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Multilevel chirality transfer and second harmonic
generation in mesoscopic double helical
supramolecular self-assemblies of fullerene
enantiomers
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Inducing chirality in the highly symmetric fullerene Cgq is an effective approach that leads to chiroptical
responses over a wide range. However, the optically active expression of Cgg is a challenging research
topic and multiscale modulation of fullerene chirality is still in its infancy. Herein, we synthesized a pair of
fulleropyrrolidine enantiomers named R/S-MBA-Cgo with a monoclinic P2; chiral space group in the
solid-state. Rare mesoscopic double helical supramolecular self-assemblies with distinctly opposite
chirality have been obtained. Substantial T—m stacking and non-covalent interactions realize the chirality
transfer and amplification across different scales, from the chiral carbon atom to the mesoscopic helix.
Such fullerene-based double helical structures exhibit intense CD responses over an extremely wide
range, from the UV-visible region and even up to the NIR region, and a SHG effect due the non-
centrosymmetric molecular structure. This research develops an efficient approach to precisely
modulate fullerene chirality and highlights the potential of chirality-based applications in fullerene science.

Introduction

The demand for chiral nanomaterials with excellent chiroptical
properties has been increasing, driven by their potential appli-
cations in chiral bio-imaging, spintronics and optoelectronic
devices."” Of great interest are m-conjugated systems with
photo- and electroactivities, and diverse topological structures.?
By modulating the supramolecular interactions of 7-conjugated
molecules possessing steric elements with other nano-motifs,**
it offers a flexible strategy to tune their chiroptical responses on
different scales. Nevertheless, most of them exhibit chiroptical
activities mainly in the ultraviolet (UV)-visible region,® which
may impact practical applications to a certain extent. Thus,
chiral nanomaterials possessing chiroptical activity in the far
red and possibly NIR regions is highly desired.

Fullerene Cg, (denoted as Cg, hereafter) is a unique spherical
m-conjugated system, with molar absorption coefficients over
an extremely wide wavelength range.” Since its discovery in
1985, Ceo has shown remarkable optical and electrical proper-
ties and has become a crucial supramolecular building block.?
Nevertheless, due to the lack of inherent chirality, the chiral
science of Cg is still under development.® Drawing on the rich
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chemically modifiable features of fullerenes, even achiral Cg,
can acquire chirality depending on the addends and addition
patterns (Table S$1),'** exhibiting an excellent chiroptical
response.'*™® For instance, Murata et al. reported that an open-
cage Cg, derivative synthesized through a multistep process has
a high g, factor covering the NIR region.” Fuchter and co-
workers found that bis [60]PCBM shows a fast and high
photocurrent response in CPL-detecting devices.>*** Moreover,
the achiral pristine Cqo can acquire induced chirality within
chiral supramolecular hosts (Table S2),>* resulting in an
intense chiroptical signal in the visible region.

Undoubtedly, Cgo-based m-conjugated structures might
constitute a class of chiral optical materials with outstanding
performance which are still less explored. Compared to
conventional organic chiral molecules, our knowledge on the
strategies to hierarchically modulate the chiral response of Cg,
is still limited.***® Very recently, we have found that supramo-
lecular chirality transfer has an impact on the chiroptical
properties of pristine Cg in the NIR range.”® Under these
circumstances, we maintain scientific skepticism about the
relevant behavior of chiral Cg, derivatives in a similar situation.
Considering that second harmonic generation (SHG) is highly
sensitive to structural symmetries, we were also interested in
exploring the second-order nonlinear optical (NLO) effect of
non-centrosymmetric Cgo derivatives in addition to its chirop-
tical response.
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In the current work, we showcase the synthesis and multi-
level chirality transfer in the self-assembly process of full-
eropyrrolidine enantiomers. Helical structures with well-
defined opposite chirality were obtained by employing the
liquid/liquid interfacial precipitation (LLIP) strategy. During
this process, chirality transfer and amplification occurred at
multiple length scales, which induced intense chiroptical
response over a broadband range. The pure enantiomeric
assemblies also exhibit efficient SHG responses. Our strategy
presented herein features the simple synthesis of chiral Cgp
building blocks, leading to multi-channel responses.

