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Construction of α-Quinonyl-α-Hydroxy/Amino Acid Esters through 
Redox Chain Reaction
Yu-Meng Ye, and Zhi Li*a 

Despite quinones, α-hydroxy acids and α-amino acids are all widely 
used organic compounds in numerous fields, compounds based on 
the combination of these motifs were underexplored. In this study, 
the direct hydroxyalkylation of quinones with glyoxylates was 
developed through a redox chain reaction using SnCl2 as the 
reductive initiator and catalyst, and AlCl3 as the co-catalyst. Various 
α-quinonyl-α-hydroxyacetyl esters were obtained under mild 
conditions in up to 81% yield within a few hours. Substrates with 
different ester groups were accessed through in situ oxidation of 
corresponding tartrates to glyoxylates by PIDA. Moreover, 
aminoalkylation of quinones was achieved by multicomponent 
reaction of quinones, glyoxylates and amides, affording a series of 
α-quinonyl-α-aminoacetyl esters in up to 80% yield. The products 
were easily converted to unnatural amino acids, aryl azo 
compounds and peptides as demonstrations of their wide potential 
applications.

Introduction
α-Hydroxy1-4 and α-amino5-9 acids are widespread motifs in 
biological and pharmaceutical molecules (Scheme 1a). 
Artificially synthesized unnatural amino acids potentially 
provide distinctive functions beyond existing natural amino 
acids for biology and chemistry.10, 11 Despite significant research 
progress in this field, reports on quinone-substituted amino acid 
derivatives are limited.12-14 Based on their redox properties, 
quinones could serve as mediators for cellular electron transfer 
processes.15-20 The quinones are also very versatile platform for 
further functionalization and conjugation with other molecules. 
Introducing quinones into the side chain of amino acids may 
enable new functional unnatural amino acids and related 

materials. In recent years, structural modifications of quinones 
have significantly advanced.17, 21-24 Among all the existing 
protocols, our group made the original contributions of a 
unique and efficient strategy for direct quinone 
functionalization with various sp3 electrophiles, the redox chain 
reaction (Scheme 1b).25-28 With this new strategy, quinones can 
be functionalized in one step, bypassing the traditional 
reduction-functionalization-oxidation sequence. Herein, we 
report that many densely functionalized α-quinonyl-α-hydroxy 
and amino acetyl esters (QHAE and QAAE) are constructed by 
redox chain reaction of quinones with glyoxylates29, 30 and their 
imines as uncharted sp2 electrophiles, using SnCl2 as both the 
reductive initiator and the main Lewis acid catalyst, along with 
AlCl3 as a Lewis acid co-catalyst (Scheme 1c).31 

Scheme 1. α-hydroxy and amino acid motifs
a) Examples of α-hydroxy acids and α-amino acids

b) Previous work: direct functionalization of quinones by redox chain reation

c) This work: direct hydroxyalkylation & aminoalkylation of quinones
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Results and discussion
To investigate the conditions, 2,6-dimethylquinone 1a and ethyl 
glyoxylate 2 were chosen as the model substrates. Initial 
investigation used Hantzsch ester (HE) as the reductive initiator, 
and different Lewis acids were surveyed at 30 °C in 1,2-
dichloroethane (DCE) (Table 1, Entries 1-6). The combination of 
HE and Hf(OTf)4 could not provide higher than 63% QHAE 
product 3a, likely because of the basicity of the HE oxidation 
product. Reductive Lewis acids were then considered to replace 
both HE and Hf(OTf)4 (Table 1, Entries 7-10). Using 5 mol % SnCl2, 
the reaction afforded 78 % yield of 3a, which was not improved 
when doubling the amount of SnCl2. Extra Lewis acids were 
attempted to improve the reaction efficiency (Table 1, Entries 
11-14), and up to 97 % NMR yield was achieved in the presence 
of 5 mol % of AlCl3. Reducing the amount of quinone 1a 
decreased the yield, while further increasing 1a only marginally 
improved the yield (Table 1, Entries 15 and 16). When the 
temperature was lowered to 0°C, the efficiency significantly 
decreased, whereas raising the temperature to 60°C 
maintained an 85% yield (Table 1, Entries 17 and 18).

