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of Chemistry The oxidation state (OS) is an essential chemical concept that embodies chemical intuition but cannot be
computed with well-defined physical laws. We establish a data-driven paradigm, with its implementation as
Tsinghua Oxidation States in Solids (TOSS), to explicitly compute OSs in crystal structures as the emergent
properties from large-sized datasets based on Bayesian maximum a posteriori probability (MAP). TOSS
employs two looping structures over the large-sized dataset of crystal structures to obtain an emergent
library of distance distributions as the foundation for chemically intuitive understanding and then
determine the OSs by minimizing a loss function for each structure based on MAP and distance
distributions in the whole dataset. We apply TOSS to a dataset of over one million crystal structures,
achieving a superior success rate, and use the resulting OS dataset to train a graph convolutional

network (GCN) model as an alternative. Both TOSS and the GCN model are benchmarked against
Received 29th July 2025 . . - . . o
Accepted 15th Septermber 2025 a curated ICSD dataset of structures with human-assigned OSs, yielding high accuracies of 96.09% and
97.24%, respectively. We expect TOSS and the ML-model-based alternative to find a wide spectrum of

DOI: 10.1039/d55c05694b applications, and this work also demonstrates an encouraging example for data-driven paradigms to
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Introduction

The oxidation state (OS) is a fundamental concept that is unique
to chemistry. Not only does it present a systematic and
descriptive approach to understand a wide range of phenomena
in chemistry,’ but it also serves as a guiding landmark for
chemists to pursue novel chemical compounds.*** Moreover,
with the rapidly increasing pervasion of machine learning (ML)
techniques in solving chemistry problems** nowadays, there
has been rejuvenating interest in the OS for it to serve as an
intrinsic set of descriptors for in silico high-throughput mate-
rials discovery and property prediction.*”*” Hence, this yearns
for an automatic and effective computational methodology to
determine OSs for large-sized datasets of various types of atomic
structures, which, however, poses a subtle challenge.

From a quantum mechanical (QM) perspective, OSs of atoms
in a compound are not well defined because the electron density
is global and there are no fundamental physical laws for
defining a local atomic region in a compound for partitioning.
Nevertheless, a rich set of partition schemes for the electron
density was developed, from the classic Mulliken analysis*® to
the quantum theory of atoms in molecules by Bader,*** but
these schemes still lack rigorous physical justification and
generally assign fractional charges to atoms in a compound,
which require further classification into integer OSs following
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explicitly compute the chemical intuition for tackling complex problems in chemistry.

rules with empiricism in general.* A similar scenario is present
in the experimental determination of OSs in a compound using
characterization techniques such as X-ray absorption
spectroscopy,*”** where signals are compared with standard
references and the assignment of integer OSs also involves
empiricism in general.

The general presence of empiricism in determining OSs in
a compound arises from the lack of rigorous definition of OSs at
the QM level, but this should not compromise the fundamental
role of OSs in chemistry because the level of scientific
complexity in chemistry can require a different and emergent
conceptual structure*>™” based on concepts such as the OS and
chemical bond*® that are generally not rigorous at the QM level,
and the OS as a descriptor can benefit from an immensely rich
knowledge of chemistry, such as those well-documented cases
showing intrinsically different catalysis by the same transition
metal with different OSs,* while the fractional charges based on
various partition schemes may not be able to well characterize
this knowledge.*

On the other hand, empiricism is data-driven in nature (so is
the chemical intuition), and its general presence implies
a practical approach to determine the OS, i.e., based on data,
and the bond valence model (BVM)***> method well illustrates
this approach. The key to applying the BVM to determine the OS
is the set of bond valence parameters, which was derived from
the crystal structure dataset. The BVM method enables efficient
determination of OSs for large-sized datasets of atomic struc-
tures, and either QM calculations or the experimental
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characterization can be formidably time-consuming for this
task. However, the applicability of the BVM method is greatly
limited by the availability of bond valence parameters and the
transferability of bond valence parameters to novel compounds
with unusual OSs. Recently, the BERTOS model* and a module
in Pymatgen® have been developed for effective and rapid
predictions of OSs based on only the compositions. In addition,
Mueller*”® introduced a sophisticated composition-based ML
model for predicting OSs. While composition-based models
enable rapid prediction, a structure-based method may
resemble more the chemists' intuitive approach to assigning
OSs. By analyzing local coordination environments in a struc-
ture, such a method captures subtle bonding and mixed-valence
scenarios that composition-based models often miss. The two
approaches can be thus complementary: composition-based
models offer fast and broad applicability, while a structure-
based method can provide chemically intuitive OSs with
interpretability.