Results and discussion
Synthesis and structural analysis of R/S-MBA-Cg,

Enantiomers of mono-substituted fulleropyrrolidines named R/
S-MBA-Cg, were synthesized through a one-step thermal reac-
tion (Fig. 1a).*® Their structures were confirmed by multiple
characterization studies (Fig. S1-S5). Single crystals of R/S-MBA-
Ceo were obtained by slow diffusion of MeOH into a stock CS,
solution at 4 °C. Single crystallographic X-ray diffraction
(SCXRD) analysis revealed that both R- and S-MBA-Cg, crystal-
lized in the P2, chiral space group with a monoclinic lattice,
where the pyrrole-ring attaches to the Cgq, cage at a single [6,6]-
bond junction (C1-C2) with a length of 1.60 A (Fig. 1b).*!
Meanwhile, the purity and homogeneity of R/S-MBA-Cg,, crystals
were confirmed by powder X-ray diffraction (PXRD) patterns
(Fig. 1c). Thermogravimetric analysis (TGA) showed both
enantiomers possess high thermal stabilities up to 174 °C and
180 °C, respectively (Fig. S6). The UV-vis absorption, circular
dichroism (CD), and dissymmetry factor g,,s spectra of the
enantiomers in o-xylene are shown in Fig. 1d. The characteristic
absorption peak at 430 nm can be attributed to the [6,6]-Cs,
monoadducts (Fig. S7). Obvious mirror-image Cotton effects
can be observed over a wide range covering the visible to far-red
region (300-750 nm), indicating chiral induction across the
whole Cg( spherical skeleton through its functionalization with
a chiral R/S-MBA precursor (Fig. S8 and S9).
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Fig. 1 (a) Reaction of Cgo with paraformaldehyde and (R/S)-(+)-o.-
methylbenzylamine (R/S-MBA). (b) Crystal structures of R-MBA-Cgg
(left) and S-MBA-Cgo (right), with grey representing C, cyan
representing N, and white representing H. (c) Experimental and
simulated powder XRD patterns of R/S-MBA-Cgq. (d) CD, gaps, and UV-
vis spectra of the R/S-MBA-Cgo enantiomers in o-xylene (0.5 mg
mL™Y).
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Chirality amplification and supramolecular assembly of
mesoscopic helices

Next, we tried to amplify the chirality of individual molecules by
triggering the self-assembly of R/S-MBA-C4, through a well-
known LLIP method in fullerene science.**>* By placing
a poor solvent onto a solution of R/S-MBA-Cg in a good solvent,
self-assemblies with diverse morphologies could be obtained.
By screening various kinds of solvent systems (Fig. S10 and S11),
the combination of o-xylene/isopropyl alcohol (IPA) was scre-
ened. Optimization of the conditions yielded a feed concen-
tration of 1 mg mL ™" of R/S-MBA-Cs( and an incubation time of
72 h, which led to the formation of double helixes with definite
opposite supramolecular chirality (Fig. 2a and $12). Obviously,
the chirality exhibited by individual Ce, derivatives was
successfully transferred to the supramolecular structure. It
should be noted that the use of pure enantiomers is necessary to
obtain the helixes, as in a control experiment, only flower-like
self-assemblies  lacking supramolecular chirality —were
observed when a racemic mixture (rac-MBA-Cq,) was used
(Fig. S13). This observation highlights the role played by the
chiral carbon center during self-assembly.**

In the solid state, the as-synthesized R/S-MBA-Cy, powder
shows only random structures (Fig. S14). The path dependence
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Fig. 2 (a) Micrographs and SEM images of R-MBA-Cgq (i—iii) and S-

MBA-Csg (iv—Vi) obtained in a solvent system of o-xylene/IPA (v/v=1:
5,1 mg mL™%, incubating for 72 h at 25 °C). (b) The molecular packing
mode of R/S-MBA-Cgg in the helix. The - interactions between
Ce0—Cgo cages are omitted for presentation purposes. The circles
denote SEM images of the original R/S-MBA-Cg powder. Powder XRD
patterns (c), and FT-IR spectra (d) of the R/S-MBA-Cgo helix. For
comparison, curves of pristine powder of R/S-MBA-Cgq without the
LLIP process are also given.
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of the helixes indicates that their formation is kinetically
controlled. To gain insights into the intermolecular interaction
dictating the chirality transfer process, a detailed survey was
performed on the composition and inner structure of the self-
assemblies. As shown in Fig. 2b and S15, in the crystal
packing mode of R/S-MBA-Cgo, the observed m-m stacking
interactions occur between MBA and fullerene units, with
vertical plane-to-cage distances of 3.62 A and 3.64 A, corre-
sponding to the dihedral angles of 13.58° and 13.12°,
respectively.

As illustrated in Fig. 2c, the XRD patterns of such R/S-MBA-
Ceo helixes are subtly different from that of the original powder,
although all of them display a monoclinic phase. Substantial 7t—
7 interactions and the solvophobic effect induce oriented
growth of R/S-MBA-Cg in (001) and (010) planes during the self-
assembly process. The difference in crystal facet growth rates is
precisely the decisive factor in the formation of mesoscale
double helical structures, thus realizing the transfer from
molecular chirality to supramolecular chirality.**** Combined
with the Fourier-transform infrared (FTIR) spectrum (Fig. 2d
and $16), both the C=C stretching vibration (1630 cm ") peak
and the characteristic bands of the mono-substituted benzene
ring (695 ecm ™', 759 cm ') are red-shifted compared to the
pristine powder, again strongly demonstrating the presence of
supramolecular interactions in the assemblies, which could be
the main reason for their improved thermal stability since they
are not solvates, as suggested by thermogravimetric analysis
(TGA, Fig. $17).

