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l design of promiscuous and
selective plastic-binding peptides

Vinamr Jain, †a Michael T. Bergman, †b Carol K. Hall b and Fengqi You *acde

Microplastic pollution is challenging to remediate due to the small size and heterogeneous composition of

microplastic particles. Remediation efforts would benefit from tools that either bind to the many

components of microplastic pollution (promiscuous binding) to facilitate quantitation and capture, or

bind to certain components of pollution (selective binding) to facilitate separation or degradation. Such

a role could be filled by polypeptides, which can bind selectively or promiscuously to biomolecules or

materials. While methods exist to design plastic-binding peptides (PBPs) for a single plastic, the design of

promiscuous plastic-binding peptides has received scant attention, and there are no methods to design

selective plastic-binding peptides. Here, we present a minimalist yet high-performing framework

integrating Long Short-Term Memory (LSTM) models with simulated annealing (SA) to design

promiscuous plastic-binding or selective plastic-binding peptides. Our approach learns sequence–

function relationships governing peptide affinity for different plastics from PepBD data, a biophysical

modeling program. The learned relationship enables rapid design of peptides with tailored binding

properties for arbitrary combinations of plastics. We use our LSTM-SA framework to engineer (1)

promiscuous plastic-binding peptides with affinity for five plastics (polyethylene, polypropylene, PET,

polyvinyl chloride, and nylon), and (2) selective plastic-binding peptides that bind preferentially to one

plastic (polypropylene) over another (PET). Notably, the promiscuous plastic-binding peptides are the

first reported designs intended to bind to nylon and PVC. Molecular dynamics simulations validate that

our designed peptides exhibit the predicted binding behaviors, where high affinity is linked to strong van

der Waals interactions. The framework's modularity can be readily adapted to optimize peptide selectivity

or promiscuity for different combinations of plastics. More broadly, the architecture may be useful for

designing peptides that bind to other solid materials.
Introduction

Microplastic contamination threatens biodiversity, food safety,
human health, and marine environments.1 Synthetic polymers
such as polyethylene terephthalate, polyethylene, and poly-
propylene pervade aquatic ecosystems.2–4 Microplastics can
induce oxidative stress and cytotoxicity in marine organisms,5

affecting their reproductive health and survival.6 Microplastic
ingestion by marine species may lead to the transfer of micro-
plastics through the food chain, potentially leading humans to
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consume microplastics.7 Strategies to remediate microplastic
pollution must be developed to avoid potential harm to the
environment and human health.8–10

Plastic-binding peptides (PBPs) could be useful for reme-
diating microplastic pollution.11 Polypeptides readily adsorb to
micro- and nanometer sized materials,12 suggesting that they
could help detect, capture, and/or biodegrade microplastic
pollution. For example, plastic-binding peptides have been used
to help detect microplastic pollution9,10 and accelerate enzy-
matic degradation of the plastic PET.11 They could also augment
protein-based strategies for water purication.12,13 Polypeptides
are biocompatible, so they themselves will not negatively
impact the environment, could be engineered into the genome
of microorganisms being used to combat microplastic
pollution,13–15 and may detect or capture microplastics in bio-
logical systems. There is also exibility in manufacturing and
applying PBPs, since peptides can be synthesized either chem-
ically or biologically.

Before applying PBPs to microplastic remediation, they must
rst be discovered. Solid-binding peptides are typically found
via high-throughput screening (HTS) methods like phage-
Chem. Sci., 2025, 16, 20823–20832 | 20823
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display.16 Although HTS has found peptides that bind to many
materials,17 it has limitations. HTSmay not discover many high-
affinity solid-binding peptides since it randomly samples
a small fraction of the 20N possible N-residue peptides. HTS
provides little to no insight into the basis of peptide affinity for
a material, meaning it must be repeated if peptides with prop-
erties like binding selectivity or promiscuity are desired.
Computational tools are an appealing alternative to HTS for
discovering PBPs because they can intelligently explore peptide
sequence space and provide insight into the physical basis of
peptide affinity. Many computational tools—molecular dock-
ing, molecular dynamics (MD) simulations, machine learning
(ML), evolutionary algorithms, and generative models—have
been applied to design and evaluate peptides targeting proteins,
small molecules, nanoparticles, and other materials.18–24

However, computational methods face their own challenges
when designing PBPs, the most notable of which is the scarcity
of experimental data. There is a small amount of HTS data for
PBPs that bind to polypropylene and polystyrene,25–28 but there
is no data for other common plastics. Without such data,
machine learning tools that have revolutionized protein
design29,30 and drug design31,32 cannot be transferred to PBP
design.

