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mmendation of agents,
temperature, and equivalence ratios for organic
synthesis

Xiaoqi Sun, a Jiannan Liu, †a Babak Mahjour, a Klavs F. Jensen a

and Connor W. Coley *ab

The identification of suitable reaction conditions is a crucial step in organic synthesis. Computer-aided

synthesis planning promises to improve the efficiency of chemistry and enable robot-assisted workflows,

but there remains a gap in bridging computational tools with experimental execution due to the

challenge of reaction condition prediction. The conditions used to carry out a reaction consist of

qualitative details, such as the discrete identities of “above-the-arrow” agents (catalysts, additives,

solvents, etc.) as well as quantitative details, such as temperature and concentrations of both reactants

(product contributing) and agents. These procedural aspects of organic chemistry exert a direct

influence over the outcome of a chemical transformation and must be provided in any hypothetical

autonomous synthesis workflow. In this work, we push beyond qualitative reaction condition

recommendation by developing a data-driven framework that incorporates quantitative details,

specifically equivalence ratios. We frame the condition recommendation problem as four sub-tasks:

predicting agent identities, reaction temperature, reactant amounts, and agent amounts, and evaluate

our model accordingly. We demonstrate improved performance over popularity and nearest neighbor

baselines and highlight the model's practical utility for predicting conditions in diverse reaction classes

via representative case studies.
Introduction

Small molecule synthesis drives progress in many industries
such as pharmaceuticals, materials science, and agriculture as
an integral part of the iterative design–make–test–analyze
(DMTA) cycle used to nominate and optimize candidate
compounds.1–3 Computer-aided synthesis planning (CASP) tools
can accelerate this process by providing algorithmic, oen data-
driven, strategies to facilitate the design of synthetic
pathways.4–7 Recently, CASP has seen a strong and promising
resurgence in the modern age of “big data”, where computa-
tional optimization of molecular structures at the “design”
stage increasingly faces a bottleneck at the “make” phase.
However, while efforts in CASP have primarily focused on ret-
rosynthetic planning to deconstruct target molecules into
simpler building blocks,6–13 the task of predicting suitable
reaction conditions to execute proposed syntheses is also of
high importance.
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Reaction conditions inuence nearly all aspects of a reac-
tion's outcome such as the intended product's yield, impurity
distribution, and ease of purication. Here, reaction conditions
are broadly dened to include chemical agents (e.g., reagents,
catalysts, and solvents), quantities (e.g., equivalence ratios and
concentrations), and operating conditions (e.g., temperature,
pressure, time, vessels). Incorporating reaction condition
selection has been shown to improve the accuracy (and well-
posedness) of product prediction models14,15 and can facilitate
considerations of one-pot compatibility,16,17 green chem-
istry,18,19 and safety,20 all of which ultimately improve route
prioritization in process chemistry.21,22 Further, condition
prediction is essential for automated synthesis as it helps
bridge the gap in specicity between retrosynthetic pathways
and experimental protocols.3,8,23–29

In this work, we consider the goal of reaction condition
recommendation to be proposing conditions that enable
product formation with non-negligible yield. Alternate goals
might involve identifying the “best” conditions—under various
denitions—which has been the focus of substantial recent
work, e.g., maximizing yield,30,31 generality,32,33 or robustness.34

Due to data availability, these goals are not well-addressed by
a priori model predictions, but by experimental screening and
optimization campaigns. However, Shields et al. showed that
expert-selected initializations outperform random
© 2025 The Author(s). Published by the Royal Society of Chemistry
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initializations at early iterations in a Bayesian optimization
campaign,30 suggesting that these workows may be further
improved through literature-informed initializations or design
space denitions.

Beyond the context of supporting automated chemical
synthesis or providing warm-starts for reaction optimization,
condition recommendation models can serve as standalone
tools that augment expert intuition with millions of reaction
precedents found in reference databases. When retrained and
deployed in the context of a pharmaceutical company, these
models allow experience to be institutionalized and shared
across the organization. Chemists can maintain their typical
experimental screening and optimization workows and choose
to incorporate model suggestions as a source of inspiration as
desired.

Current efforts in reaction condition prediction differ
primarily in the assumed structure of the condition space,
particularly whether condition components are assigned to
predened roles such as “catalyst” or “solvent.” We focus our
discussion on the growing body of data-driven methods rather
than the rst-principles or physics-based methods that have
been used for narrower problems such as solvent prediction.35

The increasing availability of standardized datasets has recently
fueled the development of many machine learning approaches
for reaction condition prediction. A recent review36 provides
a complementary perspective by grouping methods according
to model applicability: global models, which can in principle
suggest conditions for any reaction type, and local models,
which are tailored to narrower domains such as specic reac-
tion families.