Table 1. Optimization of the reaction conditionsa

OEt
O

O

O

O

OH
OEt

O

O

O

+

reductive initiator (RI)

1a 2 3a

DCE, T, 3 h

additive Lewis acid (LA)

1.0 equiv

N
H

EtO

O

OEt

O

Hantzsch ester
x equiv

Entry x RI / (mol %) T / °C LA / (mol %) yield (%)
1 1.5 HE (10) 30 Hf(OTf)4 (5) 63
2 1.5 HE (10) 30 Yb(OTf)3 (5) 0
3 1.5 HE (10) 30 Sc(OTf)3 (5) 0
4 1.5 HE (10) 30 HfCl4 (5) 0
5 1.5 HE (10) 30 ZrCl4 (5) 0
6 1.5 HE (10) 30 AlCl3 (5) 2
7 1.5 SnCl2 (5) 30 / 78
8 1.5 CuCl (5) 30 / 0
9 1.5 FeCl2 (5) 30 / 0

10 1.5 SnCl2 (10) 30 / 73
11 1.5 SnCl2 (5) 30 SnCl4 (5) 73
12 1.5 SnCl2 (5) 30 FeCl3 (5) 69
13 1.5 SnCl2 (5) 30 AlBr3 (5) 80
14 1.5 SnCl2 (5) 30 AlCl3 (5) 97
15 1.0 SnCl2 (5) 30 AlCl3 (5) 75
16 2.0 SnCl2 (5) 30 AlCl3 (5) 98
17 1.5 SnCl2 (5) 0 AlCl3 (5) 8
18 1.5 SnCl2 (5) 60 AlCl3 (5) 85

a Conditions: 2 (0.1 mmol, 1.0 equiv) was added to a mixture of 1a (1.5 equiv), 
initiator and Lewis acid in 0.5 mL DCE that was pre-stirred for 10 min, stirred for 3 
h, and then quenched by MnO2. Yields were determined by 1H NMR using 1,1,2,2-
tetrachloroethane as internal standard.

With the optimized conditions (Table 1, entry 14) in hand, the 
substrate scope was investigated. Broad ranges of quinones 
provided various QHEAs in up to 81 % isolated yields (Scheme 
2). In addition to alkyl and aryl substituted (3c-g) quinones, the 
reaction exhibited nice tolerance for groups with various 
electronic effects. The quinones substituted with both electron-

donating groups (3h-j) and electron-withdrawing groups (3k, l) 
afforded reasonable yields in this system. The naphthoquinone 
(3m) could also serve as the reactant with a high yield. For 
mono-substituted benzoquinones with multiple possible 
reactive positions, only moderate regioselectivity were 
achieved (3n-q), which slightly preferred the para position of 
the quinone substituent. Unfortunately, other carbonyl-
containing substrates including pyruvates were unable to 
exhibit any reactivity (Scheme S1).

Scheme 2. Product scope for QHAEsa
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a Reactions were performed on a 0.20 mmol scale in 1.0 mL DCE. Isolated yields were 
reported.

Table 2. Screening of the oxidantsa

O

O
O

OH

OH
OiPr

O

oxidant

5 mol % SnCl2
5 mol % AlCl3

30 °C, DCE, 1 h

O

O OH
OiPr

O

12 h
1.0 equiv

1.5 equiv

4a 5a

1a

iPrO

O
OiPr

O

100 % conv.

