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its of deep learning in molecular
docking for drug discovery
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Chengkun Wu,b Xiangzheng Fu,c Dejun Jiang*a and Dongsheng Cao *ac

Structure-basedmolecular docking, a cornerstone of computational drug design, is undergoing a paradigm

shift fueled by deep learning (DL) innovations. However, the rapid proliferation of DL-driven docking

methods has created uncharted challenges in translating in silico predictions to biomedical reality. Here,

we delve into the performance and prospects of traditional methods and state-of-the-art DL docking

paradigms—encompassing generative diffusion models, regression-based architectures, and hybrid

frameworks—across five critical dimensions: pose prediction accuracy, physical plausibility, interaction

recovery, virtual screening (VS) efficacy, and generalization across diverse protein–ligand landscapes. We

reveal that generative diffusion models achieve superior pose accuracy, while hybrid methods offer the

best balance. Regression models, however, often fail to product physically valid poses, and most DL

methods exhibit high steric tolerance. Furthermore, our analysis reveals significant challenges in

generalization, particularly when encountering novel protein binding pockets, limiting the current

applicability of DL methods. Finally, we explore failure mechanisms from a model perspective and

propose optimization strategies, offering actionable insights to guide docking tool selection and advance

robust, generalizable DL frameworks for molecular docking.
Introduction

Prolonged timelines, substantial costs, and inherent uncer-
tainties impede drug development, a process critically depen-
dent on effective lead discovery and optimization.1–3 Structure-
based molecular docking methods have become indispens-
able computational tools for lead discovery and optimization
over recent decades, offering unique advancements in predict-
ing protein–ligand interactions.4,5 The efficacy of a drug hinges
on the specic interactions between the drug molecule and its
target, typically a protein. Effective drug–target interaction
necessitates close proximity and appropriate orientation,
allowing key molecular surface regions to t precisely. Subse-
quently, driven by this interaction, the molecular conforma-
tions adjust appropriately, ultimately forming a relatively stable
complex conformation and exerting the expected biological
activity.

Molecular docking technology, as a powerful computational
method, aims to computationally simulate and nd the stable
complex conformation between a protein and a ligand. It also
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17390
quantitatively evaluates the binding affinity through scoring
functions (SFs),6,7 providing the corresponding binding free
energy. Traditional physics-based docking tools, such as Glide
SP8 and AutoDock Vina,9 typically consist of two components: SF
and conformational search algorithm. The SF estimates the
binding energy of a ligand in a hypothesized binding pose,
while the search algorithm explores the conformational space
to nd the pose with the most favorable score assigned by the
SF.4 However, these traditional methods face signicant limi-
tations. Their reliance on empirical rules and heuristic search
algorithms results in computationally intensive processes and
inherent inaccuracies, constraining the precision of docking
outcomes.

Recent advances in computational power and the accumu-
lation of massive data have promoted the rapid development of
articial intelligence (AI) particularly DL, in the pharmaceutical
eld. AlphaFold's10 groundbreaking success in protein structure
prediction has inspired researchers to re-envision traditional
molecular docking with DL methodologies, potentially trans-
forming this critical process.11–16 DL-based docking methods
offer distinct advantages by overcoming the limitations of
traditional approaches. These methods directly utilize the 2D
chemical information of ligands and the 1D sequence or 3D
structural data of proteins as inputs, leveraging the robust
learning and processing capabilities of DL models to predict
protein–ligand binding conformations and their associated
binding free energies. This approach bypasses computationally
© 2025 The Author(s). Published by the Royal Society of Chemistry
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intensive conformational searches by leveraging the parallel
computing power of DL models, enabling efficient analysis of
large datasets and accelerated docking. Moreover, DL models
can extract complex patterns from vast datasets, signicantly
enhancing the accuracy of docking predictions and providing
a more reliable foundation for drug discovery.17

However, most DL-based docking studies have primarily
focused on binding pose prediction, oen relying on a single
evaluation metric, such as the root-mean-square deviation
(RMSD) of the ligand. Buttenschoen et al.18 developed the
PoseBusters toolkit to systematically evaluate docking predic-
tions against chemical and geometric consistency criteria,
including bond length/angle validity, stereochemistry preser-
vation, and protein–ligand clash detection, revealing that many
DL methods produce physically implausible structures despite
Fig. 1 Overview of systematic benchmarking workflow and molecular do
employed in this study. (b) Conceptual illustration of the four mole
methodologies.

© 2025 The Author(s). Published by the Royal Society of Chemistry
favorable RMSD scores. More importantly, these methods oen
overlook the biological relevance of predicted poses—speci-
cally, their ability to recapitulate key protein–ligand interac-
tions. Recent work has demonstrated that even when RMSD is
acceptable, AI-based docking models frequently fail to recover
critical molecular interactions essential for biological activity.19

Moreover, a critical concern for drug researchers is the ability of
molecular docking methods to accurately identify hit
compounds in VS,20–23 which demands not only precise binding
pose prediction but also robust generalization and screening
capabilities. Recognizing these challenges, Gu et al.23 conducted
a comprehensive benchmark of both AI-powered and tradi-
tional physics-based dockingmethods across rigorously curated
datasets designed to mimic real-world VS scenarios. However,
the generalization performance of docking methods beyond
cking paradigms. (a) Schematic representation of the overall workflow
cular docking paradigms, delineating their distinct approaches and

Chem. Sci., 2025, 16, 17374–17390 | 17375
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training datasets and their practical utility in lead discovery
remain underexplored, signicantly limiting their widespread
adoption in drug development.

To address these challenges, this study conducts a system-
atic, multidimensional evaluation of existing small molecule-
protein docking methods, encompassing traditional physics
-based approaches (Glide SP8 and AutoDock Vina9), generative
diffusion models (SurfDock,11 DiffBindFR14 and Dynam-
icBind12), regression-based models (KarmaDock,12 GAABind9

and QuickBind24), and hybrid methods (Interformer15) that
integrate traditional conformational searches with AI-driven
SFs (Fig. 1b). We evaluated these methods across diverse
benchmark datasets, assessing their performance in binding
pose prediction, physical validity, interaction recovery, VS effi-
cacy, and generalization across three dimensions: protein
sequence similarity, ligand topology, and protein binding
pocket structural similarity (Fig. 1a). Our study offers several
critical contributions to the eld:

� We provide a comprehensive multidimensional evaluation
of traditional and contemporary DL-based molecular docking
methods. This involved rigorous comparison across multiple
datasets and performance indicators, with a particular
emphasis on generalization to unseen protein sequences,
binding pockets, and structurally distinct ligands.

� We deliver a holistic assessment of binding and affinity,
critically evaluating the practical screening performance by
integrally considering both binding conformation and affinity
prediction—aspects crucial for real-world drug development.

� We formulate targeted optimization strategies based on
a detailed analysis of each method's strengths, weaknesses, and
optimal application contexts. These strategies offer actionable
pathways for enhancing diffusion model sampling, rening
regression model loss functions, and improving hybrid method
search efficiency.

Results and discussion
Comparative docking accuracy and physical validity across
benchmarks

We evaluated docking performance using three benchmark
datasets designed to rigorously test method capabilities: the
Astex diverse set25 (known complexes), the PoseBusters bench-
mark set18 (unseen complexes), and the DockGen26 dataset
(novel protein binding pockets). Details of the evaluation
protocols are provided in the Materials and methods section
(Docking methods).

As depicted in Fig. 2a and S1, a striking pattern emerges,
enabling the classication of the nine evaluated docking
methods into four distinct performance tiers based on PB-valid
and combined success rates (RMSD # 2 Å & PB-valid): tradi-
tional methods > hybrid AI scoring with traditional conforma-
tional search > generative diffusion methods > regression-based
methods. Notably, DynamicBind, designed specically for blind
docking, exhibits performance slightly lagging behind other
generative diffusion methods and aligns with regression-based
methods in a separate tier. This stratication underscores the
diverse strengths and limitations of each approach across to
17376 | Chem. Sci., 2025, 16, 17374–17390
known complexes, unseen complexes, and novel binding
pockets.

