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boxylic acids by PIII/PV-catalysis

Siraj Z. Ali, a Nicolás A. Manno,a Jeff Shen,b Alessia Schenker,b

Jeffrey M. Lipshultz, †a Nicholas A. White*b and Alexander T. Radosevich *a

A mild and catalytic method for the direct conversion of carboxylic acids into their corresponding nitriles is

reported. In contrast to common nitrile preparations that rely on hazardous cyanide and cyanogen

precursors, the present protocol employs a PIII/PV-catalyzed ‘oxidation–reduction condensation’

approach to effect iterative amidation/retro-Ritter reaction of carboxylic acids with 1-phenethylamine.

Primary, secondary, tertiary, and aromatic carboxylic acids all undergo nitrilation in synthetically viable

yields, including several pharmaceuticals and natural products. Using homochiral 1-phenethylamine,

both resolution and nitrilation of racemic carboxylic acids can be achieved, allowing synthetic access to

chiral nitriles.
Introduction

Nitriles are an important functional group in a variety of natural
products, materials, and pharmaceutically active compounds.1,2

Commonly, nitrile syntheses involve installation of the
diatomic “—CN” unit through a C–C bond forming cyanation of
a suitable organic precursor. The versatility of this approach is
only offset by the handling and disposal hazards associated
with the requisite nucleophilic (cyanide) or electrophilic
(cyanogen) cyanation reagents,3 with few notable exceptions
(Fig. 1A).4 An alternative approach to nitrile synthesis that
builds up the nitrile functional group by formation of the C^N
triple bond presents an appealing complement. Specically the
isohypsic5 transformation of carboxylic acids to nitriles
(—CO2H/ –CN) transformation might represent a useful entry
to nitriles that leverages abundant carboxylic acid substrates.
Indeed, carboxylic acids6,7—readily accessible and structurally
diverse—have been noted as desirable building blocks in
organic synthesis, especially in drug development.8–10 But
whereas the conversion of nitriles into carboxylic acids (i.e.
nitrile hydrolysis) is prosaic, the inverse transformation of
carboxylic acids into nitriles (i.e. carboxylate nitrilation)
remains synthetically underdeveloped. Multistep amidation/
dehydration synthetic sequences can achieve the
conversion,11–13 albeit with signicant waste and process inef-
ciencies. Catalytic approaches for the direct conversion of
carboxylic acids to nitriles are few; these methods either employ
bespoke reagents or high temperatures, and are usually limited
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to benzylic or aromatic carboxylic acids (Fig. 1B).14–21 A mild,
catalytic method that allows for the direct nitrilation of both
aryl and alkyl carboxylic acids under operationally simple and
cyanide-free conditions could represent a useful addition to
existing methods.

Recently, organophosphorus catalysis based on PIII/PV redox
cycling22–24 has emerged as a powerful platform for catalytic
“oxidation–reduction condensation”25–27 reactions, in which the
phosphorus center cycles between +3 and +5 oxidation states to
orchestrate sequential bond-forming and dehydrative steps.
Specically, a phosphetane-based catalyst in conjunction with
Fig. 1 A summary of approaches to nitrile synthesis. (A) General
strategies in nitrile synthesis. (B) Previous direct nitrilation reactions. (C)
Summary of the reported work.
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a mild halenium-based oxidant and hydrosilane reductant has
been shown to functionalize carboxylic acids by sequential
dehydrative amidation and amide functionalization through
recursive generation of electrophilic quasiphosphonium inter-
mediates—such as acyloxyphosphonium and
imidoyloxyphosphonium ions.28,29 Having previously inter-
cepted the imidoyloxyphosphonium ions for C–C and C–N
bond-forming reactions with nucleophilic coupling partners,
we questioned whether they might be induced to dissociate
a phosphine oxide and thereby generate a nitrilium cation,30,31

from which a retro-Ritter reaction32 might afford a nitrile
product (Fig. 1C). In so doing, an approach to the valuable
direct conversion of carboxylic acids to nitriles might be
realized.