Entry Oxidant Yield (%)
1 0.5 equiv H5IO6 0
2 0.5 equiv NaIO4 0
3 2.0 equiv quinone 1a 0
4 0.5 equiv PIDA 29
5 1.0 equiv PIDA 97
6 2.0 equiv PIDA 0
7b 0.50 equiv PIDA 0

a Unless otherwise noted, 0.1 mmol 4a (1.0 equiv) was mixed with the oxidant in 
0.5 mL DCE for 1 h, then added to a solution of 0.3 mmol 1a (1.5 equiv), 0.01 mmol 
SnCl2 (5 mol %) and AlCl3 (5 mol %) in 0.5 mL DCE, stirred for 3 h, then quenched 
by MnO2. Yields were determined by 1H NMR using 1,1,2,2-tetrachloroethane as 
internal standard. PIDA = phenyliodine diacetate. b PIDA, 1a, 4a, SnCl2 and AlCl3 
were added to 1.0 mL DCE in one portion.
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Scheme 3. Product scope for tartratesa
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Next, glyoxylates with different ester groups were investigated 
as reactants. These compounds were typically synthesized 
through oxidation of corresponding tartrates.32, 33 However, 
due to the relatively high reactivity of glyoxylates, an alternative 
approach was implemented in which the glyoxylates were 
generated by in situ oxidation of corresponding tartrate esters, 
enabling a “one-pot” reaction. Diisopropyl tartrate 4a was used 
as the model reactant to study the conditions (Table 2). 
Inorganic oxidants such as periodic acid (H5IO6) and sodium 
periodate (NaIO4) failed to afford the desired products (Table 2, 
Entries 1 and 2). Increasing the amount of quinone 1a, as itself 
could also serve as the oxidant, did not work either (Table 2, 
Entry 3). On the other hand, phenyliodine diacetate (PIDA) had 
been disclosed as a viable oxidant for the cleavage of 
tartrates.34, 35 Stoichiometry study (Table 2, Entries 4-6) found 
that mixing 4a with 1.0 equiv of PIDA for 1 h, which was then 
subjected to react with quinone 1a and the catalyst in the same 
flask, was sufficient to afford the product 5a in the highest 97% 
yield. The intermediate glyoxylate was confirmed by the crude 
NMR spectrum. A smaller amount of PIDA could not convert all 
the tartrate 4a, while a larger amount of PIDA inhibited the 
reaction likely by consumption of the reductive initiator in the 
following step. Likely for the same reason, if the tartrate and 
PIDA were mixed with quinone altogether instead of stepwise 
mixing, no product was observed (Table 2, Entry 7). Note that 
the stoichiometry of the reaction between tartrate and PIDA is 
1:1, and 2 equiv of glyoxylate would be generated afterwards. 
In order to avoid ambiguity regarding stoichiometry, the 
amount of PIDA was calculated based on the tartrates as 1 equiv, 
while in the subsequent redox chain reaction, reagents 
including the quinone and catalysts were calculated taking the 
in situ generated glyoxylates as 1 equiv.
Investigation of the scope for esters was then possible using 
different tartrates as the starting materials (Scheme 3). The 
tartrates with primary or secondary alkyl esters (5a-e) furnished 
reasonable yields. Unfortunately, tert-butyl ester (5f) only 
provided a poor result, probably due to its higher reactivity of 
hydrolysis in the presence of Lewis acids.36 Benzyl ester (5g) and 

ether bonds (5h) were both tolerated in this system. Chiral (-)-
menthol ester (5i) afforded the product in good yield but low 
diastereoselectivity.

Scheme 4. Product scope for QAAEs
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a To a mixture of 1 (2.0 equiv), 6 (3.0 equiv), SnCl2 (0.1 equiv), AlCl3 (0.1 equiv) and TFA 
(3.0 equiv) in 1.0 mL DCE that was pre-stirred for 10 min, 2 (0.2 mmol, 1.0 equiv) was 
added and stirred at 30 °C for 12 h, then quenched by MnO2. b 4 (0.1 mmol, 1.0 equiv) 
was mixed with 1.0 equiv PIDA in 0.5 mL DCE for 1 h, then added to a solution of 1a (1.5 
equiv), 6 (3.0 equiv), SnCl2 (0.1 equiv), AlCl3 (0.1 equiv) and TFA (3.0 equiv) in 0.5 mL DCE, 
stirred for 12 h, then quenched by MnO2. Isolated yields were reported.