Recent work has shown how PBPs and other solid-binding
peptides can be designed with computational methods. One
approach is to train ML models on HTS data, which has led to
ML-based classiers that can predict if a peptide binds to
polystyrene33,34 or gold35 and an ML model that generated novel
quartz-binding peptides based on sequence patterns in HTS
data.36 A second approach is to collect a small experimental
dataset of quantitative affinity measurements that subsequently
guides sampling of peptides. Examples include Bayesian opti-
mization of peptide selectivity between gold and silver
surfaces,37 and the design of iron-oxide binding peptides.38 A
third approach is to apply biophysical modeling that pairs
Monte Carlo sampling of peptide sequences and conformations
with molecular mechanics force elds to search for peptides
with strong binding energies to a given material. Examples
include PepBD39 or RosettaSurface.40 A fourth approach, which
we take in this work, is to use biophysical modeling to generate
a dataset that trains ML models that search for PBPs. For
example, Conchello Vendrell et al. developed a hybrid varia-
tional autoencoder plus quantum circuit model which was
trained on PepBD data to identify PET-binding peptides,41

Alshehri et al.42 trained an evidential deep learning model on
PepBD data to discover PBPs with 5–34% stronger affinities
than the best PepBD designs for several plastics, and Dhoriyani
et al. combined biophysical Potts models with quantum
annealing and reinforcement learning to discover plastic-
binding peptides.43

Computational PBP discovery has, however, neglected two
classes of PBPs that could greatly aid microplastic remediation
efforts. The rst class is PBPs that bind to multiple types of
plastic, which we term “promiscuous plastic-binding peptides”.
As microplastic waste is typically composed of several types of
plastic,44,45 promiscuous plastic-binding peptides could more
comprehensively address microplastic waste compared to
20824 | Chem. Sci., 2025, 16, 20823–20832
single-plastic binding peptides. Motivated by the recent design
of PBPs with high affinity for polyethylene and polypropylene,46

we aim in this work to design PBPs that bind to ve types of
plastic. The second class of PBPs is the converse of the rst
class: peptides that bind preferentially to one plastic over
others, or “selective plastic-binding peptides”. Such peptides
could help separate microplastic waste into plastic compo-
nents,47 or help plastic-degrading enzymes48 and microorgan-
isms15 adhere to the particular plastic that they degrade. We
expect that there are promiscuous or selective peptides since
polypeptides can discriminate between plastics or other
materials.49–51

The goal of the present work is to design promiscuous- and
selective plastic-binding peptides. Such peptides cannot be
developed with existing tools. Extending biophysical modeling
methods to design such peptides may be challenging. Quanti-
fying selectivity or promiscuity requires evaluating peptide
affinity for multiple plastics, which likely requires time-
consuming sampling of peptide conformational space since
a peptide may adopt different adsorbed conformations to
different plastics. Past work has suggested that this issue could
be circumvented by altering the optimization function,52,53 but
we show here that ML offers a simple and appealing solution.
Meanwhile, previous ML methods for PBP design were only
intended to optimize affinity for a single plastic. Generally,
multi-objective optimization of solid-binding peptides within
ML remains relatively unexplored, with the exception of a few
studies.37

In this work, we integrate a Long Short-Term Memory
(LSTM) model with simulated annealing (SA) to design
promiscuous- and selective plastic-binding peptides. We train
LSTM models on PepBD biophysical modeling data to predict
peptide affinity scores based on the peptide sequence. The
learned sequence:function relationship guides SA to maxi-
mize either the average affinity for multiple plastics (promis-
cuous plastic-binding peptides) or the affinity difference
between two plastics (selective plastic-binding peptides). We
apply this framework to design promiscuous plastic-binding
peptides that bind to polyethylene (PE), polypropylene (PP),
polyethylene terephthalate (PET), polyvinyl chloride (PVC),
and nylon 6-6 (nylon), representing the rst study to report
peptide affinity to nylon and PVC. We also design selective
plastic-binding peptides that bind with higher affinity to PP
than to PET. The promiscuity or selectivity of the PBPs
designed by the LSTM-SA model are validated in MD simula-
tions. Subsequent analysis sheds light on the basis for selec-
tivity or promiscuity by revealing the role of amino acid
composition and van der Waals interactions in determining
binding behavior. Overall, the low complexity, speed, and
modularity of the LSTM-SA model compares favorably to the
complex ML architectures designed for other peptide design
tasks.54 A complex ML model is not necessary for effective PBP
design. While the focus lies solely only on PBPs in this work,
the LSTM-SA model may be extended to design other solid-
binding peptides, which have many uses in biomaterials and
biotechnologies.16,17
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Results and discussion
An LSTM-SA framework for generating promiscuous plastic-
binding and selective plastic-binding peptides

We present an LSTM-SA model that designs peptides with
promiscuous or selective binding to plastics. Our computa-
tional framework combines Long Short-Term Memory (LSTM)
neural networks55 that predict peptide affinity to plastics based
on the amino acid sequence, and simulated annealing56 (SA) to
generate peptides predicted to have promiscuous- or selective
binding to plastics (Fig. 1A). We summarize key features of the
Fig. 1 Overview of the LSTM-SA framework for generating plastic-
binding peptides. (A) LSTM-SA model architecture. Peptides are
encoded as one-hot vectors and input into a Long Short-Term
Memory (LSTM) regression model that predicts the PepBD affinity
score. The LSTM is trained on PepBD data, then serves as a surrogate
model for affinity score prediction during peptide design. Peptides are
generated using simulated annealing (SA), which begins with a random
amino sequence then iteratively swaps or replaces amino acids.
Changes are accepted or rejected based on the Metropolis criterion to
maximize binding promiscuity or selectivity. (B) Peptide design-vali-
date procedure. The best peptides generated by the LSTM-SA model
undergo MD simulations to evaluate their affinity to all target plastics.
Peptides with the best simulation results may undergo further
computational or experimental validation. (C) R2 values over the vali-
dation dataset during a hyperparameter grid search of LSTM's number
of layers (1 to 3) and hidden dimension (128 to 512). As indicated by the
dashed red box, LSTMwith 2 layers and hidden dimension 512 predicts
the affinity score accurately for all plastics. (D) Scatterplot of affinity
score predictions versus actual scores over the test set using LSTM for
the plastic PVC. The predicted scores almost perfectly align with the
true scores, with an RMSE of 2.2. Performance is similar for the other
plastics (Fig. S4).