Herein we disclose such a direct nitrilation of primary,
secondary, tertiary, and aromatic carboxylic acids under auto-
tandem PIII/PV redox cycling conditions. This mild and cyanide-
free approach to the –CO2H / –CN transformation not only
extends the utility of organophosphorus redox catalysis but also
highlights PIII/PV-catalyzed oxidation–reduction condensation
as a versatile strategy for constructing synthetically valuable
functionalities. By expanding the scope of PIII/PV catalysis to
include direct nitrilation, this work establishes a new
organophosphorus-enabled synthesis that enhances molecular
diversity from abundant carboxylic acid feedstocks.

Results

The conversion of 4-uorobenzoic acid (1) to 4-uoro-
benzonitrile (2) was investigated for discovery and development
experiments. Employing diethylmethylbromomalonate
Table 1 Reaction discovery and optimization

Entry Amine Cat. [Si]-H Yielda (%)

1 N-1 [P]$O (15 mol%) Ph2SiH2 10%
2 N-2 [P]$O (15 mol%) Ph2SiH2 n.d.
3 N-3 [P]$O (15 mol%) Ph2SiH2 68%
4 N-4 [P]$O (15 mol%) Ph2SiH2 53%
5 N-5 [P]$O (15 mol%) Ph2SiH2 89%
6 N-6 [P]$O (15 mol%) Ph2SiH2 49%
7b N-5 [P]$O (15 mol%) PhSiH3 80%
8 N-5 — Ph2SiH2 n.d.
9 N-5 PPh3 (2 equiv.) — 58%

a Yields determined by 19F NMR spectroscopy.
b Dibromodimethylmalonate used as oxidant.

16146 | Chem. Sci., 2025, 16, 16145–16150
(DEMBM) and diphenylsilane as a compatible oxidant and
reductant pair to enable redox cycling of catalyst 1-phenyl-2,2,3-
trimethylphosphetane oxide ([P]$O),28 the reaction outcome was
found to be highly dependent on the identity of the amination
reagent (Table 1). Whereas ammonium chloride (N-1) and
primary amine additives (N-2) formed minimal desired product
2 (entries 1,2), cyclohexylamine (N-3) and t-butylamine (N-4)
provided 2 in promising yields (entries 3,4). The higher yield of
nitrile with increasing a-branching of the amination reagent
implied signicant dissociative and heterolytic character in the
N-dealkylation event. Accordingly, the use of secondary benzylic
(±)-1-phenethylamine (N-5), which is widely available and
inexpensive,33 resulted in formation of the corresponding nitrile
product 2 in 89% yield (entry 5). Interestingly, benzhydrylamine
(N-6, entry 6) proved less effective, perhaps as a function of
steric hindrance to imidoyloxyphosphonium formation. Alter-
native halenium/hydrosilane pairs are also functional (viz. entry
7, dibromodiethylmalonate (DBDEM) and phenylsilane) albeit
with somewhat lower efficiency. Control experiments omitting
the phosphetane catalyst resulted in no nitrile product, indi-
cating that the DEMBM and diphenylsilane pair are not suffi-
cient in themselves for acid and amide activation (entry 8).
Notably, the optimal catalytic conditions in entry 5 outperform
a stoichiometric counterpart (employing PPh3 along with
DEMBM oxidant), which resulted in poorer efficiency and
selectivity for the desired nitrile product (entry 9).