The generative diffusion method (the red series in Fig. 2a)
SurfDock exhibited exceptional pose accuracy (Fig. 2c),
achieving RMSD # 2 Å success rates exceeding 70% across all
datasets: 91.76% (Astex), 77.34% (PoseBusters), and 75.66%
(DockGen). This highlights its prociency in generating accu-
rate docking poses, likely due to its advanced generative
modeling capabilities. However, its suboptimal PB-valid scores
(63.53%, 45.79%, 40.21%)—reveal deciencies in modeling
critical physicochemical interactions, such as steric clashes or
hydrogen bonding, leading to moderate combined success rates
(RMSD # 2 Å & PB-valid) of 61.18%, 39.25%, and 33.33%,
respectively. The DiffBindFR variants (MDN and SMINA) di-
splayed moderate pose accuracy, with RMSD # 2 Å rates of
75.29% and 75.30% (Astex), 50.93% and 47.66% (PoseBusters),
and 30.69% and 35.98% (DockGen). Yet, their physical validity
faltered on more challenging datasets, with PB-valid rates of
47.20% and 46.73% (PoseBusters) and 47.09% and 45.50%
(DockGen), resulting in combined success rates of 33.88%,
34.58% (PoseBusters), and 18.52%, 23.28% (DockGen). These
results suggest that while diffusion models excel in pose
generation, their reliance on learned distributions may overlook
physical constraints, particularly on unseen or novel systems.

In contrast, the traditional method (the blue series in Fig. 2a)
Glide SP consistently excelled in physical validity, maintaining
PB-valid rates above 94% across all datasets: 97.65% (Astex),
97.90% (PoseBusters), and 94.18% (DockGen). This robustness
translated into high combined success rates of 70.59%, 57.94%
and 40.21%. AutoDock Vina also demonstrated strong physical
validity, with PB-valid rates of 82.35%, 78.97% and 88.36%, and
competitive combined success rates, notably 40.74% on Dock-
Gen. These ndings reaffirm the enduring efficacy of traditional
approaches, particularly in maintaining structural integrity
across diverse datasets, underscoring the enduring reliability of
physics-driven approaches.

The hybrid method (the purple series in Fig. 2a) Interformer,
which couples traditional conformational search with DL-
enhanced scoring, represents a promising synthesis of data-
driven and physics-driven approaches. Interformer-Energy
achieved competitive accuracy (81.18% RMSD # 2 Å on Astex,
59.58% on PoseBusters, 46.56% on DockGen) while retaining
robust physical validity (72.94%, 71.96%, and 69.84% PB-valid,
respectively), yielding combined success rates of 68.24%,
46.26%, and 34.39%. Interformer-PoseScore, relying on DL
rescoring alone, underperformed relative to Interformer-Energy
(71.76%, 57.24%, and 42.86% RMSD # 2 Å; 71.76%, 70.56%,
and 70.37% PB-valid; 55.29%, 44.16%, and 29.63% combined),
suggesting that integrating conformational sampling with DL
scoring enhances overall performance. This synergy highlights
the potential of hybrid strategies to balance accuracy and
physical plausibility, offering a pathway to overcome limitations
inherent in purely DL-based methods.

Regression-based DL methods (QuickBind, GAABind and
KarmaDock) (the green series in Fig. 2a), which predicts a single
optimal pose without sampling a distribution of possible
conformations, generally underperformed, characterized by
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05395a


Fig. 2 Docking accuracy and physical validity across benchmark datasets. Comparative performance of docking methods across Astex diverse
set, PoseBusters benchmark set and DockGen datasets. (a) Scatter plots show the percentage of successful docking cases for each method,
evaluated by RMSD # 2 Å (x-axis) and PB-valid rate (y-axis) on Astex, PoseBusters, and DockGen sets, with marker sizes and annotated values
reflecting the combined success rate (RMSD# 2 Å & PB-valid). (b) Trends in RMSD# 2 Å, PB-valid, and combined success rates across the three
datasets for each method. (c) Cumulative distribution of ligand RMSD values. Comparison of ligand RMSD (Å) distributions for the top-ranked
pose predicted by each docking method on the three datasets. Top row: histograms showing the distribution counts of RMSD values for
representative methods (colors match bottom row). Bottom row: cumulative distribution function plots showing the fraction of predictions with
an RMSD lower than the value on the x-axis. The vertical dashed gray line indicates the 2 Å threshold.
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notably low physical validity and poor combined success rates.
KarmaDock exhibited PB-valid rates of 0.00% on Astex and
DockGen, with a marginal 0.23% on PoseBusters, resulting in
combined success rates of 0.00% across all datasets. QuickBind
followed a similar trend, with PB-valid rates of 1.18%, 1.17%
and 0.00%, and combined success rates of 1.18%, 0.00%, and
0.00%, respectively. Even corrected variants of KarmaDock
(Align-corrected: 6.31% combined success rates on PoseBusters;
FF-corrected: 1.17%) showed only marginal improvements,
© 2025 The Author(s). Published by the Royal Society of Chemistry
underscoring inherent limitations in regression-based
approaches for ensuring physical plausibility. GAABind, with
PB-valid rates of 7.06% (Astex), 6.78% (PoseBusters), and 6.35%
(DockGen), achieved combined success rates of 5.88%, 3.97%,
and 2.65%, reecting a consistent inability to model complex
intermolecular interactions effectively.

A marked decline in DL method performance from the Astex
diverse set to PoseBusters and further to DockGen (Fig. 2b)
reveals signicant generalization limitations, particularly for
Chem. Sci., 2025, 16, 17374–17390 | 17377
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novel binding pockets. SurfDock's RMSD # 2 Å rate decreased
from 91.76% to 77.34% to 75.66%, while its combined success
rate dropped from 61.18% to 39.25% to 33.33%. Similarly,
interformer-Energy's combined success declined from 68.24%
to 46.26% to 34.39%, and DiffBindFR's performance tapered
from 65.88% (Astex) to 33.88–34.58% (PoseBusters) to 18.52–
23.28% (DockGen). Surprisingly, PB-valid rates for DL methods
consistently decreased across datasets—e.g., SurfDock from
63.53% to 45.79% to 40.21%, and KarmaDock-Align from
14.12% to 10.05% to 6.88%—a trend less pronounced in
traditional methods (e.g., Glide SP: 97.65% to 97.90% to
94.18%). This observation raises a profound question: Can DL
models be trained to prioritize physical plausibility without
sacricing the exibility of generated conformations?
Dissecting factors inuencing physicochemical validity in
deep learning docking methods

Given the observed deciencies in physicochemical validity
among DL-based docking methods, as highlighted in the
previous section, we sought to investigate the specic factors
contributing to these shortcomings. To this end, we analyzed
interaction recovery across the Astex diverse set, PoseBusters
benchmark set, and DockGen datasets to determine whether DL
methods effectively learn protein–ligand (PL) binding interac-
tions or merely t to dataset-specic biases. Additionally, we
dissected the PB-valid metric into its three components—
chemical validity and consistency, intramolecular validity, and
intermolecular validity—to pinpoint the drivers of performance
limitations.

Interaction recovery: learning true binding or tting biases?
To assess whether DL methods capture true PL binding inter-
actions, we evaluated interaction recovery, dened as the
percentage of correctly predicted key interactions (e.g.,
hydrogen bonds, ionic interactions and p–p stacking) between
the ligand and protein binding pocket, across a range of
thresholds (0.1 to 1.0) (Fig. 3a). For consistency, we focus on the
threshold of 0.5 (50% recovery), which balances sensitivity and
specicity in identifying meaningful interactions (Fig. 3c).

As shown in Fig. 3c, SurfDock's performance in interaction
recovery was highly competitive with the traditional method
Glide SP across all three datasets, achieving 92.68%, 77.99%,
and 71.75% across Astex, PoseBusters, and DockGen, respec-
tively, compared to Glide SP's 82.93%, 78.95%, and 64.41%.
These results indicate that SurfDock effectively learns critical PL
interactions, rather than overtting to dataset biases, chal-
lenging the notion that DL methods lack the capacity to model
binding physics. Other diffusion-based methods, such as Di-
ffBindFR (MDN: 73.17%, 57.89%, 48.59%; SMINA: 76.83%,
60.29%, 52.54% across all three datasets) and DynamicBind
(52.44%, 28.95%, 11.30%), showed more variability, with
DynamicBind particularly struggling on DockGen, suggesting
challenges in generalizing to novel binding pockets.