In this work, we present a universally applicable data-driven
method and the corresponding program named Tsinghua
Oxidation States in Solids (TOSS) to explicitly and efficiently
compute chemically intuitive OSs in inorganic crystal structures
based on the large-sized dataset with structural information
and the Bayesian approach. TOSS is a fully automated compu-
tational algorithm that imitates the process of building the
chemical intuition for assigning the OS. It incorporates two
looping processes: (i) abstracting the distance thresholds for the
analysis of the local coordination environment by “learning”
over all the atomic structures in the dataset repeatedly to reach
converged results; (ii) determining the OSs by “practicing” over
all the atomic structures in the dataset repeatedly to minimize
a loss function for each structure based on only the Bayesian
maximum a posteriori probability (MAP) and the distance
distributions in the whole dataset. The MAP estimation is
a statistical technique that combines prior information (here it
is the overall distribution of bond lengths and coordination
environments) with observed data to find the most probable set
of OSs. In our approach, minimizing the MAP-based loss
function is conceptually similar to finding the lowest-energy
state in a physical system (more detailed explanations are
available in the SI). This makes TOSS generally applicable to any
large-sized dataset containing either existing structures or
brand-new structures created by techniques such as generative
models, so it is well-suited for in silico high-throughput mate-
rials discovery and property prediction. Consequently, TOSS
also provides a library consisting of conceptual pictures and
parameters generalized from the given dataset, including the
distance distributions for all available element pairs that imply
the bonding scenarios and the thus derived coordination radius
for each element with a corresponding deviation that charac-
terizes the flexibility of coordination, which can be used as
chemically informative descriptors for materials discovery and
property prediction. This library forms the foundation of
chemically intuitive understanding toward determining OSs in
solids.

We apply TOSS to the large-sized dataset of crystal structures
combining those from the legacy version (accessed on May 13th,
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2021) of the Materials Project (MP)*® and the version 1.5 of the
Open Quantum Materials Database (OQMD)*” Since these
structures lack OS labels, we performed a double validation by
cross-referencing the TOSS results with those by the BVM
method. Structures with consistent OS assignments from both
methods were retained, yielding a screened subset of 250 512
high-confidence entries. Using this subset, we benchmarked
four graph-based and two feature-based ML models using
intermediate results from TOSS (i.e., the local coordination
environment) and found the simple graph convolution network
(GCN) model to be the most accurate, predicting OSs with 98%
accuracy. To validate both TOSS and the GCN approach, we
benchmarked them against a curated ICSD dataset with
human-assigned OS labels, where they demonstrated high
accuracies of 96.09% and 97.24%, respectively. To accelerate the
GCN-based workflow, we further developed a link-prediction
model to predict the local coordination environment from raw
crystal structures, which, combined with the simple GCN
model, serves as a complete ML-model-based data-driven
alternative to TOSS. Both TOSS and ML-model-based alterna-
tives are available at https://github.com/yueyin19960520/TOSS,
which we expect to find applications in a wide spectrum of
problems that require generating OSs as intrinsic descriptors
for large-sized datasets of crystal structures. The resulting OSs
and the associated library for chemically intuitive
understanding are available at https://www.toss.science,
providing a foundation for data-driven OS prediction and
related ML applications. It is important to note, however, that
OSs for many crystals can be reliably obtained from density
functional theory (DFT) calculations. In this context, our
approach is intended to offer an efficient alternative for large-
scale applications where DFT calculations are prohibitively
time-consuming.

The OS is a basic chemical concept that cannot be rigorously
computed with physical laws but perfectly embodies the
chemical intuition, so the data-driven paradigm introduced
here for computing the OSs may serve as an exemplary para-
digm for computing the chemical intuition, and this may be
further employed to accelerate calculations of complex chem-
ical systems and tackle complex problems in chemistry such as
the construction of reaction networks in heterogeneous catal-
ysis.’® This may also imply that the data-driven paradigm is
a promising approach to compute the concepts that emerged in
the disciplines dealing with complex systems such as chemistry.

Results and discussion
Workflow of TOSS

Fig. 1 presents the complete workflow of TOSS, which encom-
passes two core looping structures to deliver the foundational
library for chemically intuitive understanding and the subse-
quent determination of OSs.

In the first looping structure, the primary purpose is to
abstract the distance thresholds from the dataset that are key
parameters for defining the local coordination environment,
and the threshold is defined as the longest bond length that can
be counted as coordination between each pair of elements. All
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Fig. 1 Workflow of TOSS. The subscripted stars mark the intermediate results within the looping processes.

the thresholds are initialized as 1.5 times the sum of Pyykkd’s
single-bond covalent radii*® for each pair of elements (more
discussion in SI Note 1) but are converged to the emergent
values from the given dataset and then should be independent
of the initial guesses. The whole dataset of crystal structures is
preprocessed using the “Get Structures” and “Pre-Set Features”
modules (details in SI Note 2) and the resulting data stream is
fed to the “Digesting Structures” module, which outputs the
assembly of the local coordination environment of each atomic
site in the dataset.