With effective nitrilation conditions established, multinu-
clear NMR and mass spectrometry experiments were under-
taken to provide a working mechanistic framework (Fig. 2). The
treatment of phosphetane oxide [P]$O with DEMBM and di-
phenylsilane in the absence of carboxylic acid 1 or amine results
in clean conversion to bromophosphonium I (31P d= 46.5 ppm),
which is consistent with previous reports on halophosphonium
generation.28,29 However, inspection of the operative catalytic
nitrilation of carboxylic acid 1 by 31P and 19F NMR spectroscopy
identied a distinct species at 31P d = 86.3 ppm and 19F d =

−102.4 ppm as the major catalytic resting state. The same
species is observed when amide A is mixed with phosphetane
oxide [P]$O, DEMBM, and diphenylsilane, which is consistent
with imidoyloxyphosphonium III (formed from amide A inter-
ception of bromophosphonium I) as the major catalytic resting
state. Finally, mass spectrograms of the crude reaction mixture
indicated the presence of (1-bromoethyl)benzene, which could
be formed from the retro-Ritter rection of imidoyloxyphosph-
onium III, followed by interception of the resultant carbocation
by a bromide anion.

Taken together, the experimental observations are consis-
tent with the following mechanistic sequence (Fig. 2). First,
reduction of phosphetane oxide [P]$O by diphenylsilane
generates PIII-phosphetane P, which reacts with DEMBM to
afford the electrophilic bromophosphonium species I by halo-
philic substitution.34–36 Carboxylic acid 1 attacks electrophilic
bromophosphonium I to form acyloxyphosphonium II, which
can be intercepted by amine N-5 to form the amide A. Subse-
quent interaction of amide A with another equivalent of
bromophosphonium I affords the imidoyloxyphosphonium III,
which is the experimentally observed catalytic resting state.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Proposed PIII/PV-catalyzed nitrilation mechanism. Ar = 4-fluorophenyl, R = 1-methylphenyl.
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Finally, imidoyloxyphosphonium III fragments to dissociate the
phosphetane oxide [P]$O, generating an incipient nitrilium ion,
which undergoes a retro-Ritter rection, liberating nitrile
product 2. In both the carboxylic and amide activation
processes, phosphetane oxide [P]$O is generated as a byproduct,
Fig. 3 Exploration of nitrile reaction scope. All yields are of isolated
spectroscopy, 19F NMR spectroscopy, or GC/MS. bDibromodiethylmalo
Ph2SiH2.

cCrude d.r. reported using GC/MS; isolated product >20 : 1 d.
PhSiH3 used instead of Ph2SiH2; toluene used as solvent and reaction he

© 2025 The Author(s). Published by the Royal Society of Chemistry
which can be reduced easily by silane reductants, affording
phosphetane P and closing the catalytic cycles.

The synthetic scope of the catalytic nitrilation is outlined in
Fig. 3. Electron-neutral and electron-decient benzoic acids
undergo efficient conversion to the corresponding nitriles (2–5).
products unless otherwise indicated. aYields determined by 1H NMR
nate (2.2 equiv.) used instead of DEMBM and PhSiH3 used instead of
r. dDibromodiethylmalonate (2.2 equiv.) used instead of DEMBM and
ated to 110 °C. See SI for full experimental details.
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In contrast, electron-rich substrates required the use of an
alternative redox pair—dibromodiethylmalonate and phenyl-
silane—to overcome poor conversion under standard condi-
tions, as exemplied by substrate 6. Despite the steric demands
of the imidoyloxyphosphonium intermediate, ortho-substituted
benzoic acid 7 is transformed in synthetically useful yield.
Heteroaromatic acids bearing indole, azaindole, pyridine, iso-
chroman, and pyrone motifs (8–12) are also compatible.

Aliphatic acids are viable substrates, demonstrating the
reaction's tolerance for saturated frameworks and polar func-
tional groups. (Hetero)arylacetic acids (13–16), including
ibuprofen (14) and indomethacin (15), afford the corresponding
nitriles in good yield. Notably, the tertiary amide in indometh-
acin remains intact, highlighting the selectivity of the catalytic
system for reactive secondary amides. Free alcohol (16) and
alkyl bromide (17) substituents are preserved, offering handles
for further elaboration. This level of chemoselectivity contrasts
with cyanide-based methods of nitrile synthesis, which oen
suffer from poor compatibility with electrophilic or protic
functionalities.37

The method tolerates additional functional groups that are
typically reactive under PIII/PV catalysis. Nitroarene-38–40 and
sulfonamide41-bearing substrates (18, 19) are smoothly con-
verted without reduction, indicating orthogonal functional
group tolerance under the catalytic oxidation–reduction
condensation conditions.

