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In this work we describe the development of a chemistry-based encoding approach utilizing nucleophilicity
to perform Bayesian optimization campaigns. A fully automated slug continuous flow platform leveraging
a liquid handler to investigate categorical variables is used for the self-optimization of organic reactions.
We compared our chemistry-based approach to a chemistry-agnostic label-encoding approach. The use
of encoding a physical property allowed the optimization to proceed rapidly and more successfully than
existing methods, identifying not only the correct discrete parameter in the system, but also favorable
conditions at the same time. Reactions were analyzed using two complementary process analytical
technologies (PATSs), Fourier-transform infrared spectroscopy (FT-IR) and ultra high performance liquid
chromatography (UHPLC). This approach was applied to two different nucleophile-catalyzed amide
coupling reactions, for single and multi-objective optimization. A long run was performed as
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1 Introduction

Chemical reaction optimization is a complex and important
challenge in organic chemistry." Reaction parameters greatly
influence the outcome of chemical reactions. Moreover, reac-
tion parameters often show interdependencies to each other in
often complex and non-linear fashions. Reaction parameters
can be continuous (numerical), for example temperature,
reaction time and reagent equivalents. Alternatively, parameters
can be discrete (categorial) parameters, such as the identity of
solvent, base, ligand or catalyst. Reaction optimization through
the investigation of one variable at a time (OVAT) is still the
most common optimization approach used in organic chem-
istry. However, this approach is inefficient and can lead to
making incorrect conclusions, as it can fail to fully capture
interaction effects between parameters. Design of Experiments
(DoE) is also exploited in chemical development to understand
the influence of the input parameters on the process perfor-
mance through the generation of a statistical design from an
experimental design.>® More recently, automated self-driving
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a comparison to the slug flow operation with the liquid handler-based slug flow reactor.

systems based on optimization algorithms have been reported
for the identification of optimal operating conditions.*”
However, in model-based optimization approaches, it is diffi-
cult to investigate categorical parameters, as either a distinct
model for each categorical parameter is constructed or the
categorical parameter is assigned a numeric value on a scale,
often also involving the use of principal component analysis
(PCA).%°

The main problem with many of the established optimiza-
tion approaches used is that they tend to be relatively complex
and challenging to implement, because they tend to require
specialized expertise in machine learning (ML) techniques.
There are several examples of published deep-learning models
that use reaction data from large reaction databases,'*** but
this approach has several drawbacks. The first drawback is
complexity, as it is not easy to construct such models for
a reaction of interest. The second drawback is the data avail-
ability, even with access to large amounts of unprocessed
reaction data (such as the corpus of Scifinder, Reaxys and the
Open Reaction Database'®). A further issue with utilizing pub-
lished reaction data include the inherent positive bias present
in the data, since published reaction data is often skewed
towards more desired outcomes. Furthermore, there can be
issues with reproducibility across different datasets. Reaction
data are collected and reported in a non-standardized fashion
and are also biased towards specific, common substrates and
reactions, which complicates model building and the potential
model predictive power. Another approach involves the use of
PCA for dimensionality reduction.® More complex approaches
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also exist, involving techniques derived from quantum
mechanical (QM) calculations to develop reactivity models,****
but they can be challenging to implement for non-experts, both
in terms of the QM simulation studies and the ML model
building.

In recent years, several automated chemistry platforms have
been reported as an enabling technology for screening and
optimization of reactions both in a batch and flow context.>*¢>*
High-throughput experimentation (HTE) has been adopted to
rapidly screen large numbers of categorical parameters in
organic synthesis,*>** this is usually done by first screening the
categorical parameters, then drawing conclusions about their
impact. However, it is typically challenging to implement inte-
grated process analytical technology (PAT) in such a system in
an efficient manner. HTE also suffers from less precise control
of process parameters, such as temperature, pressure and
reaction times, which makes it more difficult to apply for
a robust process optimization. In a flow chemistry system, the
problems are the opposite. It is more amenable for the imple-
mentation of PAT,* but varying a categorical parameter is very
challenging, due to having fixed feed solutions which are typi-
cally difficult to interchange and prepare “on-the-fly”. Another
issue in investigating categorical parameters in flow is the risk
of reaction clogging due to unexpected solid formation. The
most common approach to performing closed-loop self-
optimization incorporating categorical variables is by using
a liquid handler and a slug/droplet flow regime.*** In this
method the reactants are separated from the solvent stream
using an immiscible medium, such as inert gas or per-
fluorinated alkanes. The liquid handler is used to prepare the
feed mixture and inject into the flow system for each
experiment.