In the “Digesting Structures” module (more details in SI Note
3), for each atomic site, a sphere is first defined using the
distance to its nearest neighbor multiplied by a tolerance
parameter (¢) as the radius, and within the sphere its coordi-
nation environment is then determined based on the thresh-
olds, identifying a constituent; for each crystal structure, this is
repeated for a set of ¢ values from 1.1 to 1.25 by a step of 0.01. In
the first loop, only one ¢ value is chosen based on Pauling's rule
of parsimony® to yield the fewest distinct kinds of constituents.
However, outside this loop, all valid ¢ values, along with their
distinct coordination environment sets, are provided as inputs
for the second loop (more details in SI Note 4). After assembling
all coordination environments from the dataset, all bond
lengths for each element pair are collected to generate the
corresponding bond length distribution, or more formally
referred to as the distance distribution. Subsequently, each
resulting distance distribution is fitted by a linear combination
of two normal distribution functions in the “Fitting Curves”
module, and the fitted two means (u) with corresponding
deviations (o) result in a larger u + 40 as a new threshold (more
details in SI Note 5). By feeding the new set of thresholds back to
the “Digesting Structures” module, the looping structure runs
the iteration until 99.5% of the thresholds are converged,
eventually forming the emergent threshold matrix for the given
dataset (noting that this convergence may inherit the dataset-
specific characteristics). The convergence criterion of 99.5% can
be arbitrarily increased provided that the given dataset is
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sufficiently large (more details in SI Note 6). It is worth
emphasizing that, besides the thresholds, the distance distri-
butions are also important results from the first looping
process, because they are the basis for the sets of u and ¢ used
as the key components in the formulation of the loss function in
the second looping structure as discussed later.

After the first looping process, all structures with pre-set
features are assembled using the “Digesting Structures”
module, carrying their valid tolerance values and corresponding
sets of coordination environments. These are then fed to the
“Initialization” module and “Polyhedron Algorithm” module.
The “Initialization” module introduces a bond order matrix
based on Pyykko’s covalent radii as a reference (more details in
SI Note 7), and then the “Polyhedron Algorithm” module
assigns the initial OSs based on the bond order matrix, Tan-
tardini-Oganov electronegativities,* and ionization potentials
(more details in SI Note 8, including four examples that illus-
trate the process in detail). These empirical parameters are
introduced here only for generating the initial guesses that can
lead to a robust convergence to the final OSs emergent from the
given dataset, which should be independent of these
parameters.

In the second looping structure, the initial guess process
occurs first. At this stage, TOSS retrieves the number of distinct
coordination environments (N,) by varying ¢ for each structure
from the “Digesting Structures” module and includes all N,
distinct coordination environments and their corresponding OS
results for all structures. For better processing of these
ensembles of structural information, TOSS labels each coordi-
nation bond length by the element types (ETs), coordination
numbers (CNs), and OSs of the two terminal atoms (e.g., the
coordination bonds formed by 6-coordinated Fe*" and 4-coor-
dinated O*~ are labeled differently from those by 4-coordinated
Fe®" and 4-coordinated O°”). By analysing the distance distri-
bution of all bond lengths sharing the same label, the resulting
mean and standard deviation are regarded as the emergent
bond length (u.n) and its corresponding spread (o.p,) for each
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specific coordination bond type in the given dataset (more
details in SI Note 9). It is worth emphasizing that, at this stage,
the preceding algorithms prepare an ensemble of differing sets
of chemically plausible OS values for every structure determined
by different tolerances, which is the input for the second
looping structure to determine the most probable OS values,
i.e., a single set of optimized OS assignments for each structure.
Note that, in preparing the ensemble of differing sets of
chemically plausible OS values, we develop a set of algorithms
in the “Polyhedron Algorithm” module including a resonance
method to make up certain missing but chemically plausible OS
values, particularly for the cases containing alkali or alkaline
earth elements, and more technical details with illustrative
examples can be found in SI Note 8.

In order to evaluate every chemically plausible OS set, we
derive a loss function based on MAP in Bayesian statistics,
which provides estimation of unobserved quantity on the basis
of the whole dataset. The loss function for each structure in the
dataset bears the form derived from MAP as follows (the deri-
vation is provided in the SI)

2
Loss=Y%" M, log<
7 20','

in )
\/2750'[

on-log[p( _ N(ETs, CNs, OSS)):|
" ' N(ETs, CNs)

where i is the label of the bond type identified using ETs, CNs,
and OSs of terminal atoms; L; is the bond length of a coordi-
nation bond with the label #; u; and o; are the emergent bond
length and its deviation from the dataset; 4; is the integral
interval (taken as 0.001 A, which can be regarded as the
threshold for distinguishing different bond lengths; this value
reflects the typical resolution of bond distances obtained from
modern X-ray diffraction (XRD) measurements and DFT calcu-
lations); n; is the number of bonds sharing the label i in
a structure; p; is the occurring probability of a specific set of OSs
for a certain set of ETs and CNs in the dataset and can be
calculated as the ratio in the following parenthesis. The first
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term sums over all Z; available in a structure and characterizes
how likely a bond belongs to a label, while the second term
sums over all label 7 identified in a structure and evaluates how
likely a bond type corresponds to a set of OSs based on the
dataset. The loss function here is the negative logarithm of
MAP, so it is to be minimized for the best estimation of OSs for
each structure based on the distributions in the whole dataset.
The MAP estimation combines the prior information—derived
from the global distributions of bond lengths and OS occur-
rences—with the likelihood of the observed data for each
structure. Minimizing the negative log of this combined prob-
ability effectively selects the OS assignment that best fits both
the local structural data and the overall trends in the dataset,
similar to the optimization for a system's most stable, lowest-
energy configuration (more detailed explanations are available
in the SI).