Given a xed set of reaction roles and a predened set of
agents, condition recommendation becomes a supervised
learning problem, where each role-specic slot is treated as
a multiclass classication task. Machine learning models have
been built to predict specic condition components for various
reaction types, such as predicting solvent/catalyst,37 solvent-
only,38 and phosphine ligand only.19

When predicting multiple condition components with xed
roles, approaches can be broadly categorized into autore-
gressive and non-autoregressive strategies. The autoregressive
formulation generates components one by one, with later
predictions conditioned on previous ones, thus capturing the
interdependency among condition components. For example,
Gao et al.39 dened reactions as having ve agent roles (one
catalyst, two reagents, and two solvents), and built a chain of
classiers. Each classier predicts for one role and feeds the
output to the next. More recently, transformer-based models40,41

have offered a more unied and powerful approach to this same
autoregressive, role-by-role prediction. On the other hand, non-
autoregressive approaches predict conditions either indepen-
dently for each role or jointly for all roles at once. For the
former, top candidates for each role can be enumerated and
then ranked to nd a complete set of conditions.42,43 For the
latter, the task can be formulated as a multi-label classication
problem over a concatenated target vector representing all
roles.44–46 Models are trained to predict the entire set of condi-
tions jointly in a single step. Regardless of the prediction
© 2025 The Author(s). Published by the Royal Society of Chemistry
strategy, the structured nature of a xed-role condition space
allows relatively easy integration of continuous parameters like
temperature, pressure, and reaction time, though typically only
temperature is included as a prediction target.

Within xed-role paradigms, a complementary approach to
condition recommendation searches a predened, nite space
of component combinations (e.g., solvents, catalysts, bases).
These combinations are then each scored based on predicted
compatibility, either using regression models to directly predict
yield47–50 or using ranking models to order conditions by the
likelihood of success.51

The rigidity and potential ambiguity in assigning reaction
roles have motivated approaches that relax this requirement,
allowing greater exibility in agent prediction. Classication
approaches can avoid enforcing a xed role order52 or a pre-
dened number of roles by concatenating all candidate agents
into a single vector. Agent prediction can also be treated as
a sequence-to-sequence translation task.12,14,53–55 Here, models
generate the SMILES strings of all chemical agents. Unlike
classication approaches being restricted to a predened list,
these models use an “open” vocabulary and thus can generate
potentially novel agents—arguably detracting from applications
to automated synthesis. A recent direction uses Large Language
Models (LLMs) to propose experimental protocols, ranging
from human-readable procedures56 to more structured formats
that are intended to be integrated with robotic
platforms.26–28,57–59

While LLMs have shown promise in orchestrating generated
conditions for synthesis planning and execution, achieving
precise predictions remains a challenge. LLMs oen trade off
specicity for breadth. We believe that there remains a benet
of specialized condition models trained on large, curated
datasets of chemical reactions that can produce precise, struc-
tured outputs. Such predictions can be readily convertible into
executable instructions with heuristics, sequence-to-sequence
models,60 or LLMs. The models themselves can also be used
as tools as part of an agentic framework. However, current
specialized condition models provide predictions typically only
for agent identities and temperature. They fall short of
capturing the richer condition information necessary for
execution, such as quantities. This can be partly attributed to
the scarcity of structured quantitative data in widely used
reaction databases such as USPTO.61

In this work, we introduce QUARC (QUAntitative Recom-
mendation of reaction Conditions), a supervised model frame-
work for quantitative reaction condition recommendation
(Fig. 1). QUARC extends work that makes structured predic-
tions, but relaxes requirements for role assignments and allows
variable numbers of predictions more uidly; equivalence ratios
are also predicted by the model, ultimately yielding a structured
set of reaction conditions that can easily be post-processed into
code for automated execution or as the basis of a reaction
optimization campaign if desired. QUARC outputs chemical
agent identities, reaction temperature, and the normalized
amounts of each reactant and agent, offering actionable
conditions for reaction execution. We compare against
chemistry-relevant baselines including popularity and nearest
Chem. Sci., 2025, 16, 18176–18189 | 18177
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Fig. 1 Overview of reaction condition recommendation. QUARC can suggest conditions for chemical agent identity, temperature, reactant
amounts, and agent amounts, spanning the three main types of conditions: chemical agents, operating conditions, and quantities.
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neighbor. While prior work has claimed that machine learning
models are unable to outperform such baselines,62 we demon-
strate that the learned models provide modest improvements
across all condition prediction tasks. We further present
representative examples to highlight the model's improvements
over baselines.
Methods
Task formulation

We treat all non-reactant, non-product species uniformly as
“agents” with a single vocabulary. This exible formulation is
reaction-role agnostic, thus avoiding the inherent ambiguity
that arises from loosely dened roles (e.g., sometimes a solvent
can also be treated as a reagent).

We formulate condition recommendation as a four-stage
prediction task, covering agent identity, temperature, reactant
amount, and agent amount (Fig. 2A). Each stage is trained
independently on reactions with the appropriate subset of
information as not all reaction entries have complete informa-
tion. Inference is sequential: the model rst predicts agents,
then using the predicted agents with reactants and product(s) to
determine the remaining conditions. This formulation maxi-
mizes data usage and captures natural dependencies between
conditions, for example, temperature selection may depend on
the presence of specic agents.