Among traditional methods, AutoDock Vina maintained
solid performance (73.17%, 63.88%, 63.84%), though it lagged
behind Glide SP and SurfDock. The hybrid method Interformer-
Energy also performed well (80.49%, 68.90%, 63.84%),
17378 | Chem. Sci., 2025, 16, 17374–17390
reinforcing its balanced approach. Regression-based methods,
however, underperformed signicantly: KarmaDock (54.88% on
Astex, 46.17% on PoseBusters, 13.56% on DockGen) and
QuickBind (52.44%, 21.77%, 4.52%) exhibited low recovery
rates, particularly on novel binding pocket, likely due to their
single-point prediction paradigm limiting the exploration of
diverse interaction modes. However, GAABind maintained
a robust interaction recovery, offering a promising avenue for
improvement.

Despite SurfDock's strong interaction recovery, its PB-valid
rates remained suboptimal (63.53% on Astex, 45.79% on
PoseBusters, 40.21% on DockGen), prompting a deeper
investigation into the factors hindering its physicochemical
validity. This discrepancy raises a critical question: If deep
learning methods like SurfDock can accurately predict binding
interactions, what barriers prevent them from achieving high
physical validity?

Dissecting the PB-valid metric: chemical, intramolecular,
and intermolecular validity. To identify the specic factors
driving the observed limitations in physicochemical validity, we
decomposed the PB-valid metric into its three constituent
components: (1) chemical validity and consistency, ensuring
ligand molecular accuracy (e.g., valency, stereochemistry,
protonation); (2) intramolecular validity, verifying ligand
geometry and conformational energy without steric clashes;
and (3) intermolecular validity, verifying no spatial conicts
between the ligand and protein or cofactors. These metrics were
analyzed across all methods on the three datasets, as visualized
in Fig. 3b.

Our analysis revealed that diffusion-based methods, Surf-
Dock, DiffBindFR and DynamicBind, achieved levels of chem-
ical validity and consistency and intramolecular validity
comparable to traditional conformational sampling algorithms
like Glide SP and AutoDock Vina. These results indicate that
diffusion-based methods effectively model ligand-specic
properties at a level competitive with traditional methods.

However, a stark contrast emerged in intermolecular val-
idity, which assesses spatial conicts between the ligand and
protein. SurfDock's intermolecular validity scores were signi-
cantly lower—70.59% (Astex), 48.36% (PoseBusters), and
43.39% (DockGen)—compared to Glide SP's 100.0%, 99.07%,
and 98.41%, and AutoDock Vina's 87.06%, 82.48%, and 94.18%
and Interformer-Energy's 90.59%, 82.94%, and 81.48%. Di-
ffBindFR (MDN) showed similar trends (75.29%, 48.13%,
48.68%) and DiffBindFR (SMINA) (72.94%, 47.90%, 47.09%),
while DynamicBind performed worse (32.94%, 12.62%, 6.88%),
with its relaxed variant improving slightly (49.41%, 20.33%,
8.99%). This suggests that spatial conicts with the protein are
the primary factor dragging down the PB-valid metric for
diffusion-based methods. These methods, while adept at
generating accurate poses (e.g., SurfDock's RMSD # 2 Å of
91.76% on Astex) and recovering interactions (92.68% at 0.5),
oen position ligands in ways that lead to steric clashes.

Regression-based methods (QuickBind, GAABind, Karma-
Dock) exhibited no distinct advantage across any of the PB-valid
components. On Astex, QuickBind showed 68.24% chemical
validity, 3.53% intramolecular validity, and 56.47%
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Evaluating prediction performance across diverse datasets. (a) Evaluation of each docking method's ability to recover native protein–
ligand interactions (identified by ProLIF analysis of crystal structures) across the Astex diverse set, PoseBusters benchmark set, and DockGen
datasets. The scatter plots show the performance of dockingmethods at various thresholds (0.1 to 1.0), where a threshold indicates theminimum
percentage of interactions recovered considered as successful (e.g., 0.1 represents 10% recovery). Each point represents the recall rate at
a specific threshold, with colors and shapes corresponding to the methods as indicated in the legends. (c) Bar chart comparing interaction
recovery across the three datasets at a 0.5 threshold (50% recovery). (b) Breakdown of the PoseBusters physical validity (PB-valid) metric into its
three main components for each docking method across the Astex diverse set, PoseBusters benchmark set, and DockGen datasets. The scatter
plots display the performance of dockingmethods in terms of three PB-valid components: chemical validity (blue circles), intermolecular validity
(orange squares), and intramolecular validity (purple crosses). Virtual screening performance on DEKOIS2.0 (d) and DUD-E (26) (e) datasets,
including EF0.5%, ROC-AUC and BEDROC (a= 80.5). Boxplots indicate themedian (center line), interquartile range (IQR, box limits), and 1.5× IQR
whiskers. Mean values are marked with a red diamond.
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intermolecular validity, while KarmaDock had 69.41%, 0.00%,
and 31.76%. On PoseBusters, QuickBind recorded 57.94%,
3.50%, and 29.21%, and KarmaDock 59.58%, 0.23%, and
36.68%. On DockGen, QuickBind had 38.62%, 0.00%, and
15.87%, and KarmaDock 41.27%, 0.53%, and 20.63%. These
low scores, particularly in intramolecular validity, reect their
direct prediction of atomic coordinates in 3D space, as small
errors in predicted coordinates can lead to signicant distor-
tions, such as bond length violations or steric clashes within the
ligand.
Comprehensive analysis of virtual screening performance

A central concern in drug discovery is whether molecular
docking tools can effectively identify lead compounds by
screening hit or lead candidates from large-scale chemical
libraries.20 This section evaluates the VS performance of
© 2025 The Author(s). Published by the Royal Society of Chemistry
docking models using two benchmark datasets, DEKOIS2.0 27

and DUD-E28 (26 representative targets).
Results, summarized in Table 1, Fig. 3d and e, with target-

specic statistics presented as heatmaps in Fig. S3 and S4.
The traditional method Glide SP achieved above-average
performance, with averages of ROC-AUC 0.714 and 0.750 and
medians of 0.726 and 0.766 across DEKOIS2.0 (Fig. 3d) and
DUD-E (Fig. 3e), respectively, and average EF0.5% from 14.758 to
21.669 with medians of 13.243 and 18.637. Its physics-based
scoring ensures consistent ranking, as the tight gap between
average and median (e.g., ROC-AUC median close to average)
suggests stability across targets. In contrast, AutoDock Vina
underperformed, with ROC-AUC of 0.623, 0.681 (Avg.) and
0.638, 0.676 (Med.), and EF0.5% of 5.630, 9.068 (Avg.) with
medians of 4.429 and 4.028. The lower medians and wider gaps
between average and median values (e.g., EF0.5% on DUD-E:
9.068 vs. 4.028) indicate inconsistent performance on DUD-E,
Chem. Sci., 2025, 16, 17374–17390 | 17379
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Table 1 Virtual screening performance of docking models on the DEKOIS2.0 and DUD-E (26 representative targets)a

Dataset Model

ROC-AUC PRC-AUC
BEDROC
(a = 80.5) EF0.5% EF1% EF5%

Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

DEKOIS 2.0 AutoDock Vina 0.623 0.638 0.091 0.066 0.140 0.103 5.630 4.429 4.768 2.385 2.919 2.500
Glide SP 0.714 0.726 0.224 0.185 0.352 0.315 14.758 13.243 11.979 9.958 5.891 5.500
Interformer 0.656 0.677 0.096 0.066 0.142 0.107 4.509 4.386 4.605 2.383 3.358 2.625
Interformer_Energy 0.746 0.800 0.271 0.225 0.384 0.372 15.008 13.951 13.527 11.885 7.066 6.634
DiffBindFR_MDN 0.770 0:822 0.278 0.241 0.367 0.391 13.251 13.157 11.963 11.673 7.073 7.487
DiffBindFR_Smina 0.664 0.670 0.105 0.066 0.164 0.122 6.255 4.386 5.500 4.712 3.400 2.539
DynamicBind 0.665 0.674 0.106 0.070 0.145 0.095 4.506 0 4.426 2.360 3.276 2.959
SurfDock 0.717 0.733 0.267 0.204 0.393 0.369 17.064 17.714 14:588 14:273 6.712 6.484
GAABind 0.574 0.578 0.057 0.043 0.060 0.039 1.421 0 1.708 0 1.665 1.490
KaramDock 0:776 0.817 0:306 0.241 0:414 0.402 14.535 13.211 13.410 11.875 7:739 7:500