© 2025 The Author(s). Published by the Royal Society of Chemistry
framework here, and details can be found in SI Methods. The
LSTM is trained on PepBD data (whose physicochemical prop-
erties are analyzed in Fig. S1 and S2) to predict the PepBD
affinity score for a given plastic using a one-hot encoding of the
peptide's amino acid sequence. A separate LSTM is trained for
each plastic, and example training and validation loss curves
are shown in Fig. S3. The PepBD affinity score57 is a sum of the
peptide adsorption enthalpy and internal peptide energy, where
both terms are comprised of coulombic, Lennard-Jones, and
generalized Born solvent energies. The lower the value of the
PepBD affinity score, the higher the predicted affinity for
a plastic. Peptides are generated by using SA to nd amino acid
sequences with one of two metrics: a high average affinity score
to a set of plastics (promiscuous plastic-binding peptides), or
a large affinity score difference between two plastics (selective
plastic-binding peptides). SA starts with a random amino acid
sequence, randomly mutates the sequence, and then accepts or
rejects the mutation based on the Metropolis criterion and the
change in the metric. Calculation of the metric uses the trained
LSTM score predictors for all plastics considered during design.
Each SA run attempts 21 525 sequence mutations and takes 25
848 seconds (∼7.2 hours) to design promiscuous plastic-
binding, and 3837 seconds (∼1.1 hours) to design selective
plastic-binding peptides (Table 1). Fiy-ve runs were per-
formed for each design goal. Of the top 1000 best-scoring
designed promiscuous or selective plastic-binding peptides,
none were found in the PepBD dataset, indicating the novelty of
the generated peptides. All designed peptides contain 12 resi-
dues, matching the length of the peptides in the PepBD
datasets.

Designed PBPs are validated in MD simulations by calcu-
lating their adsorption free energies (DG) using the MM/GBSA
method58 over an ensemble of simulations (Fig. 1B). The
computational cost of MD simulations and the need to simulate
each peptide with multiple plastics means that only a small
sample size can be evaluated. We evaluated 12 peptides for each
design goal. Peptides were selected for evaluation by iteratively
selecting the best-scoring peptide that differed by at least 3
amino acids from already selected peptides, thus giving
a diverse set of peptides. The peptides with either the best
average DG (promiscuous plastic-binding peptides) or largest
DG difference (selective plastic-binding peptides) in MD simu-
lations are identied as the best designs. We further evaluated
three selective plastic-binding peptides using steered MD59

(SMD) simulations to more rigorously calculate DG.
Two key features distinguish the LSTM-SA framework from

biophysical modeling approaches. First, the LSTM predicts
peptide affinity scores using only the amino acid sequence. The
LSTM aggregates PepBD data from many adsorbed peptide
conformations, implicitly learning how to predict peptide
affinity to plastic using only the amino acid sequence and not
the peptide's adsorbed conformation. Removing modeling of
the peptide conformation accelerates peptide screening and
makes it simple to calculate peptide affinity to multiple plastics
simultaneously. Second, we train a separate LSTM to predict
affinity scores for each plastic, so the different LSTMs can be
used in a plug and play fashion. The combination of the two
Chem. Sci., 2025, 16, 20823–20832 | 20825
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Table 1 Performance evaluation of the LSTM-SA model

Plastic
Total
runtime (s) Novelty

Score: mean � std (minimum)

Top 100 PepBD Top 100 generated

PET 11 191.76 0.990 −61.2 � 1.3 (−63.8) −62.0 � 0.4 (−64.1)
PE 11 189.97 0.987 −55.7 � 1.5 (−59.6) −58.34 � 0.5 (−60.5)
PP 11 199.70 0.995 −48.1 � 1.4 (−52.3) −50.7 � 0.3 (−52.2)
PVC 11 197.80 0.998 −61.2 � 2.3 (−66.3) −66.0 � 0.2 (−66.9)
Nylon 11 194.92 0.986 −69.6 � 1.8 (−74.3) −73.1 � 0.3 (−74.1)
Multi 25 848.28 1.00 N/Aa −50.3 � 0.6 (−51.8)
PP–PET 3837.32 1.00 N/Aa −36.7 � 5.6 (−46.0)

a PepBD has not designed such peptides.
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features makes it straightforward to design promiscuous and
selective peptides. Designing such peptides using biophysical
modeling would face the challenge of determining the stable
adsorbed conformations of a peptide on multiple plastics, since
a peptide will likely adopt a different stable adsorbed confor-
mation (or conformations) on different plastics. The purpose of
the LSTM-SA framework is not to generate peptides with higher
affinity for single plastics than PepBD, but to optimize peptide
affinity for multiple plastics.
LSTM hyperparameter optimization and superior
performance of LSTM over other ML models