In this framework, stage 1 predicts agent identity as a multi-
label classication task. A set of agents are decoded autore-
gressively via beam search during inference, producing a multi-
hot vector. Stage 2 through stage 4 predict temperature, reactant
amounts, and agent amounts respectively, each modeled as
a binned classication task.
Data

We use the Pistachio dataset63 (2023Q2 version), which contains
around 15 million (4.96 million unique) reactions extracted
from patents. Each entry includes reaction SMILES, component
annotations (reactants, agents, products), structured quantity
information (mass, moles, or volume), and a paragraph of
reaction procedures. Our data preprocessing procedures
include extracting key information, deduplicating reactions at
the condition level, generating an agent vocabulary, splitting
data at the document level into training (75%), validation (5%),
18178 | Chem. Sci., 2025, 16, 18176–18189
and test (20%) sets, and applying stage-specic lters to curate
four distinct datasets for each stage (Fig. 2B).

During data extraction, we standardize all reported quanti-
ties into moles. It is also required to resolve the quantities of
species reported as mixtures or solutions. Our preprocessing
pipeline handles unit conversion, solution parsing, and
concentration calculation. Then we deduplicate reactions at the
condition level and lter out perceived low-quality reactions
based onmolecular size, parsability, and component count. The
agent vocabulary is dened from components that occur with
measurable quantities, applying a minimum frequency
threshold of 50 to exclude rare or misclassied entries. The
resulting vocabulary has 1376 agents. We apply document-level
split prior to stage-specic ltering to ensure the end-to-end
evaluation uses held-out data. Full preprocessing details are
available in Section S2. We also report the distribution of
reaction types in each data split for all stages in Section S2.
Chemistry-relevant baselines

We assess model performance against two chemistry-relevant,
purely deterministic baselines (Fig. 2C).

We implement a popularity baseline62 that identies the
most common conditions within the specic reaction class of
the query reaction. Reaction classication follows the most
detailed level of the three-tier hierarchical categorization by
NameRxn.64,65 For example, bromo and chloro Suzuki coupling
are two different types of reactions under C–C bond formation,
Suzuki coupling. We also dene a nearest neighbor baseline
that adopts conditions from the most similar reactions to the
query reaction within the same reaction class. Reaction simi-
larity is dened using the Tanimoto similarity, calculated based
on reaction ngerprints formed by concatenating the 2048-bit
Morgan ngerprints66 of reactants and product(s).

The exact implementation of the two baselines varies by task.
For example, in agent prediction, the popularity baseline
reects themost frequent sets of agents per reaction class, while
in temperature prediction, it reects the most common
temperature per class (Fig. 2D). Overall, the two baselines aim to
mimic plausible model-free approaches to propose conditions
based on reaction precedents: popularity baseline captures the
common chemical knowledge and nearest neighbor reects
literature searches.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The workflow of QUARC. (A) Inference pipeline. For a query reaction, QUARC first predicts agents, then uses the predicted agents together
with the reaction input to predict the temperature and the amounts for each reactant and agent. (B) Data split. Preprocessed patent reactions from
Pistachio63 are split at the document level into training/validation/test sets, with four stage-specific test sets used to evaluate different tasks and one
overlapping set for end-to-end evaluation. (C) Baselines. Popularity baseline returns the most common conditions per reaction class; nearest
neighbor baseline identifies similar reactions and adopts their conditions as predictions. Reaction classes are defined using the most detailed tier of
the NameRxn64 hierarchy. (D) Stage-wise tasks for models and baselines.
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Model architecture

We implement two classes of models differing only in reaction
featurization: a graph-based model using graph neural
© 2025 The Author(s). Published by the Royal Society of Chemistry
networks (GNNs), and a ngerprint-based model using feed-
forward neural networks (FFNs).

For the GNN models, we adapt the D-MPNN (Directed
Message Passing Neural Network) architecture from
Chem. Sci., 2025, 16, 18176–18189 | 18179
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Chemprop.67 Each reaction is represented as a molecular graph
and processed through a message passing block to generate
a learned reaction embedding. When agent information is
required, we also embed the multi-hot agent vector and
concatenate it with this reaction embedding. The combined
representation is passed to a multilayer perceptron (MLP) to
make task-specic predictions. For the FFN models, we encode
the reaction as a binary vector by concatenating Morgan
ngerprints of reactants and products. This reaction ngerprint
is directly concatenated with the agent multi-hot vector.

Each stage is trained independently from scratch with its
own dataset and model conguration (Fig. 2D). Here we briey
summarize the tasks. Further architectural and training details
including hyperparameters are provided in Section S5.

Stage 1: agent prediction. We formulate agent prediction as
a multi-label classication task over a xed vocabulary. The
model takes a reaction, a one-hot encoded reaction class, and
a multi-hot agent vector as input. During training, we use data
augmentation to encourage order invariance, by enumerating
all input-target set pairs derived from the true agent set. During
inference, agents are decoded autoregressively using beam
search with width 10, predicting one agent at a time, condi-
tioned on previously predicted agents. Duplicate predictions
from different decoding orders are merged by summing their
joint probabilities.

Stage 2: temperature prediction. Temperature prediction is
formulated as a binned classication task with uniform binning
across −100 to 200 °C. The model takes the reaction and pre-
dicted agent vector from stage 1 as input, outputting normal-
ized probabilities over temperature bins. The model is trained
using ground-truth, rather than predicted, agents (i.e., using
teacher forcing).