KaramDock_aligned 0.739 0.784 0.273 0:247 0.407 0:431 15.687 17.271 14.092 14.250 6.786 6.886
KaramDock_FF 0.780 0.826 0.341 0.319 0.464 0.472 16:633 17:643 15.278 14.950 8.375 8.862
QuickBind 0.592 0.613 0.062 0.048 0.078 0.051 2.952 0 2.385 0 2.062 1.500

DUD-E (26) AutoDock Vina 0.681 0.676 0.077 0.041 0.139 0.072 9.068 4.028 7.490 3.309 4.102 3.144
Glide SP 0.750 0.766 0:243 0.118 0.341 0.238 21.669 18.637 17.619 13.162 7.177 5.773
Interformer 0.717 0.716 0.103 0.048 0.173 0.102 9.113 4.380 8.044 5.429 4.760 4.472
Interformer_Energy 0.802 0.803 0.251 0:185 0.363 0:332 26:034 27:380 20:452 18:999 8.501 8:361

DiffBindFR_MDN 0:774 0:791 0.187 0.109 0.271 0.234 18.419 10.749 15.766 11.103 7.290 6.560
DiffBindFR_Smina 0.264 0.262 0.010 0.010 0.005 0.002 0.189 0 0.204 0 0.227 0.148
DynamicBind 0.670 0.688 0.067 0.032 0.106 0.065 5.684 3.109 5.270 3.414 3.644 2.688
SurfDock 0.769 0.780 0.231 0.242 0:347 0.393 27.148 29.259 20.747 23.335 7:938 8.379
GAABind 0.623 0.613 0.039 0.023 0.058 0.024 2.524 0 2.428 0.916 2.335 2.033
KaramDock 0.719 0.698 0.098 0.036 0.154 0.069 10.187 2.865 8.374 2.979 4.716 3.217
KaramDock_aligned 0.709 0.696 0.096 0.042 0.174 0.112 12.062 7.796 9.311 7.146 4.858 4.235
KaramDock_FF 0.746 0.721 0.121 0.059 0.191 0.119 13.291 7.892 10.420 5.679 5.652 4.501
QuickBind 0.561 0.546 0.059 0.036 0.082 0.040 2.858 1.018 2.887 1.258 2.111 1.444

a The best result is emphasized by bold formatting, while the second-ranked result is underline.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 2

:4
1:

04
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
likely attributable to the limitations of its linear SF in accom-
modating the structural diversity of binding sites.

Consistent with docking observations, the hybrid method
Interformer-Energy excelled, achieving a superior balance
(average ROC-AUC: 0.746, 0.802; EF0.5%: 15.008, 26.043; BED-
ROC: 0.384, 0.363), this performance surpasses Glide SP and
signicantly outpaces AutoDock Vina, underscoring the
advantage of its hybrid paradigm again, which integrates
physics-driven conformational exploration with data-driven
scoring precision. This synergy retains the strengths of both
approaches, enabling robust ranking and early enrichment.

Leveraging generative modeling to capture complex binding
distributions, diffusion-based methods, notably SurfDock's
surface-guided approach, led in early enrichment (average
EF0.5%: 17.064, 27.148), while DiffBindFR-MDN's mixture
density network ensured robust ranking (average EF0.5%:
13.251, 18.419), alongside high ROC-AUC(average: 0.770, 0.774,
Med.: 0.822, 0.791). However, DiffBindFR-Smina's failure on
DUD-E (average EF0.5%: 0.189) exposed a critical vulnerability:
generative models rely heavily on precise SFs to translate latent
pose distributions into discriminative rankings. Similarly,
DynamicBind's consistent underperformance revealing a gap
between generative and discriminative objectives.

Regression-based methods, exemplied by GAABind and
QuickBind, exhibited poor performance (QuickBind: average
ROC-AUC 0.592, 0.561; GAABind: 0.574, 0.623), with near-zero
17380 | Chem. Sci., 2025, 16, 17374–17390
early enrichment (e.g., GAABind average EF0.5%: 1.421, 2.524).
In contrast, KarmaDock showed promise on DEKOIS2.0, with
KarmaDock FF ranking rst (average ROC-AUC: 0.780, EF0.5%:
16.633, BEDROC: 0.464) across most metrics except EF0.5%, but
delivered below-average performance on DUD-E (average ROC-
AUC: 0.746, EF0.5%: 13.291, BEDROC: 0.191), likely due to its
regression-based scoring struggling with DUD-E's diverse
binding sites, highlighting both the strengths and limitations of
optimized regression approaches.

Performance disparities between datasets underscore the
success of Interformer-Energy, SurfDock, and DiffBindFR-MDN
in integrating data-driven modeling with physical or geometric
constraints. Further analysis of target-specic performance
across protein families (Fig. S5–7) revealed substantial vari-
ability within the same family, challenging the notion that
protein family classication adequately straties docking
method efficacy. Notably, screening performance on cyto-
chrome P450 and GPCR targets was markedly lower than for
other families, a nding consistent with observations by Shen
et al. in their analysis of SFs29 and intricately linked to the
unique structural and functional properties of these targets.
Cytochrome P450 enzymes play a critical role in drug metabo-
lism, featuring binding sites that are sufficiently large and
exible to accommodate a wide array of substrates and inhibi-
tors.30 In contrast to the deep binding pockets characteristic of
many enzymes, G protein-coupled receptors (GPCRs) oen
© 2025 The Author(s). Published by the Royal Society of Chemistry
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exhibit shallow, exposed, or membrane-embedded binding
sites, where ligand–protein interactions tend to be less stable.31

The observed decline in docking performance across
increasingly generalized datasets (Astex, PoseBusters, DockGen)
and the pronounced variability within protein families in VS
datasets underscore a critical insight: the generalization
capacity of DL methods requires thorough investigation. This
trend suggests that current models struggle to extrapolate
beyond training distributions, necessitating a deeper under-
standing of the factors driving this limitation.
Generalization performance analysis

Generalization remains a key bottleneck for the widespread
deployment of molecular docking methods,32,33 as evidenced by
the limitations of DL approaches observed in our initial results.
Beyond performance on unseen data, generalization reects
a model's adaptability and robustness across diverse protein–
ligand contexts.

In this section, we systematically evaluate docking methods
across variations in protein sequence, ligand topology and 10 Å
binding pocket similarity. We aim to identify the strengths and
Fig. 4 Generalization performance of docking methods. (a–c) Dockin
sequence similarity (calculated using MMseqs2) (a), ligand similarity (Tanim
binding pocket similarity (TM-score calculated using USalign on heavy ato
complexes with higher similarity than the threshold (x-axis) were exclude
metrics including pose success rate (RMSD# 2 Å), physical validity rate (PB
bars indicate the number of data points retained after applying the simi
screening performance. Comparative analysis of virtual screening perform
generalization, including ROC-AUC, BEDROC(a = 80.5) and EF0.5%.

© 2025 The Author(s). Published by the Royal Society of Chemistry
limitations of DL-based approaches, uncover generalization
bottlenecks, and offer guidance for improving model trans-
ferability in real-world drug discovery settings.

Generalization docking power performance across protein
sequence similarity levels. To further assess the generalization
capabilities of the docking methods, we evaluated their
performance across the three docking datasets, focusing on
protein sequence similarity relative to the DL training data
(Fig. 4a and S8–9a). This analysis reveals the impact of sequence
divergence on model robustness. Notably, the reduced sample
size in the Astex diverse set aer similarity stratication (4–16
data points) may introduce uncertainty in the results (Fig. S8a),
necessitating cautious interpretation and further validation
with larger datasets.