Subsequently, in the second looping process, the “Result
Adjustment” module varies the OSs across all tolerances subject
to only the integer OS and neutrality constraints, and this can
result in new sets of u;, g;, and p, with which TOSS re-evaluates
the MAP-based loss function for each structure to identify the
single set of OSs and corresponding coordination environment
leading to the lowest loss value (more details in Supplementary
Note 10). Thus, the second looping structure runs the iteration
with the “Result Adjustment” module until 99.5% of the
structures’ results for the entire dataset do not change, deliv-
ering the final pen, 0em, and emergent OSs. This well resembles
the self-consistent field (SCF) approach, because the MAP-based
loss function for each structure (like the one-particle equation)
depends on the distribution of OSs in the whole dataset (like the
mean field) via the set of u;, g;, and p. It is worth emphasizing
that the MAP-based loss function is iteratively evaluated for all
the structures, because whenever there is a change in the OS
value(s) in the dataset, the MAP-based loss functions of all the
structures are updated. Besides, the optimization of MAP-based
loss functions does not change the OSs but selects the most
probable set of OSs for every structure from the ensemble of
differing sets of chemically plausible OSs provided by various
algorithms in TOSS.
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Library for chemically intuitive understanding.

In the first looping structure, the resulting distance distribution
for each element pair from the large dataset provides a manifest
foundation for understanding the chemical coordination. As an
obvious illustration, Fig. 2a shows the plot of distance distri-
bution for the O-Al pair that demonstrates two peaks at around
1.757 A and 1.895 A, which mainly corresponds to two types of
coordination bonds in the dataset (containing 235632 O-Al
bonds) formed by O with 4-coordinated Al and 6-coordinated Al,
respectively, and this well conforms to the chemically intuitive
understanding of O-Al bond lengths. A more complicated
example is the distance distribution for the O-V pair shown in
Fig. 2b, and its multiple peaks are a result of mixing a few
different types of coordination bonds in the dataset (containing
424 430 O-V bonds) including the ones formed by O with 4-
coordinated V** (1.75-1.77 A depending on the CN of bonded
0), 5-coordinated V°* (1.84-1.92 A), and 6-coordinated V°*
(1.89-1.95 A), v** (1.97-2.02 A) and V** (1.99-2.07 A), which
exactly lays the foundation of well-educated chemical intuition
for the different OSs of V atoms in the crystal structures.

To determine a distance threshold for coordination between
each element pair from the distance distribution, we adopt that
the bond length distribution for any coordination bond type
follows a normal distribution owing to a large number of vari-
ables tweaking the bond length in the large dataset of crystal
structures, so we fit each distance distribution with a linear
combination of normal distribution functions. The number of
normal distribution functions used for fitting should depend on
the number of coordination bond types (constituents) for each
element pair, but in practice, we found that a linear combina-
tion of two independent normal distribution functions is
sufficiently robust (as exemplified by Fig. 2a and b) for fitting all
the distance distributions to obtain just the thresholds, i.e., the
maximum bond length for forming a coordination bond
(regardless of its type) between an element pair. The fitting
function form is thus expressed as follows:

S =4, p[(z‘“)

+ A exp{ o

where A;, u;, and o; are the coefficient, mean, and deviation for
each normal distribution function, respectively. The distance
threshold for coordination between each pair of elements i and j
is then obtained as follows:

Ty = max(u, + 4oy, up + 402) =p + 4o

where 40; is taken to include 99.99% of the bond length
distribution and the terms in the obtained threshold are
denoted as u and ¢ for simplicity. Both the fitting curves and the
obtained thresholds are illustrated in Fig. 2a and b. It is note-
worthy that the O-Al coordination bond length has a smaller
fitted deviation (or spread) ¢ of 0.065 A than the ¢ of 0.100 A for
the O-V coordination bond length, implying that the O-Al
coordination bond is more rigid than the O-V coordination
bond, which well conforms to the chemical intuition. More
details of fitting are provided in SI Note 5, and all the distance
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distributions with the fitting results are available at https://
www.toss.science in the form of a clickable periodic table for
easy access.