So far, the mechanism for the apparent chiral amplification
trend of the CD signals of the R/S-MBA-C¢, double helix over the
broad wavelength range of 200-800 nm in DRCD spectra
(Fig. 3a) has become quite clear. Due to the complexity of the
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Fig. 3 Chiroptical response of the R/S-MBA-Cgq helix. (a) Diffuse
reflectance circular dichroism (DRCD) spectra of R/S-MBA-Cgo
helices; for comparison, curves of pristine powder of R/S-MBA-Cgo
without the LLIP process are also given. Single-particle scattering
spectra of R-MBA-Cgg (b) and S-MBA-Cgq (c) helices under LCP and
RCP excitation. The insets show the corresponding geometric models.
LCP/RCP: left/right-handed circularly polarized light. (d) Typical CDS
spectra of an individual R/S-MBA-Cgg helix.
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structural features, we further employed dark-field scattering
and circular differential scattering (CDS) to measure the optical
and chiroptical properties of chiral R/S-MBA-Cg, helices at the
single-particle level. The helix was spin-coated onto clean ITO
glass and the corresponding scattering spectra were collected
under light excitation using a halogen lamp (Fig. S18). Left/
right-handed circular polarized (LCP/RCP) light was generated
by adding a quarter-wave plate and polarizer in the optical path.
Hyperspectral imaging (Fig. S19) and scattering spectra (Fig. 3b
and c) indicate that the R/S-MBA-Cg, helices tend to scatter light
of longer wavelengths and exhibit significant scattering signals
between 700 and 790 nm, due to their large size up to several
hundred microns.

Meanwhile, the R/S-MBA-Cg, helices have a higher tendency
to scatter chiral light, i.e., the LCP/RCP light. R-MBA-Cg, helix
has a stronger scattering ability for LCP between 700 and
750 nm whereas the S-MBA-C¢, helix exhibits the opposite
behavior. The CDS spectra (Fig. 3d) of R/S-MBA-Cg, helices show
nearly perfect mirror-symmetry, which can be obtained by
calculating the scattering dissymmetry factor (g-factor, see
details in the SI).*’~** While each individual chiral helix exhibits
a different spectral line shape, peak position, and intensity of
CDS spectra (Fig. S20), averaging more than 20 particles results
in CDS spectra that are similar to the ensemble DRCD spectra.

Second-order nonlinear optical effects in mesoscopic helices

Owing to the non-centrosymmetric space group and the chi-
roptical activity of R/S-MBA-Cg, second-order NLO properties
are expected. As shown in Fig. S21, a home-built micro-area
femtosecond laser system (refer to the SI) was employed to
investigate the second harmonic generation (SHG) of the helical
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Fig.4 NLO properties of the R/S-MBA-Cgq helix. (@) The SHG intensity
of R/S-MBA-Cgq helices pumped with light from 800 nm to 960 nm
with a power of 10 mW. (b) SHG spectra of R/S-MBA-Cgg helices under
860 nm excitation at various powers. (c) Logarithmic plot of the
power-dependent SHG intensity under 860 nm excitation. (d) Polari-
zation dependence of the SHG intensity as a function of the linear
polarization angle. The solid lines indicate the fitting results.
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assemblies. The wavelength-dependent SHG spectra of both R-
and S-MBA-C4, helixes showed a strong SHG response over
a wide wavelength range from 800 to 960 nm, with the strongest
SHG intensity at 430 nm under 860 nm excitation (Fig. 4a).
Additionally, the results of power-dependent measurements in
Fig. 4b confirmed a quadratic dependence of the SHG intensity
on the laser power (Fig. 4c) with a slope of about 2, indicating
the two-photon nature of the SHG process. To gain further
insight into the second-order NLO properties of these chiral
helices, polarization dependent measurements were recorded
and plotted in a dipolar profile (Fig. 4d), which coincides with
a cos4 ¢ function, showing a dumbbell-shaped fitted curve. The
crystal symmetry of R/S-MBA-Cg, determines the SHG intensity
maxima at polarization angles of 160 and 340 deg for R-MBA-
Ceo, and of 100 and 280 deg for S-MBA-Cg(, parallel to the
dipolar axis. The polarization ratio, defined as p = (Imax — Imin)/
(Imax * Imin), Was 87.3% and 72.5% for R- and S-MBA-Cg, helices,
respectively, showing high anisotropy with linear polarization.
Given that R/S-MBA-Cg, also shows a photocurrent response
(Fig. S22), such multiple-channel properties pave the way for
applications in polarization-sensitive optoelectronic prototypes,
CPL-sensitive devices and chiral photonics in fullerene science.

Conclusions

In summary, we synthesized a pair of optically active fullerene
enantiomers via [6,6] addition of chiral functional groups.
Mesoscopic double helical assemblies of fullerene with
distinctly opposite chirality have been successfully obtained.
Substantial -7 stacking and solvophobic effects mediate this
rare assembly process, which realizes the chirality transfer and
amplification across different scales from the chiral molecule to
the mesoscopic helix. Such fullerene-based double helical
structures exhibit multiple prominent responses, including
chiroptical activity over a wide range, extending even to the NIR
region, SHG NLO effects, and polarization-sensitive optoelec-
tronic responses. This work develops an effective approach for
precisely modulating fullerene chirality and promotes chirality-
based applications in fullerene science.
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