Traditional methods, Glide SP and AutoDock Vina, main-
tained stable performance across all datasets regardless of
sequence similarity. This robustness underscores their physics-
based foundations, enabling reliable docking without reliance
on protein sequence similarity—a critical advantage for drug
discovery targeting novel protein targets. Consistent with prior
observations, the hybrid method Interformer maintained
g performance metrics as a function of maximum allowed protein
oto coefficient based on RDKit topological fingerprints) (b) and protein
ms within 10 Å of the ligand) (c) to the PDBBindv2020 training set. Test
d. Performance is evaluated using the PoseBusters benchmark set, with
-valid), and combined success rate (RMSD# 2 Å & PB-valid). Light gray
larity threshold. (d) Impact of binding pocket generalization on virtual
ance for docking methods on DEKOIS2.0 and DUD-E before and after

Chem. Sci., 2025, 16, 17374–17390 | 17381
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balanced performance, demonstrating stability across diverse
similarity thresholds, reinforcing its resilience and adaptability
to diverse protein sequences, leveraging the synergy of physics-
driven conformational sampling and data-driven scoring. In
contrast, both diffusion- and regression-based DL methods
showed performance declines with decreasing sequence simi-
larity, indicating a dependency on training protein sequence,
highlighting a generalization gap compared to traditional
methods, this trend, consistent with observations by Butten-
schoen et al.,18 suggests a reliance on training set sequence
homology, exposing a generalization gap relative to traditional
methods. This Interformer's dual approach mitigates the
sequence dependency observed in purely DL-based methods,
reinforcing its potential as a robust framework for generalizable
docking.

A striking pattern emerges in the rate of decline: the drop in
performance was more rapid on PoseBusters (unseen
complexes) (Fig. 4a) than on DockGen (novel binding pockets)
(Fig. S9a). For example, SurfDock combined success decreased
from 35.84% to 25.00% across similarity levels on PoseBusters,
compared to a milder reduction from 36.36% to 34.29% on
DockGen. This differential decline may be attributed to the
distinct design and complexity of the datasets, compounded by
the effects of similarity-based ltering. DockGen, curated to
explore novel protein binding pockets, likely encompasses
a higher intrinsic difficulty due to its focus on uncharted
structural and chemical spaces, which may demand greater
generative and adaptive capacity from DL models. In contrast,
PoseBusters, designed to challenge models with unseen
complexes, emphasizes time out-of-distribution scenarios.
Additionally, the extent of data exclusion via similarity ltering
may play a role: PoseBusters, with a larger initial sample (111–
226 data points), experiences a more substantial reduction in
usable data at higher similarity thresholds (e.g., 111 at 0.1 to 226
at 0.9), potentially skewing the remaining subset toward more
challenging cases. DockGen, with a more moderate range (140–
165), retains a relatively stable sample size, possibly preserving
a more representative distribution of pocket complexities. This
sampling effect, combined with DockGen's novel pocket focus,
may mitigate the severity of the generalization gap observed on
PoseBusters.

These results highlight that DL-based docking methods
require enhancement strategies—such as broader training
datasets, physics-informed loss functions, or hybrid
frameworks.

Generalization docking power performance across ligand
similarity levels. Previous studies have suggested that over-
tting to ligand structures may impair the generalization of DL-
based SFs.34 To investigate this, we analyzed docking perfor-
mance in relation to ligand similarity (Fig. 4b and S8–9b). The
analysis of protein sequence similarity previously indicated that
the PoseBusters benchmark set (Fig. 4b) offers a more authentic
representation of out-of-distribution (OOD) scenarios than
DockGen (Fig. S9b) for our generalization performance analysis
method, as its dataset construction deliberately avoids selective
removal of data based on specic similarity metrics.
17382 | Chem. Sci., 2025, 16, 17374–17390
Consistent with ndings on protein sequence similarity,
traditional methods demonstrated robust performance across
the Astex diverse set (Fig. S8b) and PoseBusters benchmark set.
However, performance uctuations on the DockGen under-
scores the compounded challenges posed by novel ligands and
binding pockets. The hybrid model Interformer again showed
stable performance across similarity levels, further validates the
efficacy of combining DL with physicochemical principles,
offering a balanced approach to handle OOD scenarios.

Diffusion-based methods displayed mixed behavior. Surf-
Dock showed declining performance with decreasing ligand
similarity on Astex, but surprisingly improved on PoseBusters
and DockGen, suggesting resilience to ligand novelty in more
complex scenarios. Other diffusion-based and all regression-
based DL methods exhibited decreasing performance on Astex
and PoseBusters, but remained stable—or even improved
slightly—on DockGen, likely implying that unfamiliar pockets,
rather than ligands, pose the greater generalization barrier.

This section unveils several noteworthy insights into the
generalization capabilities of docking methods across varying
levels of ligand similarity. Notably, the robust performance of
traditional methods, such as Glide SP, and the hybrid model
Interformer-Energy underscores their reliability in navigating
diverse chemical spaces, leveraging physics-based principles to
maintain accuracy. The exceptional performance of SurfDock
further highlights the potential of diffusion-based approaches
in addressing complex ligand topology OOD scenarios,
demonstrating adaptability to novel ligand environments.
Intriguingly, the anomalous stability or enhanced performance
of DLmethods on the DockGen dataset suggests that unfamiliar
binding pockets, rather than ligand dissimilarity, may consti-
tute the primary generalization bottleneck—a nding that
merits in-depth investigation. Collectively, these results
emphasize the imperative for tailored training strategies and
physics-guided methodologies to surmount current limitations,
thereby laying a foundation for more adaptable docking solu-
tions in the advancement of drug discovery.

Generalization docking power performance across 10 Å
protein pocket similarity levels. Given the signicant impact of
protein binding pockets on DL docking performance, this
section assesses model docking performance relative to 10 Å
binding pocket similarity (Fig. 4c, and S8–9c).

Traditional methods showed variable robustness. Glide SP
maintains stable performance on the Astex (Fig. S8c) and
PoseBusters datasets (Fig. 4c), but its RMSD # 2 Å success rate
declined on DockGen (Fig. S9c) as pocket similarity decreased.
AutoDock Vina displayed a consistent performance decline
across all three datasets with decreasing similarity, revealing
limitations of physics-based methods in addressing diverse
binding environments.

The hybrid model Interformer-Energy exhibited mixed
trends in RMSD# 2 Å success rate (declining on Astex, stable on
PoseBusters, and increasing on DockGen). Overall, its compre-
hensive metrics remained robust, outperforming traditional
methods and underscoring the potential of integrating AI-
driven scoring with traditional conformation searches. In
contrast, Interformer-PoseScore's performance across all
© 2025 The Author(s). Published by the Royal Society of Chemistry
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metrics declined with decreasing similarity on all datasets,
suggesting that rescoring with AI-based SFs is less effective for
enhancing the generalization of binding pocket compared to
coupled scoring approaches.

Diffusion-based methods showed a gradual decline in RMSD
# 2 Å success rate as pocket similarity decreased, though PB-
valid scores remained relatively stable, indicating divergence
between structural accuracy and physical plausibility.
Regression-based methods, particularly on PoseBusters,
showed pronounced sensitivity to pocket similarity. Interest-
ingly, the KarmaDock series exhibited improved RMSD success
on DockGen as similarity decreased,may be attributed to
a combination of small sample effects and the series' inherently
low overall performance.

These ndings underscore the signicant challenges deep
learning methods faced with novel binding pockets, revealing
a critical issue of overtting to training pocket features. This
overtting severely hampers generalization to unseen binding
environments, highlighting the need for innovative training
paradigms and hybrid approaches, exemplied by Interformer-
Energy, to enhance docking performance in diverse binding
environments.

Generalization virtual screening power performance across
10 Å protein pocket similarity levels. Our prior observations
have demonstrated that the generalization docking perfor-
mance of DLmethods is profoundly inuenced by the structural
characteristics of protein binding pockets, a nding reinforced
by the substantial performance variability observed among
different DL methods, even within the same protein family
across diverse targets. Building upon these insights, this section
extends the evaluation to the VS capabilities of docking models,
with a specic focus on their transferability to novel targets
under realistic VS scenarios. As is well established, structure
dictates function. To this end, we assessed model VS perfor-
mance on ltered subsets of DEKOIS2.0 and DUD-E, where all
targets share <0.8 binding pocket similarity to the training set
(Table 2, Fig. 3d, e and S10–12).