We validate the efficacy of the LSTM to predict PepBD affinity
scores across ve plastics: PET, PE, PP, PVC, and nylon. PepBD
Table 2 Performance of different RNN architectures across plastic data

Plastic Dataset size (train/val/test) Model

PET 353 581/44 198/44 198 LSTM
BiLSTM
GRU
RNN
Transformer

PE 572 406/71 551/71 551 LSTM
BiLSTM
GRU
RNN
Transformer

PP 346 789/43 349/43 349 LSTM
BiLSTM
GRU
RNN
Transformer

PVC 166 886/20 861/20 861 LSTM
BiLSTM
GRU
RNN
Transformer

Nylon 114 091/14 261/14 261 LSTM
BiLSTM
GRU
RNN
Transformer

20826 | Chem. Sci., 2025, 16, 20823–20832
data for PE, PET, and PP were taken from previous work,39 while
data for PVC and nylon were generated for this work (see SI for
details). We optimized the LSTM hyperparameters by conduct-
ing a grid search over the number of layers (1–3) and hidden
dimensions (128–512). Performance of each LSTM architecture
was evaluated using the coefficient of determination (R2) value
between the predicted and true affinity scores in a validation
data set (Fig. 1C). Performance is sensitive to both the hyper-
parameters and the plastic. The architecture with 2 layers and
a hidden dimension of 512 (dashed red box in Fig. 1C) appears
optimal: evaluation over multiple test datasets gives an R2 value
greater than 0.95 for all plastics and a root mean square error
(RMSE) of 2 relative to true PepBD affinity scores (Fig. 1D). This
LSTM architecture is used in the remainder of the work.

We compared the performance of the LSTM to other recur-
rent neural networks (RNNs): the Bidirectional LSTM (BiLSTM),
Gated Recurrent Unit (GRU), standard RNN, and Transformer
(Table 2). All models use the optimal hyperparameters (2 layers
and a hidden dimension of 512). Model performance was
quantied via training time, R2 values, and the RMSE of affinity
score predictions to true scores across all plastics. The LSTM
consistently outperformed all alternatives: it had the highest R2

values (0.952 to 0.977) and the lowest RMSE values (1.8–2.2)
across all plastics, and it only required a moderate training
time. BiLSTM and GRU models showed slightly inferior
performance to the LSTM, while the standard RNNs and
Transformer architectures performed much worse. The RNN
may have struggled to capture long-range dependencies in
peptide sequences, while the Transformer may not have had
sets

Training time (s) R2 RMSE

7474 0.9755 2.23
12 037 0.9723 2.37
6586 0.9706 2.45
1713 0.0802 13.69
8782 0.1274 13.34
25 947 0.9517 2.24
15 951 0.9382 2.53
19 317 0.9415 2.46
2051 0.5438 6.87
7268 0.4850 7.30
17 000 0.9640 1.94
10 697 0.9550 2.18
9860 0.9541 2.20
1031 0.5431 6.94
9312 0.3845 8.05
10 253 0.9554 2.23
5552 0.9499 2.36
3113 0.9502 2.35
646 0.0000 10.55
1829 0.2226 9.30
6171 0.9774 1.79
3738 0.9714 2.01
2309 0.9710 2.03
359 0.6779 6.76
810 0.0000 11.91

© 2025 The Author(s). Published by the Royal Society of Chemistry
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sufficient training data to t its large parameter space (Table
S1), a known challenge for models with limited inductive bi-
ases.60,61 Alternatively, its self-attention mechanism may be
suboptimal for learning the sequence:score relationship, espe-
cially when compared to the inherent sequential processing
capabilities of LSTMs.62
Design of promiscuous plastic-binding peptides

Our rst goal was to design promiscuous plastic-binding
peptides (or promiscuous peptides, for short). We envision
that such peptides could be useful for remediating microplastic
pollution. Such waste is oen composed of multiple types of
plastic, so a peptide that binds to all or many components
would simplify remediation efforts. Our particular goal was to
design peptides that bind to ve common plastics: PE, PP, PET,
PVC, and nylon. We designed such peptides by using the LSTM-
SA framework to nd peptides with a high average affinity score
to the ve plastics.