Aliphatic acids bearing a-substitution (20 (ref. 42)) and a,b-
unsaturation (21) are amenable to nitrilation. Tertiary acids,
while more challenging, can be converted under modied
conditions. For example, 1-adamantylcarboxylic acid affords the
nitrile product (22) in moderate yield under standard condi-
tions. However, for more sterically hindered substrates such as
1-phenylcyclohexyl- (23) and 1-phenylcyclopropylcarboxylic
acids (24), a solvent modication (PhMe) and increased
temperature (110 °C) were essential to facilitate nitrile
synthesis.

Finally, the reaction is scalable and suitable for the synthesis
of relevant nitriles from renewable feedstocks. Stearic acid,
adipic acid, and carboxylic acid 27 are converted to nitriles 25,
26, and 28, respectively. Nitrile 28 was prepared on a 5 mmol
Fig. 4 Synthesis of chiral nitriles through two-step one-pot protocol.
Conditions: (A) (S)-N-5 (1.0 equiv.) in acetone (2.0 M) or THF (0.19 M),
rt; (B) [P]$O (0.15 equiv.), diethyldibromomalonate (2.2 equiv.),
phenylsilane (3.0 equiv.), in acetonitrile (0.25 M) at 80 °C. a(R)-N-5
used. Enantiomeric excesses were determined by either chiral SFC or
chiral HPLC.

16148 | Chem. Sci., 2025, 16, 16145–16150
scale in 61% yield, comparable to small-scale reactions. Nitrile
28 can be further elaborated to tetrazole 29, a motif of interest
as an albumin-binding handle for intracellular delivery of large
molecules.43,44

A direct synthesis of enantioenriched nitriles was achieved
through a telescoped resolution/nitrilation sequence using
enantiopure (S)-1-phenylethylamine ((S)-N-5, Fig. 4). This inex-
pensive amine—which is readily available as either enan-
tiomer—serves a dual role: rst, as a resolving agent via
selective crystallization of diastereomeric ammonium carbox-
ylate salts formed from racemic carboxylic acids; second, as the
aminating component in the PIII/PV-catalyzed nitrilation. Such
ammonium salts are commonly employed as checkpoints in
process chemistry due to their ability to reject impurities upon
crystallization. Direct exposure of the isolated homochiral salts
to the phosphetane oxide precatalyst, dibromodiethylmalonate,
and phenylsilane effected nitrile formation with retention of
enantiomeric purity. Indeed, using (S)- or (R)-1-phenylethan-1-
amine, respectively, racemic 1-indanylmethyl and 3-phenyl-
butanoic carboxylic acids were thus transformed into optically
enriched nitriles (30, 31) under standard catalytic conditions.
Conclusions

In conclusion, we have developed a general, catalytic method
for the direct conversion of carboxylic acids to nitriles under
mild, autotandem on PIII/PV catalysis. This transformation
proceeds via an organophosphonium-driven amidation/
activation/elimination sequence, wherein imidoyloxyphosph-
onium intermediates undergo retro-Ritter rection to furnish the
corresponding nitriles. The method is effective across a broad
range of primary, secondary, tertiary, aromatic, and hetero-
aromatic carboxylic acids and exhibits good functional group
tolerance. The use of bench-stable and inexpensive 1-phen-
ethylamine as the nitrilation reagent enables operational
simplicity and scalability, and allows for a straightforward route
to enantioenriched nitriles from racemic carboxylic acids.
Taken together, these ndings expand the synthetic utility of
PIII/PV catalysis beyond nucleophilic coupling and establish
a broadly applicable, cyanide-free platform for accessing
structurally diverse nitriles from readily available carboxylic
acid feedstocks.
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