Across both datasets, Glide SP emerged as the preeminent
performer, exhibiting the highest VS efficacy as measured by all
key metrics, a testament to its physics-based robustness in
navigating novel binding pockets. On the ltered DEKOIS2.0
traditional methods exhibit relative robustness with perfor-
mance declines of approximately 15% in ROC-AUC, though
performance declined compared to the full dataset, in stark
contrast to the substantial drop observed for DL-based methods
with performance declines more than 25% in ROC-AUC (Fig. 3d
and S10–12a). The limited target set (n = 4) may exacerbate this
variability, potentially amplifying noise in the observed trends.
On the larger ltered DUD-E dataset, traditional methods
maintained robustness, with Glide SP leading across all
metrics, while DL-based methods continued to show signicant
performance declines, with BEDROC and EF0.5% drops
exceeding 35% in and ROC-AUC decreasing by over 12% (Fig. 3e
and S10–12b). These results underscore the considerable chal-
lenges DL docking methods face in generalizing novel protein
binding pockets. Among DL approaches, the hybrid method
Interformer-Energy and diffusion-based SurfDock showed the
© 2025 The Author(s). Published by the Royal Society of Chemistry
greatest potential, despite notably reduced performance relative
to the full datasets. Previously high-performing regression
models, such as KarmaDock, struggled signicantly, while
QuickBind, GAABind, and DiffBindFR variants (particularly
Smina) consistently underperformed.

These ndings reaffirm the need for DL models to enhance
robustness to unseen binding sites, a pivotal factor for effective
lead discovery. The resilience of Glide SP, coupled with the
partial adaptability of Interformer-Energy and SurfDock,
suggests that integrating physicochemical constraints or
enhanced sampling strategies could help alleviate this gap,
providing valuable guidance for tool selection in real-world
applications.
Method-specic insights and optimization strategies

In solution, ligands do not adopt a single, xed structure but
exist as an ensemble of conformations, the distribution of
which is governed by thermodynamic principles. Notably, the
active conformation—the one that binds effectively to the
target—is oen not the ligand's lowest-energy state in isolation
but rather the conformation that minimizes the free energy of
the entire ligand–target complex.35,36 Traditional docking
methods rely on SFs that assume a linear relationship between
binding free energy and conformation to guide conformational
search algorithms toward the active ligand pose (Fig. 5a). In
contrast, Interformer leverages the robust nonlinear tting
capabilities of AI-based SFs to direct these searches more effi-
ciently, pinpointing the active conformation with greater
precision (Fig. 5b). Regression-based methods, which minimize
expected squared error, tend to predict a single conformation
(Fig. 5c)—oen approximating a (weighted) average of feasible
binding poses—whereas diffusion-based generative models aim
to capture the full distribution of viable binding conformations,
encompassing the most critical binding modes (Fig. 5d).

Detailed analysis of docking performance reveals that DL-
based methods are signicantly inuenced by the PB-valid
metric, which comprises three components: chemical validity
and consistency, intramolecular validity, and intermolecular
validity. Our analysis elucidates the factors driving performance
across these dimensions. Diffusion-based methods achieve
chemical and intramolecular validity levels comparable to
traditional algorithms, reecting their alignment with physical
constraints of ligand during sampling, while regression-based
methods show no distinct advantage in this regard. Moreover,
in terms of interaction recovery, diffusion-based methods
SurfDock perform on par with traditional approaches in
recovering interactions observed in crystal structures, repre-
senting a notable advancement in addressing the physical and
chemical implausibility issues that afflict regression-based
methods.

From amodeling perspective, diffusion-basedmethods align
with traditional search algorithms by sampling ligand trans-
lations, rotations, and internal torsions, preserving inherent
bond length and angle constraints, thereby ensuring consistent
chemical and intramolecular validity. However, current diffu-
sion models in molecular docking exhibit certain limitations.
Chem. Sci., 2025, 16, 17374–17390 | 17383
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Table 2 Generalization virtual screening performance of docking models on the DEKOIS2.0 (4 targets) and DUD-E (8 targets)a

Dataset Model

ROC-AUC PRC-AUC
BEDROC
(a = 80.5) EF0.5% EF1% EF5%

Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

DEKOIS 2.0 (4) AutoDock Vina 0.527 0.524 0.052 0.036 0.061 0.036 2.213 0 1.788 1.192 1.374 1.250
Glide SP 0.616 0.617 0.106 0.110 0.177 0.173 7.391 4.701 4.779 3.958 3.507 2.923
Interformer 0.450 0.442 0.033 0.032 0.034 0.033 0.000 0 1.771 1.179 1.238 1.241
Interformer_Energy 0.472 0.490 0:067 0.032 0:109 0.040 5:479 2.202 3:540 1.186 1.733 0.745
DiffBindFR_MDN 0.511 0.499 0.039 0.034 0.016 0.014 0.000 0 0.000 0 0.774 0.525
DiffBindFR_Smina 0:557 0:564 0.045 0.045 0.074 0.078 3.449 4:382 2.399 2:436 1.408 1.298
DynamicBind 0.548 0.506 0.057 0:051 0.087 0:087 2.323 2.191 2.994 2.307 1.486 1.489
SurfDock 0.515 0.552 0.049 0.042 0.079 0.060 4.415 2.209 2.972 1.189 1:889 1:536

GAABind 0.401 0.412 0.025 0.025 0.013 0.007 0.000 0 0.640 0 0.259 0.250
KaramDock 0.513 0.482 0.044 0.041 0.035 0.019 1.128 0 0.564 0 0.988 0.994
KaramDock_aligned 0.490 0.488 0.039 0.040 0.045 0.033 1.092 0 1.176 0 1.482 0.994
KaramDock_FF 0.511 0.484 0.040 0.042 0.054 0.029 1.128 0 1.717 1.179 0.863 0.744
QuickBind 0.474 0.527 0.035 0.035 0.014 0.013 0.000 0 0.000 0 0.625 0.500

DUD-E (8) AutoDock Vina 0.662 0.667 0.074 0.039 0.143 0.080 9.321 4.505 7.981 3.388 3.899 3.625
Glide SP 0.697 0.701 0.192 0.099 0.289 0.209 22.644 16.553 16.616 12.460 5.874 5.440
Interformer 0.612 0.612 0.034 0.028 0.075 0.067 3.580 3.369 4.259 3.729 2.679 2.506
Interformer_Energy 0.680 0.660 0:121 0:054 0:215 0:162 16:295 13:097 12:763 9:911 5:011 4:310

DiffBindFR_MDN 0.609 0.596 0.029 0.024 0.041 0.031 1.654 1.100 1.591 0.996 1.874 1.732
DiffBindFR_Smina 0.314 0.298 0.012 0.012 0.009 0.003 0.564 0 0.465 0 0.261 0.190
DynamicBind 0.560 0.562 0.025 0.020 0.035 0.012 2.212 0 1.560 0 1.253 0.534
SurfDock 0.648 0.622 0.104 0.051 0.207 0.143 15.862 10.241 12.312 8.145 4.646 3.686
GAABind 0.568 0.577 0.024 0.022 0.037 0.028 2.058 1.170 1.810 1.328 1.375 1.181
KaramDock 0.627 0.611 0.030 0.028 0.052 0.034 2.454 1.399 2.729 1.892 1.846 1.442
KaramDock_aligned 0:681 0:672 0.052 0.044 0.104 0.088 4.820 4.004 5.060 3.418 3.965 3.779
KaramDock_FF 0.656 0.612 0.036 0.035 0.059 0.036 3.381 0.895 3.138 2.021 2.297 2.357
QuickBind 0.492 0.466 0.053 0.025 0.073 0.015 0.809 0 1.790 0.500 1.763 0.932

a The best result is emphasized by bold formatting, while the second-ranked result is underlined.
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Typically, these models rst sample ligand conformations via
a diffusion process and then rank them using a separate SF.
This decoupled approach contrasts with traditional methods,
where SFs actively guide the conformational search in real time,
potentially compromising the intermolecular reasonableness of
the generated poses. In traditional and hybrid methods like
Interformer-Energy, SFs dynamically steer the search process
and impose penalties for steric clashes, ensuring realistic
binding interactions—a factor validated by Interformer-Ener-
gy's superior performance, outstripping the rescoring-only
Interformer-PoseScore. The two-step nature of current diffu-
sion models may thus result in conformations that lack optimal
intermolecular validity.