The promiscuous peptides designed by the LSTM-SA model
are predicted to have good affinity for four of the ve plastics. To
provide reference for the average affinity scores to ve plastics,
we predicted the average affinities of every peptide in the PepBD
dataset (∼2.3 million) using the trained LSTM models, then
selected the 1000 peptides with the best average affinity score.
The designed promiscuous peptides have better (i.e., more
negative) average affinity scores than PepBD peptides (Fig. 2A).
Comparing scores for individual plastic shows that the
promiscuous peptides have better predicted affinity than PepBD
Fig. 2 Design and validation of promiscuous plastic-binding peptides.
(A) Comparison of average affinity scores over the five plastics pre-
dicted by the trained LSTMs. Two peptide categories are analyzed,
each containing 1000 peptides: PepBD and promiscuous peptides. (B)
MM/GBSA adsorption free energies (DG) for random, PepBD, and
promiscuous peptides to PE, PP, PET, PVC, and nylon. The PepBD
peptides differ between plastics, while random and promiscuous
peptides were the same for all plastics. Twelve peptides in each
category were evaluated. (C) Average DG over the five plastics for
promiscuous and random peptides. PepBD data is not provided as the
PepBD peptides in panel (B) differed for each plastic. (D) Amino acid
composition of the 100 best promiscuous peptides, and comparison
to the average, maximum, and minimum amino acid frequencies for
the single plastic-binding peptides. (E) Correlation between the van
der Waals (VDW) intermolecular energy and DG over all MD simula-
tions for random, promiscuous, and PepBD peptides for each plastic.

© 2025 The Author(s). Published by the Royal Society of Chemistry
peptides for all plastics but PET (Fig. S5A). To investigate if the
LSTM-SA model generally struggled to design peptides for PET,
we generated a new batch of “single plastic-binding peptides”
for PET, i.e., only affinity for PET was optimized during SA. The
high predicted scores of these designs (Fig. S6A) indicates that
the promiscuous peptides have poor affinity for PET due to the
multi-objective aim of high affinity to ve plastics, not a short-
coming of the LSTM-SA model. A second impact of multi-
objective optimization is that the promiscuous peptides have
notably lower affinity scores to each plastic than the best PepBD
designs for the same plastic (Fig. S5B). It appears that opti-
mizing affinity for multiple plastics reduces affinity to each
individual plastic.

The promiscuous peptides show high affinity to three of the
ve plastics in MD simulations. Fig. 2B compares DG of the
promiscuous peptides, random amino acid sequences
(random), and the best-scoring PepBD peptides for each plastic.
The data for random and PepBD peptides for PE, PP, and PET
were taken from previous work.42 For PE, PP, and PVC, the
promiscuous peptides have equal or better DG than PepBD
peptides and consistently have better DG than random
peptides. A conclusion cannot be made for nylon due to the
large variability in DG. For PET, the promiscuous peptides have
less favorable DG than PepBD peptides and comparable DG as
the random peptides, in agreement with the poor affinity scores
of the designs for PET (Fig. S5). The low affinity of the
promiscuous peptides for PET does not mean the LSTM-SA
model is incapable of generating peptides with high affinity
for PET, since the single plastic-binding peptides for PET (see
previous paragraph) have affinity comparable to the best PepBD
designs (Fig. S6B and S2). The low affinity that the promiscuous
peptides have for PET instead seems to arise from the difficulty
of nding a peptide with high affinity for several plastics, akin
to Fig. 2B. In total, the promiscuous peptides show high affinity
for the plastics (except PET and possibly nylon). This is
demonstrated by comparing the average DG over the ve plas-
tics for promiscuous and random peptides (Fig. 2C). Three
exemplar promiscuous plastic-binding peptides are listed in
Tables 3 and S2 compares DG of the promiscuous and random
peptides for each plastic.

The promiscuous peptides favor amino acids that are
consistently found in the best-scoring peptides designed for
each individual plastic, and their high affinity for the plastics
stems from strong van der Waals interactions. Comparing the
amino acid compositions of promiscuous peptides to that of the
peptides generated by the LSTM-SA model when optimizing
affinity for a single plastic (“single plastic-binding peptides”)
reveals two notable properties (Fig. 2D). First, amino acids that
frequently appear in single plastic-binding peptides for all
plastics also appear frequently in promiscuous peptides, such
as such as arginine (R), methionine (M), and tryptophan (W).
This correlation is strong (r2 = 0.91, p < 10–6). SHAP analysis
proposes that W and R are the dominant contributors to
binding affinity, and suggests that some amino acid positions
in the peptide sequence have more importance than others for
plastic binding (Fig. S7). Second, amino acids that appear with
disparate frequencies in single-plastic designs for different
Chem. Sci., 2025, 16, 20823–20832 | 20827