Stage 3: reactant amount prediction. Reactant amount
prediction is formulated as a binned classication task over
customized bins derived from empirical usage patterns (e.g., 1.0
eq., 1.5 eq., etc.). This stage predicts the equivalence ratio for
each reactant individually. Specically, the model takes the
reaction, the agent vector, and the ngerprint of a single reac-
tant. The output is a single amount bin corresponding to that
reactant. This process is repeated for all reactants in a reaction.
Teacher forcing is also implemented here.

Stage 4: agent amount prediction. Following the same
structure as stage 3, agent amount prediction is also formulated
as a binned classication task. Agent amount bins are also
chosen manually and can be adjusted across datasets. The key
difference is that this model predicts over all agents in the
vocabulary simultaneously, then applies the input agent vector
as a mask to restrict predictions to only relevant agents.
Training is performed with masked cross-entropy loss with
teacher forcing to ensure the model learns to predict amounts
only for agents present in the reaction.
Evaluation

Evaluation is performed at two levels. First, we conduct indi-
vidual stage analysis to assess the standalone performance of
each stage without error propagation. Then we chain all the
18180 | Chem. Sci., 2025, 16, 18176–18189
stages and perform end-to-end evaluation to simulate the
model's intended deployment scenario.

For the end-to-end evaluation, we use a test set of 133 993
reactions from held-out patents for which ground-truth data
were available for all four tasks. To generate a set containing
multiple recommended conditions, we combine the top
predictions from each stage. Specically, we take the top 10
candidate agent sets, then for each, take the top 2 temperature,
top 2 reactant amount, top 2 agent amount predictions,
resulting in 80 possible combinations. These combined condi-
tion sets are ranked using a condence score, dened as the
weighted geometric average of the individual stage condence
scores. The weights are empirically selected via hyperparameter
optimization on the validation set to maximize overall end-to-
end accuracy. Details of the condence scoring procedure can
be found in Section S6.

Results and discussion
Predicting agent identity

Although agent prediction is trained as a multi-label classi-
cation task, we formulate inference as an autoregressive
generation process, where agents are predicted sequentially,
each conditioned on the previously generated ones, until an
end-of-sequence token is reached (Fig. 3A). This formulation
accommodates a variable number of agents while using a xed
vocabulary of candidate agents and also allows the model to
capture dependencies among agents without enforcing a xed
structure or order. Although the ground-truth agent set is
unordered, the autoregressive formulation produces
a sequence. To encourage order invariance, we apply data
augmentation during training. Specically, we enumerate all
possible partitions of the ground-truth agent sets by splitting
them into input and target sets. The model is thus trained to
complete any partial agent set regardless of ordering.

We report the top-k accuracy, with k candidate agent sets
generated by beam search (Fig. 3B). We used a relaxed exact
match criterion, where agent sets were converted to SMILES
strings and compared as unordered sets. A prediction is
considered correct if the predicted and target sets match, di-
sregarding the presence or absence of water. This exception
accounts for water being inserted during agent preprocessing. A
stricter index-level accuracy is also reported in Fig. S2. Under
the relaxed metric, both the GNN model and the nearest
neighbor baseline outperform the popularity baseline at low k.
This suggests popularity baseline's limited coverage of reaction
classes with diverse conditions (e.g., cross-coupling reactions).
As k increases, the difference between the GNN and FFNmodels
becomes more obvious, while the popularity baseline also
becomes more competitive at higher k values. Model perfor-
mance also depends on the number of agents. As shown in
Tables S14–S16, the models are biased toward shorter agent
sequences, with the average predicted length falling between 2–
3 agents regardless of the true number of agents. This
contributes to reduced accuracy for longer sequences, alongside
cumulative errors in autoregressive decoding and the scarcity of
long-agent reactions.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Individual stage evaluation of agent identity prediction. (A) Schematic of the agent identity model, which generates a set of agents
autoregressively. (B) Top-k relaxed accuracy of stage 1 agent prediction. (C) Top-10 relaxed accuracy for 12 representative reaction sub-
categories, selected from a total of 60 based on the performance difference between the GNN model and the popularity baseline (top 6 and
bottom 6 shown). The number of test reactions per category is shown in white boxes. “Relaxed” accuracy allows predictions differing by a water
molecule to count as a match due to their inconsistent presence in the dataset.
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To understand model performance across reaction types, we
used the NameRxn64 hierarchy. Our analysis focused on the
intermediate sub-category level (e.g., Suzuki coupling). This
provided a good balance between breadth and specicity: level 1
(e.g., C–C bond formation) was too coarse (12 classes) and level 3
(e.g., bromo Suzuki coupling) was too ne-grained (>1500
classes). Note that the popularity and the nearest neighbor
baseline are still implemented at the most specic reaction
class level. We ranked the 60 sub-categories present in the stage
1 test set by the performance gap between the GNN and popu-
larity baseline. Fig. 3C shows the top 6 and bottom 6 sub-
categories from the list, with the blue-shaded ones favoring
GNN, while the red-shaded ones favoring popularity.