The poor chemical and physical validity of ligands generated
by regression-based methods likely arises from their direct
prediction of atomic coordinates in 3D space—a challenging
task—or from predicting ligand–protein distance matrices,
combined with an overreliance on RMSD as a loss function,
which overlooks critical physical constraints. Notably, the
distance-matrix-based method GAABind demonstrates superior
interaction recovery compared to direct coordinate regression
approaches. This suggests that distance-matrix predictions may
better capture both long–range interactions and short-range
geometric constraints.38 However, GAABind's reliance on
a subsequent geometric reconstruction step to derive ligand
conformations from distance matrices introduces additional
17384 | Chem. Sci., 2025, 16, 17374–17390
computational overhead and risks geometric errors, under-
mining its efficiency compared to end-to-end methods.

In terms of computational efficiency, regression-based
methods outperform diffusion models, which in turn surpass
traditional search methods, whether augmented with AI SFs or
not.39 Consequently, regression-based methods, with their
rapid processing and moderate performance, are well-suited for
the initial coarse screening in ultra-large-scale VS campaigns, as
demonstrated by QuickBind and supported by Gu et al.
studies.23 In large-scale VS, these methods can swily identify
potential active compounds from vast chemical libraries,
providing a foundation for subsequent rened screening and
experimental validation.

A critical limitation across most methodologies is the inad-
equate incorporation of protein exibility. Proteins are not
static but exhibit intrinsic exibility, undergoing conforma-
tional changes upon ligand binding via mechanisms such as
induced t (ligand-driven receptor adaptation) or conforma-
tional selection (preferential binding to low-population
conformers).40 This exibility ranges from local side-chain
rotations to optimize interactions, loop rearrangements to
modulate pocket accessibility, to large-scale domain shis that
redene binding interfaces—crucial for affinity, specicity, and
entropy-enthalpy balance in exible targets like GPCRs or
intrinsically disordered proteins.12,41 Neglecting these dynamics
introduces systematic errors in pose prediction and affinity
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Conceptual comparison and qualitative performance summary of docking paradigms. (a–d) Two-dimensional projections of confor-
mational density distributions for ligand–protein binding(ref DiffDock37). (a) Classical search-based methods, (b) regression-based methods, (c)
generative methods, and (d) classical search with AI-driven scoring function methods (e) Radar chart qualitatively evaluating the performance of
representative methods from the four paradigms (Glide SP, SurfDock, Interformer-Energy and KarmaDock) using seven metrics: early enrich-
ment, physical plausibility, accuracy, interaction recovery, discrimination ability, generalizability, and efficiency. Scores are illustrative, ranging
from low (center) to high (periphery).
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estimation,42,43 particularly for malleable binding pockets, as
evidenced by the poor enrichment for GPCRs and cytochrome
P450 enzymes in VS evaluations. Among evaluated methods,
only DynamicBind and DiffBindFR explicitly address protein
exibility. DiffBindFR employs diffusion to rene side-chain
orientations for local adjustments, enhancing interaction
delity. In contrast, DynamicBind leverages equivariant
geometric diffusion to predict ligand-specic backbone and
domain motions, enabling the capture of cryptic pockets in apo
or unbound structures. Other methods, such as SurfDock,
implicitly account for exibility via surface-informed features
but may fall short in scenarios requiring extensive backbone
remodeling.

Finally, we summarize the performance of representative
methods from four docking categories across seven key metrics:
discriminative ability, early enrichment, physical plausibility,
accuracy, interaction recovery, efficiency, and generalizability
(Fig. 5e).

To enhance the performance of diffusion models in molec-
ular docking, future research should focus on rening con-
dence modules and integrating more advanced, precise SFs to
guide sampling toward more efficient and realistic outcomes.
Traditional search methods augmented with AI-based or clas-
sical SFs could benet from cutting-edge diffusion-based
sampling techniques and high-precision AI-physics hybrid
SFs, leveraging GPU architectures for efficient conformational
searches and accurate affinity predictions. For regression-based
© 2025 The Author(s). Published by the Royal Society of Chemistry
methods, incorporating physical constraints and predicting
ligand translations, rotations, and internal torsion angles could
enhance the physical plausibility of the predicted poses. Across
all methods, explicit joint modeling of ligand and protein ex-
ibility or implicit incorporation via coarse-grained priors
promises to elevate docking delity. These advancements will
bolster the role of DL in drug discovery, providing robust
support for the evolution of molecular docking technologies.

Conclusions

This study provides a comprehensive, multidimensional eval-
uation of molecular docking methods, spanning traditional
physics-based approaches (Glide SP, AutoDock Vina), DL-based
strategies—including generative diffusion models (SurfDock,
DiffBindFR, DynamicBind), regression-based models (Quick-
Bind, GAABind, KarmaDock), and hybrid methods (Inter-
former)—and their performance across diverse benchmark
datasets. By assessing binding pose prediction, physical val-
idity, interaction recovery, VS efficacy, and generalization across
protein sequence, ligand topology, and binding pocket simi-
larity, our ndings elucidate the strengths, limitations, and
practical utility of these approaches in accelerating lead
discovery and optimization.

The strengths of this study lie in its rigorous, multidimen-
sional approach, evaluating docking methods across diverse
datasets and metrics that reect real-world drug discovery
Chem. Sci., 2025, 16, 17374–17390 | 17385
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needs. By considering not only pose prediction accuracy but
also physical validity, VS performance, and generalization, we
provide a holistic assessment that bridges theoretical insights
with practical applications. However, limitations must be
acknowledged. The reliance on specic benchmark datasets
(e.g., Astex, PoseBusters, DockGen) may not fully capture the
complexity of all drug discovery scenarios, particularly those
involving non-small-molecule modalities like peptides. Addi-
tionally, while our VS analysis on DEKOIS2.0 and DUD-E
provides valuable insights, the reduced protein sets used to
test generalization may amplify variability, warranting further
validation with larger, more diverse datasets.

Future research should prioritize several directions to
advance molecular docking technologies. First, enhancing the
physical plausibility of DL-based methods—through integrated
scoring in diffusion models or physics-informed regression
frameworks—while modeling protein exibility, could bridge
the gap between efficiency and accuracy. Second, expanding
training datasets to encompass greater diversity in protein
sequences, binding pockets, and ligand chemistries may
improve DL generalization, reducing overtting and enhancing
adaptability. Third, prospective studies applying these methods
to real-world VS campaigns or lead optimization efforts would
validate their practical utility and guide further renement.
Finally, extending evaluations to emerging modalities, such as
biologics or protein–protein interactions, could broaden the
applicability of these tools in modern drug discovery.

In conclusion, this study underscores the evolving landscape
of molecular docking, where traditional reliability meets DL-
driven innovation. While DL methods offer transformative
potential in speed and pattern recognition, their current limi-
tations in generalization and physical validity highlight the
need for hybrid strategies that synergize data-driven and
mechanistic approaches. By addressing these challenges, the
eld can develop robust, versatile docking tools that enhance
the efficiency and success of drug discovery, paving the way for
the next generation of therapeutic breakthroughs.

Materials and methods
Dataset

Astex diverse set. Introduced in 2007, a meticulously curated
collection of 85 high-quality protein–ligand complexes from the
Protein Data Bank (PDB)44 forms the Astex diverse set. This
diverse assembly, featuring drug-like ligands and proteins vital
to pharmaceutical and agrochemical sectors, underpins
computational drug discovery, especially molecular docking.

PoseBusters benchmark set. The PoseBusters benchmark set
is a meticulously curated collection of 428 high-quality, publicly
available protein–ligand crystal complexes sourced from the
PDB. This diverse dataset exclusively includes complexes
released since 2021, ensuring no overlap with the PDBbind
General Set v2020.45 Each complex features unique proteins and
drug-like ligands, making it ideal for evaluating molecular
docking and related methods.

DockGen. The DockGen dataset, introduced by Corso et al. in
2024,26 is a challenging benchmark for molecular docking,
17386 | Chem. Sci., 2025, 16, 17374–17390
featuring 189 diverse single-ligand protein–ligand complexes
with unique binding pockets not found in PDBBindv2020
before 2019. Derived from the Binding MOAD database46 and
ltered using ECOD47 classication, it excludes complexes with
multiple ligands, metals, or large molecules (>60 heavy atoms),
ensuring chemical diversity. With 189 complexes, DockGen
tests generalization to novel binding sites, making it a rigorous
single-ligand benchmark for molecular docking. As the original
ligand data in PDB format lacked bond information, we pro-
cessed the complex structures using Schrödinger 2024's Protein
Preparation Wizard48 module.