Fig. 2c plots all the converged distance thresholds for coor-
dination between element pairs against the corresponding
sums of Pyykkd'’s single-bond covalent radii, which are adopted
to provide the initial guesses of thresholds in TOSS. The positive
correlation shown in Fig. 2c¢ justifies the use of Pyykko’s radii for
initial guesses, but the widely spread distribution of thresholds
implies that they are emergent from the given dataset and
should be independent of initial guesses. We tested the use of
1.5 times the sum of Pyykko’s radii as a simple threshold set
and found that this results in 15.69% different coordination
environments in the dataset. This underscores the importance
of using self-consistent thresholds for defining the coordina-
tion environment.

With the obtained distance thresholds for coordination
between element pairs, we can employ the properties of normal
distribution functions to naturally derive the coordination
radius and the associated spread for each element. Because the
coordination bond length distribution L; for any pair of
elements 7 and j is adopted to be a normal distribution N as
Lj ~ Nij(uy,0), we further adopt that the atomic radius
distribution R; for each element i to form the coordination also
follows a normal distribution as R; ~ N (u;, 07), and then Ly is
simply the convolution of R; and R; as follows (the derivation is
available in Supplementary Note 11):

Lj ~ Ny (uy, 07) = Ri@R;

_ 1 )exp{_ [x—(mw/-)}z}

275(0','2-‘1‘0']'2 2(0i2+qf2)

So the coordination bond length and its spread are expressed as

= i+

0'17':1(0'1'2*‘1’0']'2

where u; is the coordination radius for element 7 and o; is the
corresponding spread that characterizes the flexibility for
element i to form a coordination bond. Here, it is more chem-
ically intuitive to specify the index i to identify the specific form
of the bonding atom with the CN and OS in addition to the ET,
because u; and o; should depend on all of them. Thus, by
solving the two sets of multivariable equations based on w; and
a;, respectively, we obtain the values of w; and g; for all available
forms of each element with different values of the CN and OS.

Fig. 3 lists the coordination radius and spread for the most
frequent form (labeled by the CN and OS, excluding the trivial
alloy forms with OSs of zero) of each element. The results are
generally consistent with the chemical intuition, and it is worth
noting that the spreads of the cationic forms are commonly
lower than those of the anionic forms, implying that cations are
less flexible to form coordination bonds than anions. The values
of u; and o, for all forms of each element are available at https://
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Fig. 3 Periodic ttable of the most frequent element form (labeled with the OS and CN) in the dataset (excluding the trivial alloy forms for metals)
with the corresponding coordination radius and spread. The elements with less than 20 000 occurrences in all labeled coordination bonds are
marked with insufficient data.

www.toss.science. These are valuable data for building
chemical intuition, such as making quick educated guesses of
OSs and local coordinations in a crystal structure, and more
importantly, they can be used as chemically informative

descriptors for materials discovery and property prediction.

OS results by TOSS

For the combined large dataset of 1147 168 crystal structures
obtained from the MP and OQMD, TOSS successfully assigns OS
values for 1114330 crystal structures, i.e., a success rate of

Failed
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Success for both
Differing results
Alloy

B Same for both

Number of Structures

250512

TOSS

BVM

Fig. 4
human-assigned OSs in the ICSD dataset.
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(a) Comparison of success rates and OS results by TOSS with those by BVS.

97.14%, and this is much superior to that of 33.57% by BVS (an
alternative name of the BVM, as implemented in the pymatgen
package with default parameters; more details are available in
SI Note 12), as shown in Fig. 4a. The success rate by TOSS does
not reach 100% because of two occasions. First, the initial
assignment of OSs in the “Initialization” and “Polyhedron
Algorithm” modules fails to work for a small portion of struc-
tures, because they have too complicated coordination
scenarios to successfully assign the initial guesses of OSs.
Second, for the sake of computational cost, we adopt

+8 4 00% | 0.0% | 0.0% [ 0.0% | 0.0% [ 0.0% | 0.0% | 0.0% [ 0.0% | 00% [ 20% | 7.8% |11.8% [78.4%

+7 4 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.3% | 1.8% | 1.5% | 4.3% | 3.7% |88.3% | 0.0%

+6 1 00% | 0.0% | 0.0% | 0.0% | 0.1% | 0.3% | 0.1% | 0.5% | 0.3% | 2.6% | 2.3% | 93.8%| 0.0% | 0.0%

+5 4 00% | 0.0% | 01% [ 0.2% | 01% [ 0.0% [ 0.2% | 03% [ 0.8% | 1.7% | 96.3% | 0.3% | 0a% | 0.0%

o +4 400% | 00% | 1.5% | 0.3% | 0.3% | 0.4% | 0.4% | 1.3% | 1.5% |93.0%| 0.4% | 0.7% | 0.0% | 0.0%

g +3 4 0.0% | 0.0% | 0.1% | 0.1% | 0.1% | 0.4% | 0.3% | 0.9% |97.4% | 0.5% | 0.2% | 0.0% | 0.0% | 0.0%
=