While the GNN model does not outperform the popularity
baseline across all transformations, it demonstrates consistent
advantages in sub-categories known to involve sensitive reac-
tion conditions that typically require optimization. For
example, N-arylation with Ar–X (including Buchwald–Hartwig
amination, which is known for being sensitive to reaction
conditions) showed the largest performance improvement from
the GNN model. This suggests that the model can capture more
nuanced substrate–condition relationships. In contrast, the
popularity baseline performs well on reductions and depro-
tection reactions, for which a small number of robust protocols
are considered broadly applicable. These trends are not simply
driven by training data size. The reaction sub-categories where
© 2025 The Author(s). Published by the Royal Society of Chemistry
GNN performs well span a range of data sizes, indicating that
performance improvements reect learned chemical patterns,
rather than merely being exposed to a greater number of
training examples. We also examined condition diversity, esti-
mated by (i) the number of unique agent sets and (ii) the frac-
tion of test reactions whose agent set lies outside the top 10
most frequent sets within a class, and observed modest positive
correlations with the performance gap between GNN and
popularity (Section S7.3). This is consistent with the intuition
that when a few protocols dominate, a popularity baseline
suffices, whereas in more heterogeneous classes the learned
model captures mid-frequency patterns that popularity misses.

Predicting temperature

We formulate temperature prediction as a binned classication
task. Regression formulations of temperature prediction fail to
capture the highly irregular empirical distribution of reaction
temperatures (Fig. S4). We focus on temperature ranges relevant
to medicinal chemistry, ranging from −100 to 200 °C, and
evenly discretize them into 10 °C increments (Fig. 4A). Given the
ordinal nature of temperature labels, small deviations from the
true value may still be acceptable. To account for this, we report
the proportion of predictions that fall within N bins of the true
label, along with the mean absolute error (MAE) in terms of the
number of bins between the predicted and recorded bin, as
measures of prediction distance.
Chem. Sci., 2025, 16, 18176–18189 | 18181
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Fig. 4B shows that GNN and FFN yield comparable perfor-
mance, both outperforming the baselines with an average MAE
of approximately 1.8 bins, equivalent to an error between ±20
and ±30 °C. The popularity baseline captures the common
temperatures used, but is necessarily less effective for reaction
classes with a wide temperature range. The nearest neighbor
baseline retrieves the temperature from similar reactions from
the same class but does not explicitly incorporate agent infor-
mation, therefore different agents used could lead to different
temperature choices. The improved performance observed in
the trained models suggests that accounting for agent
compatibility in addition to the substrates themselves benets
temperature prediction.

To assess whether the model captures the empirical distri-
bution, we visualized a confusion matrix for the best-
performing FFN model (Fig. 4C). The model successfully
reproduced key features of the distribution. These include
peaks at specic temperatures like −78 °C (dry ice), 0 °C (ice
bath), room temperature, as well as a broad distribution around
80–120 °C for heated reactions. The confusion matrix showed
a vertical band centered around room temperature, indicating
the FFN model has a tendency to overpredict in this area. This
bias is likely due to the class imbalance in the temperature
dataset, where over 50% labels correspond to the room
temperature bin of 20 °C to 30 °C. The FFNmodel also has some
difficulty differentiating between ice and room temperature,
likely due to their proximity, the dataset's strong imbalance,
and the fact that choosing between these two temperatures
sometimes reects subtle selectivity preferences rather than
Fig. 4 Individual stage evaluation of temperature prediction. (A) Schema
temperature prediction accuracy under varying bin tolerances. Bin deviati
reports mean absolute error (MAE) in bin units. (C) Confusionmatrix of the
true values.

18182 | Chem. Sci., 2025, 16, 18176–18189
clear-cut success or failure. Confusion matrices for other
methods are available in Fig. S5.
Predicting reactant amounts

We also formulate both quantity prediction tasks as binned
classication problems, analogous to the formulation used for
temperature prediction. We computed the equivalence ratios,
or molar ratios, of each reactant and agent relative to the
limiting reactant, and observed peaks at commonly used values
(e.g., 1.0, 2.0, 2.5 equivalents; Fig. 5B). Therefore, instead of
uniform discretization, we dened custom bins tailored to
capture these frequent values in our dataset; models can be
readily retrained or ne-tuned with alternative bin denitions if
different levels of granularity are desired. Given the ordinal
nature of the labels, we continued to evaluate performance with
the off-by-N accuracy metric. Predictions were made per
component, either a reactant or an agent, so we report both
component-level accuracy and aggregate performance at the
reaction level by grouping predictions across all species in
a reaction.