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc04903b


T
ab

le
3

P
ro
m
is
cu

o
u
s
p
la
st
ic
-b

in
d
in
g
p
e
p
ti
d
e
s
w
it
h
h
ig
h
affi

n
it
y
fo
r
m
u
lt
ip
le

p
la
st
ic
sa

Se
qu

en
ce
/d
es
cr
ip
ti
on

D
G

PE
�

4.
1
kc
al

m
ol

−1
D
G

PP
�

4.
3
kc
al

m
ol

−
1

D
G

PE
T
�

4.
8
kc
al

m
ol

−1
D
G

PV
C
�

5.
1
kc
al

m
ol

−1
D
G

n
yl
on

�
5.
7
kc
al

m
ol

−1
D
G

av
er
ag

e
kc
al

m
ol

−1

A
ve
ra
ge

ra
n
do

m
b

−1
4.
6

−1
1.
6

−1
1.
9

−1
5.
2

−1
8.
7

−1
4.
4

B
es
t
Pe

pB
D
c

−3
6.
8

−3
5.
6

−3
0.
4

−2
5.
7

−3
7.
9

—
A
ve
ra
ge

Pe
pB

D
d

−2
3.
5

−2
0.
3

−1
7.
9

−2
1.
3

−2
8.
0

—
Y
W
Y
E
R
IF
W
R
R
M
W

−3
5.
8

−2
0.
7

−2
0.
6

−3
0.
5

−2
2.
4

−2
6.
0

W
R
W
H
R
M
M
H
LR

M
W

−2
4.
3

−2
5.
3

−7
.5

−2
6.
9

−3
9.
7

−2
4.
7

R
H
R
W
LH

W
FL

R
M
W

−2
7.
7

−2
2.
5

−2
8.
6

−1
9.
4

−2
4.
8

−2
4.
6

a
U
n
ce
rt
ai
n
ty

in
D
G
ca
lc
ul
at
ed

fr
om

th
e
m
ea
n
av
er
ag

e
er
ro
r
be

tw
ee
n
tw

o
ev
al
ua

ti
on

s
of

th
e
12

ra
n
do

m
pe

pt
id
es

pe
rf
or
m
ed

se
pa

ra
te
ly
fo
r
ea
ch

pl
as
ti
c.

b
A
ve
ra
ge

D
G
ou

t
of

al
lr
an

do
m

pe
pt
id
es

in
Fi
g.

2B
.c

Lo
w
es
t
D
G
ou

t
of

al
l
Pe

pB
D

pe
pt
id
es

in
Fi
g.

2B
.d

A
ve
ra
ge

D
G
ou

t
of

al
l
Pe

pB
D

pe
pt
id
es

in
Fi
g.

2B
.

20828 | Chem. Sci., 2025, 16, 20823–20832

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 4
:4

0:
58

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
plastics do not appear frequently in promiscuous peptides.
Avoiding such amino acids likely prevents a peptide from
weakly interacting with one of the target plastics. Examples of
this trend include asparagine (N) and glutamine (Q), although
there are counterexamples like histidine (H) and tyrosine (Y).
Due to the inconsistency of this pattern, there is weak correla-
tion between the frequency difference in single-plastic designs
versus the frequencies in promiscuous designs (r2 = 0.37, p =

0.13). The arrangement of amino acids in the promiscuous
peptides shows no obvious motifs or patterns of polar and non-
polar residues (Fig. S8). Analyzing the interaction energies of
amino acid types over all MD simulations for all peptides
(Fig. S9) indicates that (1) the adsorbed conformation and the
surrounding peptide residues strongly inuence the interaction
since the interaction energy for each amino acid:plastic pair
varies several kcal mol−1 for all amino acids, (2) most amino
acids have the same average interaction energy between the ve
plastics, with R, H, N, and Q being notable deviations, and (3)
hydrophobic residues interact favorably with plastic, while
hydrophilic or charged residues have neutral or unfavorable
interaction energies. Analyzing the promiscuous peptides in
Table 3 shows that the residues that form strong interactions
differ between plastics (Fig. S10), suggesting that the amino
acids that drive adsorption differ between plastics. This
conclusion should be taken with caution given the simplica-
tions of MM/GBSA calculations. In MD simulations, DG strongly
correlates with van der Waals interactions for all plastics
(Fig. 2E), indicating that this interaction is key for peptide
affinity. This aligns with the enrichment of R, M, and W in the
promiscuous peptides, since the bulky side chains of these
amino acids can form strong van der Waals interactions with
the plastic. Given the different chemistries of the ve plastics
(PE and PP are purely aliphatic, while PET, nylon, and PVC
contain polar and/or aromatic groups), we also explored the role
of electrostatic and solvent energies. While the contribution of
these two energies to peptide adsorption differs dramatically
among the ve plastics (Fig. S11), DG does not correlate with
either energy for any plastic. This occurs because the sum of the
two terms is roughly constant due to a strong negative correla-
tion between them (Fig. S12). This does not necessarily imply
that electrostatic interactions do not matter; instead, they likely
help dene the adsorbed peptide conformations that have
strong van der Waals interactions while avoiding unfavorable
electrostatic interactions.
Design of selective plastic-binding peptides

Our second goal was to design selective plastic-binding
peptides, which could help discriminate between plastics and
separate them in microplastic pollution. The specic goal was
to design peptides that bind selectively to PP over PET (or PP-
selective peptides, for short). These two plastics were chosen
since their different chemistries make them a suitable test case
to determine the feasibility of designing selective plastic-
binding peptides. PP-selective peptides were designed by opti-
mizing the predicted affinity score difference between PP and
PET during SA.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Design and evaluation of peptides that bind preferentially to
polypropylene over PET. (A) Distributions of affinity scores for PP and
PET, and the score difference between PP and PET. Results are shown
for PP-selective and PepBD peptides, with each set containing 1000
peptides. (B) Amino acid composition of PP-selective designs and
single plastic-binding designs for PP and PET. Data for each category
was collected from the 1000 peptides with the best affinity scores. (C)
Correlation between the ratio of amino acid frequencies in single-
plastic designs for PP and PET versus the amino acid frequencies in the
PP-selective designs. Ratios are calculated per the values in panel (B),
dividing the value for PP by the value for PET. Each point corresponds
to a different amino acid. (D) DG distribution of PepBD, PP-selective,
and random peptides for PP and PET. Twelve peptides were tested in
each category. PepBD peptides differ for each plastic. (E) DG from
steered MD for PP-selective and random peptides. Black dashed lines
indicate the average DG of four PepBD designs for PP and PET.
Peptides affinity is classified as high if DG lies left of/below the hori-
zontal/vertical black dashed lines. This divides the plane into four
areas: selectivity for PP (high affinity for PP, low affinity for PET),
selectivity for PET (low affinity for PP, high affinity for PET), high affinity
(high affinity for PP and PET), and low affinity (low affinity for PP and
PET).
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The LSTM-SA model was able to identify peptides that have
large, predicted selectivity for PP, primarily by reducing affinity
for PET rather than by increasing affinity for PP. The 1000 best
PP-selective peptides have a larger affinity difference between
Table 4 Example peptides with selectivity for polypropylene over PET

