS-mediated drug release. Additionally, a substantial 
enhancement in major histocompatibility complex class II 
(MHCII) expression endowed macrophages with augmented 
antigen-presenting capabilities, facilitating improved activation 
and maturation of CD4+ helper T cells and subsequent adaptive 

Fig. 6 (a) Structures of ProR848 and concentration of released R848 from a solution of 1 μM ProR848 in PBS as a function of sonication time (1 MHz, 50% duty 
cycle, 1 W/cm2), quantified by HPLC. (b–e) Flow cytometry analysis showing enhanced expression of pro-inflammatory markers on tumor-associated 
macrophages (TAMs) after treatment with ProR848 activated by 3 min ultrasound irradiation (G4, orange bars), compared with PBS negative control (G1), free 
R848 positive control (0.07 μM, G2), and non-sonicated ProR848 (G3): (b) CD86, (c) CD80, (d) iNOS, (e) MHC class II. (f,g) ELISA measurements demonstrating 
secretion of pro-inflammatory cytokines from TAM supernatants after various treatments (G1 to G4): (f) TNF-α, (g) IL-6.
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immune responses (Figure 6e).86,87 The immunostimulatory 
efficacy of ProR848 under LITUS irradiation was further 
corroborated by enzyme-linked immunosorbent assay (ELISA) 
data, revealing significantly elevated secretion of 
proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) 
and interleukin-6 (IL-6) following ultrasound treatment (Figure 
6f,g).

Dendritic cells (DCs) are another immune cell type with 
important roles in orchestrating innate and adaptive immunity. 
We further evaluated the effects of ultrasound-activated 
ProR848 on DC maturation using the DC2.4 cell line. Similar to 
TAMs, DC2.4 cells exhibited excellent tolerance to 1 μM 
ProR848, without evidence of DCs maturation (Figure S21 a,b). 
Remarkably, upon ultrasound exposure, significant maturation 
of DC2.4 cells was observed, as evidenced by pronounced 
increases in MHCII expression (Figure S21c). Collectively, our 
results demonstrate that LITUS-triggered R848 release from 
ProR848 effectively activates TAMs and promotes DCs 
maturation. This strategy enables on-demand and localized 
immune cell activation and holds promise for targeted 
immunotherapy with reduced systemic immune-related 
adverse effects.

Conclusions
This work introduces a sonochemical strategy to control prodrug 
activation through ultrasound-triggered cleavage of a DHBC prodrug 
platform. Using a commercially available, FDA-registered therapeutic 
ultrasound device, we demonstrated that our standard LITUS 
conditions generate ·OH radicals at a rate of several μM/min. The 
DHBC prodrug scaffold is designed to undergo radical hydroxylation 
by these sonochemically generated ·OH radicals, triggering a self-
immolative cascade to release the cargo molecule. Using a 
chemotherapy prodrug model ProDOX as a proof-of-concept, we 
show that LITUS irradiation triggers DOX release, effectively killing 
HeLa cells in vitro. Notably, sonochemical manipulation of the DHBC 
prodrugs was successfully achieved through a layer of chicken breast, 
highlighting the deep-penetration capability of our approach. 
Moreover, to address systemic toxicity associated with TLR agonists 
in immunotherapy, we developed a LITUS-activable prodrug 
ProR848. Upon LITUS activation, ProR848 released R848 and induced 
the polarization of TAMs and maturation of DC cells, demonstrating 
the potential to trigger localized immunostimulatory activity through 
our sonochemical strategy. Together, these results demonstrate the 
versatility of our sonochemical cleavage platform for controlled 
release of chemotherapy and immunomodulatory drugs, offering 
potential for targeted delivery in deep tissues inaccessible by 
conventional noninvasive stimuli. Future work will focus on 
understanding structure-sonochemical reactivity relationships in 
bioactive substances and designing prodrug molecules with 
enhanced resistance to unspecific sonolysis. 
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