Models predict the quantity for each reactant separately. For
any given reactant, its specic ngerprint and the overall reac-
tion context (reaction ngerprint and agents) are used to
determine its amount (Fig. 5A). Fig. 5C shows the off-by-N
accuracy, measuring the fraction of predictions within N bins of
the true value. The popularity baseline used here is effectively
a majority baseline that always predicts 1.0 equivalent (Fig. 2D).
Standard baselines are less suitable for our reactant amount
tic of the temperature model predicting discrete 10 °C bins. (B) Stage 2
on reflects the distance between the predicted and true bin. The legend
best performing FFNmodel, with the bin distribution for predicted and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Individual stage evaluation of reactant amount and agent amount prediction. (A) Schematic of the reactant amount model predicting
reactant amounts as discrete bins, evaluated at both the component and reaction levels. (B) Histogram of reactant amounts in log scale, with bin
edges chosen to capture major peaks in the data. (C) Reactant-level prediction accuracy with tolerance thresholds. (D) Reaction-level accuracy
categorized as follows: exact match (all reactants correctly predicted), off by one (all within ±1 bin, excluding exact), and major deviation ($1
reactant differs by more than one bin). For each method, bars are stacked from bottom to top in this order, with darker shading indicating exact
matches, medium for off-by-one and lightest for major deviation. (E–H) Repeat of panels (A–D) for stage 4 agent amount prediction using the
same schemes. For (F), bin edges are chosen at substoichiometric, stoichiometric, and superstoichiometric levels to account for differences in
scale between agents.
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prediction task, as the reactant distribution is too diverse for
a typical popularity baseline to be meaningful; additionally,
a nearest neighbor baseline does not guarantee the same
© 2025 The Author(s). Published by the Royal Society of Chemistry
number of reactants between query and reference reactions,
complicating direct comparisons. The popularity baseline pre-
dicting a constant equivalence ratio of 1.0 achieves an accuracy
Chem. Sci., 2025, 16, 18176–18189 | 18183
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of nearly 70%, as by denition all reactions must have at least
one limiting reactant. Further analysis excluding limiting
reactants is provided in Fig. S6.

We then extended the evaluation to the reaction level by
grouping predictions across all reactants (Fig. 5D). Reaction-
level accuracy was categorized into three mutually exclusive
buckets:

(1) Exact match: all reactants are predicted in the correct bin.
(2) Off-by-one: all predictions fall within ±1 bin of the

ground truth, excluding exact matches.
(3) Major deviation: at least one reactant is off by more than

one bin.
This coarse-grained breakdown simplies evaluation by

avoiding the need to enumerate all possible reactant combi-
nations. Both the FFN and GNN models surpass the popularity
baseline in exact match accuracy. The popularity baseline's
notable performance of nearly 50% is partly due to the preva-
lence of unimolecular reactions in the test set (about 35%). The
advantage of the learned models becomes more pronounced for
reactions with multiple reactants. If we consider only bimolec-
ular reactions (about 64% of the test set), the exact match
accuracies are approximately 40% for the FFN model, 37% for
the GNN model, but only 22% for the popularity baseline. This
improvement highlights that the learned models can distin-
guish suitable stoichiometries in more complex scenarios. A
detailed breakdown is presented in Table S18.
Predicting agent amounts

Agent amount prediction follows a similar binned classication
formulation as reactant amount. A key difference arises from
the use of a xed vocabulary for agents, allowing a model to
predict amount labels for all agents simultaneously. The full
vector of equivalence ratios is masked by the actual agents
present in the input (Fig. 5E). Bins were selected to reect major
peaks in the data distribution. Because agents include both
catalysts and solvents, which are used at substantially different
scales, bins were dened to capture substoichiometric, stoi-
chiometric, and superstoichiometric regimes (Fig. 5F). The
xed agent vocabulary enables comparison to the popularity
baseline, which assigns the most frequently observed bin label
for each agent. This approach reects common usage patterns:
agents typically used catalytically tend to have sub-
stoichiometric amounts, while agents typically used as solvents
will have superstoichiometric amounts.

At agent level, both GNN and FFN models demonstrated
comparable performance, outperforming the popularity base-
line (Fig. 5G). At reaction level, the same three categories are
used as shown in Fig. 5H. When comparing these results to
those for reactant amount prediction, we observed a notable
drop in exact matches. The decline can be attributed to two
factors. First, the agent amount prediction task has more bins
(27 bins) than the reactant amount task (15 bins), making it
a more challenging classication task; changing the number of
bins can make the quantitative accuracy arbitrarily greater or
smaller. Second, reactions typically involve a higher number of
distinct agents than reactants, increasing the combinatorial
18184 | Chem. Sci., 2025, 16, 18176–18189
difficulty of predicting all quantities exactly. Despite these
challenges, both models consistently outperformed the popu-
larity baseline.
End-to-end evaluation

To assess the practical use case of our approach, we evaluated
full-pipeline performance by integrating the independently
trained models into a unied inference workow. Given a query
reaction, the workow rst predicts the set of agents (stage 1).
Based on the predicted agents, temperature (stage 2), reactant
quantities (stage 3), and agent quantities (stage 4) are predicted
in parallel. There are no hard dependencies between the last
three stages. For instance, temperature predictions do not
inuence quantity predictions in this setup.

We evaluated QUARC's end-to-end performance on the
overlapping test set under document split, where ground truth
is available for all four tasks. For baselines, we considered two
holistic baselines that treat the full set of conditions as a single
unit rather than independently predicting each component.
The popularity baseline selects the most frequently observed
complete condition set (including agent identity, temperature,
reactant amount and agent amount) from the training set for
each reaction class. Similarly, the nearest neighbor baseline
adopts the entire condition set from the most similar reactions
within the same reaction class in the training data. In contrast
to simply chaining most common predictions from individual
stages (e.g., most popular agents combined with most popular
temperature), these baselines preserve the internal consistency
among condition components. This matters because indepen-
dently “optimal” choices may not be compatible when
combined. By focusing on condition sets that have been re-
ported in the literature as a whole, these baselines prioritize
mutually compatible conditions.