DEKOIS2.0. Serving as a vital benchmark dataset for VS,
DEKOIS 2.0 features 81 diverse protein targets, each with 40
active compounds and 1200 decoys (30 decoys per active). Built
from BindingDB bioactivity data,49 it enhances the original
DEKOIS methodology by improving physicochemical matching-
now incorporating molecular weight, log P, hydrogen bond
donors/acceptors, rotatable bonds, charged states, and
aromatic rings—and eliminating latent actives in the decoy set
(LADS) to reduce bias. Decoys are selected for low ngerprint
similarity to actives, ensuring robust evaluation.

DUD-E. DUD-E stands as a cornerstone benchmark for
molecular docking, encompassing 22 886 active ligands across
102 diverse protein targets, including GPCRs and ion channels.
Each active, sourced from ChEMBL50 and clustered by Bemis–
Murcko frameworks,51 is paired with 50 topologically dissimilar,
property-matched decoys from ZINC.52 Matching properties
include molecular weight, log P, hydrogen bond donors/
acceptors, rotatable bonds, and net charge. Due to the signi-
cant computational resources required for assessing all
methods across the entire dataset, we focus on 26 representative
targets from distinct protein families, as listed in the original
DUD-E publication, which still demands substantial computa-
tional effort. In subsequent analyses of virtual screening
generalization, we maximized the number of generalized
targets by analyzing pocket similarity with the DL training set
across the entire DUD-E dataset, identifying 8 targets for further
generalization performance evaluation.
Docking method

We conducted a comprehensive evaluation of nine molecular
docking methods, encompassing two traditional physics-based
approaches (Glide SP8 and AutoDock Vina9) and seven DL-
based methods. The DL methods included three generative
diffusion models (DynamicBind,12 DiffBindFR,16 and Surf-
Dock13), three regression-basedmodels (QuickBind,24GAABind,11

and KarmaDock14), and a hybrid approach (Interformer15) that
integrates traditional conformational search with an AI-driven
scoring function. Additionally, we assessed variants of the DL
methods: DiffBindFR-Smina and DiffBindFR-MDN (selecting
top-ranked poses using Smina and a Mixture Density Network,
respectively), KarmaDock FF and KarmaDock aligned (opti-
mizing ligand conformations with the MMFF94 force eld and
aligned RDKit ligand conformations), and Interformer-Energy
and Interformer-PoseScore (selecting top-ranked poses using
energy functions and pose scoring, respectively). The selection
© 2025 The Author(s). Published by the Royal Society of Chemistry
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criterion for these deep learning methods was their training on
the PDBBindv2020 dataset. Additionally, beyond predicting
molecular binding conformations, these methods are capable of
estimating the binding affinity of ligand molecules. All docking
approaches were implemented following their official guidelines
using default parameters, retaining 40 docking poses per
method, as detailed in SI Section 1.1 (Docking protocols).

Interaction recovery evaluation

Protein–ligand interaction detection via Protein–Ligand Inter-
action Fingerprint (PLIF) libraries53 is sensitive to protonation
states, which dictate whether interactions are ionic or hydrogen
bonds. Classical docking methods model hydrogens explicitly
but oen infer interactions from heavy-atom geometries, while
deep learning methods typically use only heavy atoms. To
ensure equitable evaluation, we processed top1 ranked poses
and protein structures using the Protein Preparation Wizard48

in Schrödinger 2024, assigning protonation states, adding
explicit hydrogens, optimizing hydrogen-bond networks, and
minimizing systems with the OPLS3e force eld, constraining
heavy atoms. This optimizes hydrogen-bond networks for
accurate interaction detection.

PLIFs were computed using ProLIF (v2.0.3), focusing on
hydrogen and halogen bonds, p-stacking, cation–p, p–cation,
and ionic interactions, excluding non-specic hydrophobic and
van der Waals contacts. Custom distance thresholds were set at
3.7 Å (hydrogen bonds), 5.5 Å (cation–p), and 5.0 Å (ionic
interactions), with other parameters at ProLIF defaults. The
PLIF computation was performed using a modied version of
the plif_analysis.ipynb script provided by Dreyer et al.19.

Similarity-based generalization analysis

To assess the generalization performance of our models, we
quantied the similarity between the test set and the PDBbind
v2020 training dataset using multiple metrics, and the data in
the test set with similarity above the threshold were excluded,
implemented as follows:

(1) Ligand similarity: we computed ligand similarity using
RDKit topological ngerprints, which comprehensively encode
molecular structural features such as atom connectivity, bond
types, and ring systems. These ngerprints, generated via the
Morgan algorithm, enable a detailed Tanimoto coefficient-
based comparison, capturing subtle differences in chemical
scaffolds and functional groups to identify potential overlaps
with training data.

(2) Protein sequence similarity: protein sequence similarity
was evaluated with MMseqs2,54 a high-performance tool opti-
mized for large-scale sequence analysis. This method employs
a sensitive k-mer-based indexing and iterative alignment
strategy, offering rapid yet precise similarity scores (e.g., via
BLAST-like bit scores) across protein sequences. By detecting
evolutionary relationships and conserved domains, it effectively
ags test set proteins closely related to those in the PDBbind
v2020 training set.

(3) Protein pocket similarity: binding pocket similarity was
measured using USalign,55 computing the Template Modeling
© 2025 The Author(s). Published by the Royal Society of Chemistry
Score (TM-score) between heavy atoms within 10 Å of the ligand
in each test set protein and PDBbind v2020 protein. The TM-
score, ranging from 0 to 1 (1 indicating identical structures),
quanties structural similarity. Higher TM-scores suggest
greater similarity to the closest training complex, potentially
highlighting training bias in test performance.

These metrics collectively enable a robust evaluation of
model generalization by identifying potential overlaps between
training and test datasets.
Evaluation metrics

Docking power. Performance was quantied using three
metrics: (1) the percentage of top1 ranked ligand conformations
with RMSD# 2 Å relative to the crystal structure (RMSD# 2 Å),
(2) physical validity as determined by the PoseBusters package
(PB-valid), and (3) their intersection (RMSD # 2 Å & PB-valid),
reecting overall docking success.

Virtual screening power. ROC-AUC quanties the overall
discriminative power of docking method to distinguish active
compounds from inactive ones across all possible ranking
thresholds. It represents the probability that a randomly
selected active compound is ranked higher than a randomly
selected inactive compound. A ROC-AUC value of 1.0 indicates
perfect discrimination, while 0.5 reects random performance.

PRC-AUC measures the balance between precision (the frac-
tion of predicted actives that are true positives) and recall (the
fraction of true actives correctly identied) across ranking
thresholds. This metric is particularly informative in imbalanced
datasets, where active compounds are signicantly outnumbered
by inactives, providing insight into docking method's ability to
maintain high precision while recovering true actives.

BEDROC evaluates early recognition performance by
emphasizing the ranking of active compounds at the top of the
list. Using an exponential weighting function, BEDROC assigns
higher importance to early-ranked actives, with the parameter
a set to 80.5 (corresponding to 80% of the score concentrated in
the top 2% of the ranked list). BEDROC ranges from 0 to 1, with
higher values indicating superior early enrichment.

Enrichment factors assess the ability to prioritize active
compounds within the top 0.5%, 1%, and 5% of the ranked list
relative to random selection. EF is calculated as the ratio of the
fraction of actives in the specied top percentage to the fraction
of actives in the entire dataset. EF0.5% evaluates performance at
a highly stringent cutoff, EF1% at a slightly broader threshold,
and EF5% at a more inclusive cutoff, with higher values indi-
cating stronger enrichment of actives in the early ranks.
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datasets for evaluating docking performance, including Astex
diverse set, Posebusters benchmark set and DockGen dataset,
are accessible at https://zenodo.org/record/8278563, https://
zenodo.org/records/10656052. Benchmark datasets for virtual
screening, including DEKOIS2.0 and DUD-E, are accessible at
https://zenodo.org/records/8131256 and https://
dude.docking.org. The PDBbind dataset is available at https://
www.pdbbind.org.cn. Additional result les and processed
data used in this study, including benchmark datasets
processed by Schrödinger, are available on our GitHub
repository at https://github.com/liyue9129/DeepDockingData.
All evaluated molecular docking methods were implemented
using publicly available source code from their official
repositories.
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