O 2 { 00w | 00% | 02% | 0a% | 1% | 16% | 13% |95.0% | 0.9% | 0.6% | 01% | 01% | 0.0% | 0.0%
[}

g +1 4 00% | 0.0% | 01% [ 0.0% | 0.2% [ 0.3% [98.1%] 0.9% [ 0.2% [ 0.0% | 0.0% | 0.0% | 0.0% [ 0.0%
1

g 0 {03% | 0.8% | 0.7% | 1.0% | 1.0% [91.8%| 1.7% | 1.3% | 0.7% | 0.5% | 0.1% | 0.1% | 0.1% | 0.0%

E . [l A R o o e o

2 4 0.0% | 0.0% | 0.1% |99.3% | 0.5% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

3 {01% | 0.1% [93.0%| 2.6% | 2.6% | 1.0% | 0.1% | 0.0% | 0.2% | 0.1% | 0.1% | 0.0% | 0.0% | 0.0%

-4 4 0.0% | 62.3% | 25.4% | 1.2% | 3.5% | 5.0% | 0.5% | 0.8% | 0.6% | 0.6% | 0.0% | 0.0% | 0.0% | 0.0%

5 4 0.0% | 0.0% [ 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [ 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [ 0.0% | 0.0%

S5 4 -3 -2 -1 0 +1 +2 43 +4 +5 +6 +7 +8

TOSS calculated OS

(b) Confusion matrix evaluating TOSS calculated OSs and

© 2025 The Author(s). Published by the Royal Society of Chemistry


https://www.toss.science
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05694b

Open Access Article. Published on 29 September 2025. Downloaded on 10/6/2025 1:47:57 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

a convergence criterion of 99.5% and the rest 0.5% of the results
are marked as unsuccessful, among which certain coordination
bond types have too few cases in the dataset to deliver effective
convergences. In fact, a larger dataset can lead to faster
convergences in general and thus a higher computational effi-
ciency. Therefore, TOSS may achieve a higher success rate for
assigning OS values given a larger dataset. Furthermore, it is
worth emphasizing that TOSS works universally because it relies
on only the large-sized dataset and Bayesian statistics, in stark
contrast to BVS that relies on the availability of empirical
parameters.

BVS successfully assigns OS values for only 385 067 crystal
structures in the dataset, of which 373177 are assigned by
TOSS. Among these results, TOSS and BVS agree with each other
on the OS values of 250 512 structures but give different results
for the rest of the 122665 structures, as shown in Fig. 4a.
Importantly, 33 746 of these structures are alloys (an alloy is
defined here as the structure composed of only metal elements
and in which the differences of electronegativity between
bonded metal atoms are less than 1.0), which should be
excluded from this comparison, because TOSS assigns an OS of
zero to all metal components in alloys, whereas BVS cannot
assign zero OS values due to the lack of corresponding param-
eters. Nevertheless, for the 88919 structures (excluding the
alloys) with different OS values assigned by TOSS and BVS, there
are no definite simple rules to evaluate them, and we list 100
example structures randomly selected among them at https://
www.toss.science/examples along with their OS values
assigned by TOSS and BVS as well as magnetic moments and
Bader charges obtained from density functional theory
calculations for manual evaluation. Also, to illustrate the
comparative performance of TOSS, BVS, and BERTOS, we
include in SI Notes 13 a table highlighting 10 key examples
where the three methods differ significantly.

Additionally, we apply TOSS to the CIF-parsed and OS-
labeled entries in the ICSD dataset (excluding structures with
partial occupancies or missing atoms that prevent further pro-
cessing). TOSS successfully assigns OS values to 79 146 struc-
tures, achieving an accuracy rate of 96.09% compared to
human-assigned OS values, as detailed in the confusion matrix
in Fig. 4b. While TOSS performs exceptionally well overall, its
few discrepancies primarily arise from element-specific issues.
For instance, TOSS assigns —5 to B in borides and —4 to C in
certain carbides, whereas the ICSD dataset often labels these
atoms with an OS of 0, which may be arguable. Similarly, the OS
of +8 assigned to 51 atoms of Os, Ru, or Xe shows a 21.6%
disagreement with ICSD labels, likely due to their atypical local
coordination environments. Despite these minor limitations in
extreme OSs, TOSS demonstrates high reliability for the vast
majority of cases, reinforcing its suitability for large-scale
automated OS assignment where manual validation is practi-
cally infeasible.

Current limitations of TOSS

Before proceeding to the applications of ML models, it is worth
noting the current limitations of TOSS. In the design principle
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underlying TOSS, the coordination environment can be defined
by not only the CN and coordinating elements but also the
coordination bond lengths. This definition of the coordination
environment is capable of distinguishing subtle cases exem-
plified in Fig. 2a and b, which demonstrates that varying CNs
and/or OSs can be clearly identified by different coordination
bond lengths. However, TOSS fails to distinguish subtle cases
such as Sb(m) and Sb(v) in Cs,SbCl with differing Sb(m)-Cl and
Sb(v)-Cl bond lengths. This highlights a practical limitation of
TOSS in its current status. In order to boost the computational
efficiency of TOSS over large datasets for affordable tests in the
current development of TOSS as a proof of concept, we adopted
the simplifying assumption that we ignored the subtle varia-
tions of coordination bond lengths in the coordination envi-
ronment, and this is the key culprit for the failure in
distinguishing Sb(ur) and Sb(v) in Cs,SbCls. To address this
subtlety, we have implemented a patch for TOSS to include the
consideration of different coordination bond lengths when
their difference is larger than a threshold of 0.05 A, which
enables TOSS to successfully identify Sb(m) and Sb(v) in Cs,-
SbClg while only slightly increasing the computational cost.