Desimpel et al. published an example in which a slug flow
platform uses a reactive gas as a separator, utilizing O, gas both
as a spacer to separate their reaction slug from the solvent
stream and as a reactant in a photochemical synthesis of
acetophenone.* In this example the authors performed closed-
loop self-optimization on this complex reaction system using
online UHPLC as PAT and the MVMOO algorithm.**

Baumgartner et al. developed a droplet flow system in which
a liquid handler prepares a reaction droplet of only 15 pL into
a gas-filled heated oscillating flow reactor.** Their system
consists of a U-shaped tube, in which the reaction mixture is
pushed back and forth by alternating the gas pressure inlet,
until the required residence time is reached. Using this plat-
form they addressed problems such as screening ligands and
bases in Pd-catalyzed cross-coupling reactions,”® both using
traditional screening methods and more complex optimization
techniques such as their MINLP2 algorithm.*> The MINLP2
algorithm uses an iterative response-surface method to perform
global optimization of the design space. This algorithm can
natively handle categorical variables and can automatically
refine to reject poorly performing ligands, but it is relatively
expensive in terms of iterations (60 experiments), as it relies on
the construction and refinement of a linear response-surface
model.
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Another approach currently used in closed-loop self-
optimization technique is Bayesian optimization (BO).** BO is
useful in optimizing chemical reactions, because it can effi-
ciently optimize expensive-to-evaluate functions, including
having applications in robotics, A/B testing and neural network
hyperparameter tuning.** BO strategies treat the target function
as a black box. Using evaluations of the target function, a cheap-
to-evaluate surrogate model is fitted. This model is then used to
decide the next evaluation of the target function based on
certain criteria, such as the best expected result.** BO has been
utilized to solve many chemical problems such as the optimi-
zation of chemical reaction conditions for single step**** and
telescoped reactions,****” extraction processes*® and HPLC
method development.*

BO is very suitable for optimization problems that mainly
consist of continuous parameters, but optimization problems
in chemistry also involve many categorical variables. These
categorical variables are often of crucial importance, but due to
the challenges in implementing them into self-optimization
methods these are often overlooked or poorly addressed in
automated optimization studies.

Another key issue in mathematical approaches such as self-
optimization is that it requires all variables to be represented in
a numerical fashion. There are two main approaches to
resolving this problem. Either a pre-optimization process is
necessary to decide and fix the categorical parameters in
advance (removing them from the problem posed to the algo-
rithm) or utilizing an encoding process (Fig. 1) to handle cate-
gorical variables, converting them from discrete entities to
numerical values. The most common approach in chemistry
thus far has been one-hot encoding (OHE).>***** Using this
approach, the choice of categorical variable is represented as
a column/row vector of an identity matrix. This simple approach
separates the different choices in an orthogonal fashion but
also increases the number of dimensions by the number of
choices. Another approach to encoding categorical variables is
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Fig. 1 Comparison of one-hot encoding (a), label encoding (b) and

this work (c) which encodes reagents based on literature-derived
physical chemistry parameters.
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label encoding." In this approach, the individual variables are
assigned a numerical label and selected based on that identi-
fying number. This strategy avoids the increase in dimension-
ality caused by OHE, but simultaneously introduces new, often
arbitrary relationships between the different choices. One
problem with both encoding methods is that they do not
account for any intrinsic chemical property of the categorical
parameters themselves. Other more advanced approaches used
in chemistry are approaches based on structural molecular
descriptors** and DFT-based featurization,* but as discussed
previously, such approaches suffer from high complexity and
have challenges associated with obtaining and handling the
data, as they often require domain knowledge of theoretical
chemistry and statistical methods. In addition, despite this
added complexity, in some reported examples these highly-
complex encoding methods are outperformed by OHE.***°

In this work we propose a simple chemistry-based encoding
method: by relating widely available physical chemistry based
descriptor to reaction performance. There are many available
descriptors, such as pkK, of reactants, solvent polarity or ligand
cone angle. In this work we relate Mayr's nucleophilicity
parameter (N) to the reactivity.** This parameter is then used to
encode categorical variables for use in self-optimization and
model-building. These parameters directly relate to chemical
reactivity via reaction kinetics, unlike solely data-driven and
empirical approaches. This strategy will help to accelerate
reaction optimization, particularly when dealing with many
categorical variables and offers a good compromise between the
benefits of automated self-optimization, even at an early stage
with a low experimental budget available.