Sequence/description

Equilibrium MD resultsa

DG
PP � 4.3 kcal mol−1

DG
PET � 4.8 kcal mol−1

Average random −11.6 −11.9
Average PepBD −20.3 −17.9
NDLMFRRGLIFW
(PP-selective)

−21.4 −9.2

FWWQQIGGNRQF
(PP-selective)

−18.3 −8.9

SNMMFRRGLIHW
(PP-selective)

−17.8 −9.3

TAFMFRRGLIFW
(PP-selective)

−21.2 −11.7

a Uncertainty in DG calculated from the mean average error between two
plastic.

© 2025 The Author(s). Published by the Royal Society of Chemistry
PP and PET than any PepBD peptides (Fig. 3A). Inspecting the
affinity scores for either PP or PET shows that the PP-selective
and PepBD peptides have similar predicted affinity for PP, but
that the PP-selective peptides have much weaker predicted
affinity for PET.

The amino acid composition of the PP-selective peptides
differs notably from those of the single-plastic and promiscuous
designs. The PP-selective peptides use low-mass amino acids
(e.g. serine (S), threonine (T), glycine (G), and alanine (A)) at
a much higher frequency (Fig. 3B). These amino acids were also
uncommon in previous designs by PepBD39 and other ML
models.41,42 Interestingly, SHAP analysis does not assign high
importance to these amino acids, and instead assigns high
importance to W and R (Fig. S7). We hypothesize that these low-
mass residues allow W and R to interact more favorably with PP
than PET. We also observe that amino acids that appear more
oen in single-plastic designs for PP than PET appear
frequently in PP-selective peptides (Fig. 3C, r2 = 0.38, p =

0.0066). Such amino acids presumably interact more favorably
with PP than PET, so this is a logical strategy for optimizing
selectivity for PP.

The LSTM-SA model found multiple solutions for optimizing
predicted selectivity for PP. Revisiting Fig. 3A, the unimodal
distribution of affinity score differences between PP and PET
contains a bimodal distribution of affinity scores for the indi-
vidual plastics. Peptides in the two modes have different amino
acid compositions and distinct arrangements of the amino
acids (Fig. S13). Thus, these two modes appear to be distinct
solutions for optimizing PP-selectivity. A third solution was
inadvertently found when optimizing promiscuity. The
promiscuous peptides have a large DG difference between PP
and PET (Fig. 2B), and their amino acid composition differs
from the PP-selective peptides' composition (Fig. S14).

MD simulations support the premise that the designed PP-
selective peptides prefer PP over PET. Comparing DG of PP-
selective, PepBD, and random peptides for the plastic PP
(Fig. 3D) shows the PP-selective peptides have equal affinity as
Steered MD results

DG PP − DG
PET kcal mol−1

DG
PP kcal mol−1

DG
PET kcal mol−1

DG PP − DG
PET kcal mol−1

0.3 −14.4 −14.9 −0.5
N/A −25.1 −28.4 N/A
−12.2 −15.2 −14.1 −1.1

−9.5 −12.7 −21.0 8.3

−8.6 −21.3 −22.8 1.5

−9.5 −27.9 −23.4 −4.5

evaluations of the 12 random peptides performed separately for each

Chem. Sci., 2025, 16, 20823–20832 | 20829
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PepBD peptides and greater affinity than random peptides. The
converse is true for PET:PP-selective peptides have worse affinity
than PepBD peptides and equivalent affinity as random
peptides. These results align with general selectivity for PP over
PET, and four peptides with the largest selectivity are listed in
Table 4. Analyzing the energetic contributions to DG shows that
selectivity for PP arises not from a stronger intermolecular
interaction energy (the sum of van der Waals, electrostatic, and
GBSA solvation energies), but rather from a smaller reduction in
conformational entropy upon adsorbing (Fig. S15). This is re-
ected by peptide residues not consistently forming stronger
intermolecular interactions with PP than PET (Fig. S16). The
conformational entropy was calculated using harmonic normal
mode analysis,63 a large simplication for evaluating the
conformational entropy of exible molecules like peptides.
Thus, we performed an additional evaluation of the four
peptides in Table 4 using steeredMD (see SI for details). Peptide
affinity may be categorized as high or low by referencing the
average DG of four PepBD designs for each plastic (see SI for
sequences). One of the four PP-selective designs shows selec-
tivity for PP (Fig. 3E). This peptide is bolded in Table 4.
Comparing the distances of each amino acid of this design and
either the PP or PET surface at the beginning of each SMD
simulation (Fig. S17) indicates thatM4, L9, I10, andW12may be
responsible for PP-selectivity, as they are more likely to be
proximal to a PP surface than a PET surface. Random peptides
may have sizable DG differences between PP and PET, but they
all lie in the low affinity range and are thus not ideal for
microplastic remediation.