Besides, another limitation of TOSS can be demonstrated by
the 100 examples at https://www.toss.science/examples. These
examples show that TOSS generally assigns chemically
intuitive OSs but fails in some cases, which we attribute to
insufficient data in the dataset (e.g., the OS of lanthanide/
actinide by TOSS is less chemically intuitive because the
dataset contains much structures  containing
lanthanide/actinide than other elements). Hence, we expect
that the capability of TOSS can be systematically improved by
including more data for every element pair in future
development. In addition, as proof-of-concept work, we did
not conduct data cleaning of the structures from the MP and
OQMD, and we plan to update both the size and the quality of
the dataset for TOSS in future development.

Also, TOSS has intrinsically practical limitations that
become evident when comparing with ML approaches. TOSS
uses an ensemble of rule-based algorithmic methods, which are
robust across most cases but can struggle with ambiguous or
complex structures. In contrast, ML approaches such as the
graph convolutional network (GCN) model can predict OSs
directly from atomic and local coordination features, offering
better feasibility, efficiency and scalability. However, it is
important to emphasize that TOSS can serve as the essential
cornerstone for ML approaches, providing high-quality datasets
of OSs required for training, which dictate the reliability of ML
approaches.

In addition to these factors, it is important to acknowledge
that the iterative convergence of the distance distributions—
which underpins the emergent threshold matrix—can also be
influenced by dataset-specific constraints. Since the fitting
process of these distributions relies on the bond length data
available in the present dataset, any overrepresentation or
underrepresentation of certain bonding environments may
introduce bias into the converged thresholds. Thus, the results
may reflect the idiosyncrasies of the present dataset rather than
a universally applicable chemical standard, while this bias can
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be minimized using a large-sized dataset as we used in this work
with over one million crystal structures.

ML models

The TOSS-calculated OS results of 1114 330 crystal structures
compose a large OS dataset for training ML models, but for the
assured quality of data and to eliminate the impact of human-
assigned OS results in the ICSD dataset (used as the external test
set), we take only the OS results of 250 512 structures that BVS
and TOSS give the same values to form the dataset, which is,
according to standard ML practice, split internally into
a training set, a validation set, and a test set by a ratioof 3:1: 1.

The graph convolutional network (GCN) has been success-
fully applied to various prediction tasks in chemistry based on
the atomic structures,'**%” so we benchmark four GCN models
for predicting the OSs of crystal structures, including the simple
GCN,**%%% the graph attention network (GAT),” Attentive FP,”
and message passing neural network (MPNN) models.”” In
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addition, ensemble learning is considered one of the state-of-
the-art methods to solve a prediction problem, so we also
include the feature-based random forest (RF)” and XGBoost™
models for benchmark. The input of GCN models includes the
features of atoms and bonds as well as the link relationships
between atoms. The input features of atoms are composed of
the element properties used in the “Initialization” module of
TOSS (the atomic number, Pyykko’s covalent radii, Tantardini-
Oganov electronegativities, and ionization potentials) and also
the output information about the coordination environment by
TOSS (the coordination number and the coordinating atoms
with their properties). The input feature of bonds is just the
bond length. The input of feature-based models takes only the
features of atoms (more details are available in the section of
details about ML models in the SI).

Fig. 5a shows that the simple GCN model delivers the best
accuracy of 97.99% for predicting the OSs in solids, and the
accuracies by GCN models are generally better than those by
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feature-based models, among which the XGBoost model is
better. The performance of the simple GCN model can be
further assessed using the confusion matrix shown in Fig. 5b,
which highlights the model's generally high accuracies for OS
prediction categorized using the OS values, although the
prediction of positive OSs is slightly less than that of negative
0OSs. When adjudicating 88919 structures with TOSS-BVS
disagreements, the GCN model showed comparable alignment
with both methods (77.65% TOSS agreement vs. 77.00% BVS
agreement). However, TOSS maintains a clear advantage in
applicability (97% success rate vs. 34% by BVS) due to its
parameter-free, data-driven design that automatically extracts
chemically relevant bond-length distributions. The GCN model
demonstrates exceptional performance on the ICSD dataset,
achieving 97.24% accuracy across 85526 curated structures.
While matching the accuracy of composition-based methods
like BERTOS, it extends seamlessly to a much larger and more
structurally complex dataset. This result underscores the
model's strong generalization to real-world materials and its
superior scalability to diverse crystal structures without
requiring manual parameter tuning. As shown in Fig. 5c, the
model's design intentionally excludes predictions for +8 or —5
OSs due to insufficient training data. In practice, all +8 elements
(Os, Ru, and Xe) are predicted as +6 and no —5 OS appears in the
labeled ICSD structures. The relatively lower accuracy for zero
OSs mainly reflects the same element-specific issues discussed
earlier in the TOSS confusion matrix result. Among the 2419
cases with an OS of 0 labeled by the ICSD, 2281 (94.30%) come
from H, C, N, and Si, such as in B,Hg, Al,C;, Fe;N, Al,EuSi,,
which are also arguable (all these mismatch cases with ICSD-
labeled zero OSs are listed on our GitHub page). This also shows
that our GCN model is well-aligned with TOSS that provides its
training data.