The successful synthesis of QHAEs prompted us to investigate 
QAAEs from corresponding imines. Since many imines were 
challenging in isolation and purification, a three-component 
one-pot Mannich-type method37 was established for in situ 
generation of imines in the presence of trifluoroacetic acid 
(TFA). Various QAAEs were successfully synthesized with this 
strategy (Scheme 3, see also Table S1 for detailed optimization 
of conditions). In general, the stoichiometries of 1 and 6 were 
increased to 2.0 equiv and 3.0 equiv respectively, so as to 
promote the conversion of 2 at a reasonable cost. The structure 
of the product was confirmed by the single crystal X-ray 
diffraction (scXRD) analysis of 7aa (CCDC 2427751). Product 
derived from p-toluenesulfonamide (6d) led to a higher yield 
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than that from tert-butyl carbamate (6a). Notably, the quinones 
1h and 1m would still favour the QHAE products instead of 
QAAEs. Monosubstituted quinones usually afforded only one 
regioisomer (7od, 7pd) except 7n. Aryl or alkyl amines38, 39 
showed no reactivity in this system, nor did the Ellman’s chiral 
sulfinamide.40 Moreover, this method could be combined with 
the oxidation of tartrates to obtain products containing 
different esters (8). Similar to the previous strategy, the 
tartrates were first oxidized by PIDA for 1 h to form the 
glyoxylates in situ, subsequently reacting with amides, quinones 
and catalysts to afford the QAAEs with different ester groups.
To demonstrate the practical potential of the methods, the 
reaction was scaled up to 50 mmol between 1a, 2 and 6 under 
standard conditions, affording 11.4 g product 7aa in 68 % yield, 
meanwhile recovering excessive quinone 1a 4.6 g (Scheme 5a). 
The product 7aa could be further functionalized by the addition 
of thiol (9). The quinone was reduced with sodium dithionite to 
prevent possible side reactions during its hydrolysis to amino 
acid (10) (Scheme 5b). Both QAAE (12) and QHAE (13) were able 
to react with hydrazinium chlorides to afford aryl azo 
products,41 and the derivative 14 was coupled with N-protected 
proline to form a dipeptide 15 (Scheme 5c). Note that this 
reaction preferred double acylation at both N and O in the same 
molecule even at the presence of excessive 14. 

Scheme 5. Synthetic applications of QHAEs & QAAEs
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Finally, the mechanism of the redox chain reaction was 
investigated by control experiments. The reaction was 
effectively initiated by a catalytic amount of hydroquinone (HQ) 
1a’ along with non-reducing Lewis acid SnCl4, while the 
efficiency was dramatically decreased without 1a’ (Scheme 6a), 
demonstrating that the HQ intermediate was essential in the 
redox chain. It was also observed that AlCl3 would act as a 
promoter for the SnCl2 reduction of quinones (Scheme 6b). A 

plausible mechanism was then proposed taking the 
hydroxyalkylation as an example (Scheme 6c). The quinone 1 
would first be activated by AlCl3, making it more labile towards 
reduction by SnCl2. The hydroquinolate complex 18 would 
immediately react with the glyoxylates 2 through a Friedel-
Crafts type reaction. Then the substituted hydroquinolate 
complex 19 would be oxidized to the product 3 by the remaining 
quinone 1, concomitantly generating the reduced 
hydroquinolate complex 18 for the next cycle of the redox 
chain.

Scheme 6. Control experiments and proposed plausible mechanism
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OH
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1 3
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c. Plausible mechanism

O
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OH
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O

O

OH
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1a' 1a 2 3a

a. Initiating the reaction by catalytic amount of HQ instead of the reducing agent SnCl2

b. Promoting the reduction of quinones by AlCl3

O

O 5 mol % SnCl2
5 mol % AlCl3

DCE, 30 °C, 3 min

OH

OH

10 % yield
No AlCl3 2 % yield

chain initiation chain propagation

Conclusions
In summary, we have developed a step-economical strategy to 
synthesize α-quinonyl-α-hydroxy/amino acid esters through 
redox chain reaction, catalyzed by SnCl2/AlCl3. This method 
provided many potential precursors for functional unnatural α-
hydroxy/amino acids.
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