We dene correct conditions as exact matches across all
stages: stage 1 requires exact agent matching at index level,
stage 2 requires the correct temperature bin, stage 3 requires
exact matches for all reactant amounts (unordered), and stage 4
requires both correct agents and quantities. For reactant
amounts, since the baselines only retrieve the entire pre-
existing condition sets, they cannot assign a specic quantity
to each individual reactant. Our model, however, can do so
based on reactant-specic ngerprints. Therefore for stage 3, we
require only the frequency distribution of reactant amount bins
to match, without enforcing a specic reactant-to-bin corre-
spondence. This criterion is applied to both our models and the
baselines.

The top-k exact match accuracy is reported for all four
methods (Fig. 6). We observed that FFN outperforms GNN,
followed by the nearest neighbor and popularity baselines.

While the absolute values of top-k accuracy may appear
modest, several factors contribute to this outcome. First, accu-
racy based on literature-reported conditions inherently under-
estimates the true accuracy of predicting chemically-viable
conditions. Our evaluation metric requires an exact match to
a reported condition and cannot account for plausible alterna-
tives that could still lead to a successful reaction despite small
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 End-to-end evaluation top-k accuracy. To be considered
correct, a complete set of conditions requires exact match at all
stages. Particularly for stage 4, both agent indices and their corre-
sponding amount labels are required to match exactly. Note that
accuracy here is in terms of a strict match to literature-reported
conditions, whereas in practice there are typically many possible
conditions under which a reaction will proceed, particularly allowing
subtle variations in equivalence ratios.
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deviations from the reported values. These “near-misses”—even
something as subtle as a reactant equivalence ratio of 1.3 versus
1.4—may be feasible but are not captured under the current
strict evaluation metric. Second, the sequential nature of the
multi-stage prediction process means that errors accumulate.
Inaccuracies in earlier stages, particularly in agent prediction,
inevitably propagate and reduce the likelihood of recovering
a fully correct condition set downstream. One possible direction
to address the systematic underestimation of model perfor-
mance is to evaluate predictions against the union of all re-
ported condition sets for a reactant product pair, rather than
relying on a single test record. This approach would better
capture the one-to-many nature of reaction conditions. In
addition, incorporating similarity-based metrics, such as those
accounting for chemical similarity (e.g., bases with comparable
strengths) or simple set-level overlap indices, could offer a more
nuanced assessment of prediction quality. Looking forward, an
opportunity for future condition dataset curation lies in
preserving the condition screening tables oen reported by
chemists, which could enable evaluation against a more
comprehensive set of experimentally validated alternatives.

Although the GNN model performed better in agent predic-
tion, the FFN model consistently showed marginal yet persis-
tent advantages in temperature and both quantity predictions.
These accumulated advantages at the later stages ultimately
allowed the FFN model to achieve higher end-to-end accuracy.
Importantly, both learned models substantially outperform the
nearest neighbor baseline as the number of condition sets
under consideration (k) increases, demonstrating the benet of
data-driven modeling for condition recommendation.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Qualitative evaluation

Quantitative metrics based on the strict exact match criterion
may not fully capture the practical utility of the predictions.
Close approximations, particularly regarding amounts, can still
be reasonable. However dening an acceptable tolerance for
these close matches is challenging and must be evaluated on
a case-by-base basis. In addition, occasional inaccuracies or
inconsistencies in the source data can further distort evaluation
results. For example, optical character recognition failures
during text extraction may incorrectly parse “CuI” as “CuL” and
lead to the omission of this catalyst entirely from the reaction
entries, which our preprocessing steps do not rectify. “100 °C” is
sometimes extracted as “100 0C”, causing our temperature
parsing script to misinterpret work-up temperatures (typically,
room temperature) as the ground truth reaction temperature.
Here, we present several qualitative examples to allow for
a direct assessment of recommended conditions.

We select the qualitative examples using a pair-wise win rate
analysis that compares the top 10 end-to-end predictions of our
models against baselines across different reaction classes
grouped at the second level of the NameRxn hierarchy; we
exclude instances where neither method yielded a correct
prediction. Further details of win rate calculation and results
are available in Section S7.9. We highlight the comparison
between FFN, the top-performing model, and the nearest
neighbor baseline, the strongest baseline. Fig. 7A–E show
examples from reaction classes where the model demonstrates
a statistically signicant advantage (the lower bound of the 95%
condence interval for the win rate exceeds 50%). The nal two
classes (Heck and Wittig reactions) are examples where the
model's advantage was less denitive, as the lower bound did
not meet the 50% threshold.

Beyond individual successes, examples in Fig. 7 reveal
several overarching themes about models' capacities when
compared with baselines. While the nearest neighbor baseline
consistently provides chemically plausible recommendations,
the trained models arguably demonstrate improved substrate-
awareness. By design, nearest neighbor retrieves conditions
from the most similar reaction within the same reaction class,
so it is rare that it would lead to an obviously poor recom-
mendation. Indeed, many of these predictions are quite
reasonable. For instance, in the Pd-catalyzed Sonogashira
reaction (Fig. 7A), nearest neighbor recommended a Pd(0)
complex when the reported condition used a Pd(II) pre-catalyst
system, which are functionally equivalent in this context.