The trained simple GCN model above requires input of
information about the coordination environment output by
TOSS, and to leverage the capability of ML models, we further
developed a link prediction model to accurately predict the
required information about the coordination environment
directly from the raw data of crystal structures, which delivers
an accuracy of 97.77%. This is achieved by introducing
a heterogeneous-graph-based GCN model, which is inspired by
the approach in TOSS that the distributions of both atomic
coordination radii and bond lengths can be approximated as
Gaussian distributions. This allows for the abstraction of bonds
as nodes within the graph, thereby facilitating the information
aggregation algorithm to acquire the bond entity within the
GCN architecture”™”® (more details are provided in the SI).
Fig. 4d demonstrates the model's exceptional accuracy for pre-
dicting the coordination environment directly from raw crystal
structure data with a wide spectrum of coordination bond
lengths. Consequently, the integration of the link prediction
model with the trained simple GCN model enables the direct
prediction of OSs from the input crystal structures. This
provides an alternative to TOSS entirely based on ML models,
which is also a data-driven approach.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Conclusion

To conclude, we establish a data-driven paradigm with its
implementation as TOSS for determining chemically intuitive
OSs in inorganic crystal structures via two looping structures
based on the large-sized dataset and Bayesian MAP. The first
looping structure abstracts a set of distance thresholds for the
analysis of coordination between element pairs, which is
converged over the dataset and thus can be considered emer-
gent knowledge from the dataset and independent of empirical
parameters introduced for initial guesses. By varying all the OSs
in every possible way, the second looping structure then
repeatedly minimizes a loss function based on the Bayesian
MAP for each structure, which is constructed with the infor-
mation about all the local coordination environments in the
whole dataset that are obtained using the emergent thresholds
from the first looping structure, and the set of minimized loss
functions converged over the dataset provides the final OS
results that can also be considered emergent properties of the
dataset. Therefore, TOSS is a universally applicable method for
automatic and effective determination of OSs in large-sized
datasets of crystal structures. The finalized TOSS framework
and pre-trained GCN models can be directly applied to indi-
vidual crystal structures, thereby extending their utility from
high-throughput screening to targeted, standalone analyses.

Additionally, TOSS delivers a foundational library for
chemically intuitive understanding. This includes the distance
distributions between element pairs, which provide manifest
foundations for understanding the coordination scenarios, and
the thus derived coordination radius for each element with
a corresponding spread based on the convolution of Gaussian
distributions, which characterizes the element's capability and
flexibility for coordination in crystal structures, respectively.
Moreover, TOSS delivers a superior success rate of 97.14% for
assigning OSs for the dataset combining the MP and OQMD
with more than 1 million crystal structures, and the OS results
compose a suitable basis for benchmarking and training ML
models. Thus, we identify the GCN models to be accurate for
predicting OSs and develop a heterogeneous-graph-based GCN
model to predict the coordination environment from crystal
structures and a simple GCN model to predict the OSs from the
coordination environment, so the two ML models combine to
serve as an alternative data-driven paradigm. Both TOSS and its
GCN variant are benchmarked against a curated ICSD dataset
with human-assigned OSs, yielding high accuracies of 96.09%
and 97.24%, respectively, and many of the ICSD-labeled OSs in
the mismatch cases may be arguable. We expect our TOSS and
ML-model-based alternative to find applications in a wide
spectrum of problems, serving as an automatic and effective
tool to generate OSs as intrinsic descriptors for large-sized
datasets of crystal structures.

Moreover, the data-driven paradigms developed here, ie.,
TOSS and the ML-based approach, present a type of effective
methodology to explicitly compute the OS that embodies the
chemical intuition but cannot be computed with well-defined
physical laws, and the effectiveness may arise from that the
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chemical intuition is based on experience and is thus data-
driven in nature. Therefore, this work demonstrates an
encouraging example for developing effective methodologies to
explicitly compute the chemical intuition, and the data-driven
paradigms may be further employed to develop automatic and
effective methods for computing other components in the
conceptual structure of chemistry, including the bond order,
the Lewis structure, and the drawing of reaction mechanisms,
which may serve as powerful tools to tackle a wide spectrum of
complex problems in chemistry and relevant disciplines.
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