Conclusion

We present an LSTM-SA model that designs peptides with
promiscuous or selective binding to plastics. The LSTM is
trained on biophysical data generated by PepBD to predict
peptide affinity for one of ve different plastics: PE, PP, PET,
PVC, and nylon. Affinity predictions require only the peptide
amino acid sequence, a feature shared by other recent ML
models trained on PepBD data.41,42 This contrasts with PepBD
and other biophysical modeling methods, which also require
the peptide conformation when calculating peptide affinity.
Since only sequence information is needed, the affinity of
a given peptide for multiple plastics can be easily calculated
simultaneously. This enables the optimization of peptide
promiscuity or selectivity using SA. The resulting designs have
signicantly greater predicted promiscuity or selectivity than
any of the millions of peptides in the PepBD dataset and are
validated in MD simulations.

This work makes two practical contributions towards the
development of peptide-based tools for microplastic remedia-
tion. First, the promiscuous plastic-binding peptides may
simplify capture or detection of microplastic pollution. While
we had previously discovered single plastic-binding peptides,
remediating the multiple types of plastic typically found in
microplastic pollution is more straightforward when using
a promiscuous plastic-binding peptide. Second, the selective
plastic-binding peptides could help detect specic plastics in
20830 | Chem. Sci., 2025, 16, 20823–20832
microplastic pollution, separate microplastics into its compo-
nents, or help plastic-degrading enzymes adsorb to the plastic
they degrade. As noted in the Introduction, these peptides could
augment existing methods for microplastic remediation.

This work explores howmuch peptide affinity varies between
plastics. While the ve plastics considered have different
chemistries, the impact of these differences on peptide affinity
is unclear. Do plastics differ sufficiently such that a peptide can
distinguish between them? Our best PP-selective design (Table
4, bolded entry) and the sizable affinity differences shown by
random peptides between PP and PET (Fig. 3E) suggests that
this may be possible. Conversely, can a peptide bind strongly to
several plastics despite their different chemistries? Our
promiscuous plastic-binding peptides suggests that the answer
is yes. The existence of both promiscuous and selective plastic-
peptides reects that the driving forces for adsorption may
differ between peptides.

MD data supporting the promiscuity and selectivity of the
peptides (Fig. 2 and 3) should be viewed with caution. For
equilibrium MD simulations, calculation of DG relies on the
generalized Born solvent model which treats the role of solvent
approximately, and on normal mode analysis which has known
limitations for evaluating conformational entropy for exible
biomolecules.57 The steered MD simulations build condence
in the best PP-selective design, but additional evaluation could
still be useful. We did not perform SMD simulations for the
promiscuous peptides due to the large computational cost –

they require 2.5-fold more computer time as peptide affinity
must be evaluated for ve plastics rather than two. The best
designs in Tables 3 and 4 could be evaluated rst. Possible
simulation methods for more rigorous free energy calculations
include metadynamics64 or umbrella sampling.65 Experimental
testing will be essential, especially for determining the degree of
selectivity needed for a peptide to adsorb specically to a given
plastic, and the degree of promiscuity needed for a peptide to
bind strongly to all types of plastic. We also note that our goal is
not to perfectly predict DG, but instead to use computational
predictions to minimize the effort of experimental validation.
For example, even though not all design in Fig. 3E showed PP-
selectivity, only 4 peptides needed to be tested before nding
a successful design.

Our LSTM-SA model (Fig. 1A) can be extended to other
peptide design goals. While we do not expect the model to be
impactful in areas where ML has been developed extensively,
such as peptide-protein binding66 or antimicrobial peptides,67

the model could be useful for the general problem of discov-
ering solid-binding peptides. Such peptides have many uses in
biotechnology and medicine.16,17 De novo design of solid-
binding peptides with ML relies on phage display data.33,35

Replacing qualitative phage display results with biophysical
modeling data could give more useful and interpretable ML
models. This approach will only work if peptide adsorption can
be modeled accurately, which is not an easy task.68,69 Fortu-
nately, there have been continual improvements in the past two
decades in molecular force elds and modeling of solid inter-
faces, suggesting that this avenue of research could be fruitful.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Abbreviations
PBP
© 2025 The
Plastic-binding peptides

PE
 Polyethylene

PP
 Polypropylene

PET
 Polyethylene terephthalate

PVC
 Polyvinyl chloride

nylon
 Nylon 6-6

LSTM
 Long short-term memory network

MD
 Molecular dynamics

SA
 Simulated annealing

HTS
 High throughput screening

MM/GBSA
 Molecular mechanics/generalized Born surface area
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