However, the models can learn to recognize when the most
popular conditions from a class are insufficient, particularly in
terms of chemoselectivity. As Fig. 7D demonstrates, FFN and
GNN appropriately select the milder reducing agent LiBH4 over
the more aggressive LiAlH4 for this ester susceptible to side
reactions such as oxazolidinone ring cleavage. Similarly, swap-
ping Et3N for sterically hindered DIPA to suppress Glaser
coupling in Sonogashira (Fig. 7A); identifying a phosphine/CCl4
system, a combination commonly employed in stereosensitive
amide couplings, despite stereochemistry not being explicitly
encoded in the input representations (Fig. 7E); choosing a non-
Chem. Sci., 2025, 16, 18176–18189 | 18185
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Fig. 7 Recorded conditions and rank 1 predictions for selected reaction sub-categories (NameRxn second hierarchy) by each method. NN:
nearest neighbor; Pop: popularity. For temperature, reactant amount, and agent amount predictions, values within the predicted bins are re-
ported for clarity rather than the full intervals (e.g., a temperature interval of 0 °C to 10 °C is reported as 5 °C). Agent amounts corresponding to
solvents have been manually converted from equivalence ratios to volumes and scaled relative to the ground-truth limiting reactant quantity.
Each sub-category includes the 95% confidence interval for FFN's win rate (%) against the NN baseline. (A) Sonogashira reaction ([79.7, 90.1]). (B)
Stille reaction ([73.5, 87.6]). (C) O-Substitution ([64.2, 70.0]). (D) Ester to alcohol ([63.8, 76.8]). (E) N-Acylation to amide ([54.0, 58.6]). (F) Heck
reaction ([46.9, 86.7]). (G) Wittig reaction ([42.3, 75.4]). *Manually fixed parsing errors.

18186 | Chem. Sci., 2025, 16, 18176–18189 © 2025 The Author(s). Published by the Royal Society of Chemistry
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nucleophilic base NaHMDS in a sensitive Wittig reaction to
avoid side reactions with the aldehyde (Fig. 7G). These examples
showcased the models' ability to capture the subtle substrate–
reagent interactions that a structural distance metric (i.e.,
Tanimoto similarity) would miss.

While seemingly minor, quantitative details beyond agent
identities are also crucial to reaction outcomes, and models
showed a better grasp of these ne-grained parameters than the
baselines. For example, in the Mitsunobu reaction, models
recommended a more robust excess of DIAD to ensure complete
conversion (Fig. 7C).

These examples underscore the challenge of data quality in
chemistry datasets. In the Sonogashira reaction example, we
identied data delity issues such as missing Pd in the nearest
neighbor prediction (manually added aer inspection of the
source patent) and missing CuI in the popularity prediction.
Both mistakes are caused by optical text recognition errors and
therefore difficult to rescue by a preprocessing pipeline. Base-
line methods are particularly sensitive to such errors because
they cannot infer missing context and average out the noise like
the learned models. Addressing such data delity challenges
may benet from advances in reaction curation and pre-
processing pipelines,68 as well as from emerging methods that
use large language models to rene extracted reaction records.69

Conclusions

We developed QUARC, a data-driven framework designed to
recommend reaction conditions—including agent identity,
temperature, and equivalence ratios—for diverse organic
transformations. Trained on a large dataset of patent reactions,
QUARC consistently outperformed two sensible chemistry-
relevant baselines: a popularity baseline, which suggests the
most frequently used conditions within the same reaction class,
and a nearest neighbor baseline, which retrieves conditions
from the closest analogous reaction within the same class. Both
individual stage evaluations and end-to-end evaluation
demonstrate an advantage to using the trained model. While
this advantage varies across reaction types, QUARC showed
advantages in predicting suitable conditions for trans-
formations such as cross-coupling reactions where there is
greater heterogeneity in reported conditions. The case studies
illustrate that data-driven models are not only retrieving
precedent but also leveraging reaction contexts with a nuanced
understanding of selectivity, substrate constraints, and stoi-
chiometry for condition recommendation.

QUARC can be readily integrated within CASP tools to
generate conditions for hypothesized retrosynthetic pathways
and thus facilitates, though does not yet directly enable, auto-
mated small molecule synthesis. Predicted conditions can serve
as data-driven, literature-informed starting points for experi-
mental optimization or expert modication.

Despite these strengths, there are several opportunities to
improve QUARC in future work. First, the current encoding
strategy could be more expressive. Quantities are encoded as
equivalence ratios; while suitable for many reagents and cata-
lysts, this representation is less appropriate for solvents and
© 2025 The Author(s). Published by the Royal Society of Chemistry
requires post-processing. Similarly, agents are one-hot encoded
and therefore the model lacks any inductive bias as to which
species are more or less functionally similar to each other.
Second, ensuring reaction data are of the highest quality
remains a perennial challenge. Parsing errors have led to
missing or inaccurately represented critical reaction compo-
nents, such asmissing catalysts, ligands, or improperly grouped
work-up conditions. Addressing these data inconsistencies
through improved parsing methods or data curation (as more
recent versions of the Pistachio dataset have implemented) will
be crucial to improve the accuracy of condition models. Lastly,
our current implementation involves chaining four separate
models, requiring enumeration and empirically optimized
ranking. Future work could explore alternative formulations
capable of directly generating complete condition sets.
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