2 Results and discussion

2.1. Preliminary simulation studies

To test the viability of this approach we performed in silico
optimization to compare this chemical encoding approach to
label encoding and one hot encoding. To this end, a simulation
strategy was developed (Fig. 2a), which was based on a previ-
ously reported kinetic model of the 1,5,7-triazabicyclo[4.4.0]dec-
5-en (TBD)-catalysed amidation of methyl nicotinate (1) with
benzylamine.*> This model was modified to allow for the
simulation of different catalyst types, where their relative reac-
tivity in the model was derived from the nucleophilicity, which
is available from Mayr's Database of Reactivity Parameters.*®
Details on the modified kinetic model can be found in the SI.
The kinetic model was used to simulate a series of Bayesian
optimization campaigns using the BO library Summit,*” varying
five continuous parameters (temperature (10-200 °C), reaction
time (0.5-5 min), concentration of 1 (0.1-0.3 M), amine 2
equivalents (0.5-1.5 eq.) and equivalents of catalyst (0.05-5 eq.))
and one categorical parameter (catalyst type). Three different
encoding methods (OHE, label encoding and chemistry-based
encoding) were compared by running simulated optimization
campaigns using the Thompson-sampling efficient multi-
objective optimization (TS-EMO) algorithm.** The TS-EMO
optimization algorithm utilizes a process known as Thomp-
son sampling in its acquisition function. Thompson sampling
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Fig. 2 (a) Setup of simulated optimization study to investigate viability
of approach (b) comparison of different encoding methods for 3 and 6
simulated catalysts.

is a heuristic technique that involves randomly sampling the
posterior distribution of the underlying Gaussian Process (GP)
model. This random sampling enables the algorithm to balance
exploration and exploitation. In TS-EMO specifically, there also
exist considerations for the multi-objective optimization case in
the form of sampling a large number of functions from the
underlying GP model and refining that sample using a genetic
algorithm (NSGAD-II).

Six different simulated catalysts were considered in the first
simulation study (Fig. 2b). In the case of the label encoding
case, the order or the catalysts was randomized, to avoid
providing an implied order of reactivity to the optimization
algorithm. The experimental budget was fixed at 50 iterations.
In the case with only 3 catalysts to choose from both of the
dimensionally reduced strategies (label encoding and nucleo-
philicity encoding) improve at a similar rate, converging
towards an optimum after 30 to 40 iterations. OHE performs
poorer on average, with high yielding results appearing less
consistently throughout the optimization process, never
converging to any specific value. This result suggests that the
dimensionality reduction offered by label-based approaches has
a favourable impact on the optimization process, even if the
number of categorical choices is relatively low. Next, the TS-
EMO algorithm was used to optimize a larger set of six simu-
lated catalysts. In this example, a significant difference in
performance between the encoding methods could be observed,
with the chemistry-based encoding outperforming both label
encoding and OHE. Label encoding improved at a slower rate.
The TSEMO algorithm does not natively handle categorical
variables and discontinuous search-spaces well, as shown in
Fig. 2b with the one-hot encoding example, therefore a different
encoding method needed to be used. Label encoding is imple-
mented using a Euclidian distance approach, the closest label
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to the algorithm suggestion is selected and used. The chemical
encoding uses a similar distance-based labelling approach, but
the order and distance between the discrete variables is deter-
mined by the relevant chemical property of the catalysts.

These studies were also repeated utilizing the simpler single-
objective Bayesian optimization (SOBO) algorithm provided in
the Summit package. This algorithm utilizes a different acqui-
sition function, expected improvement (EI). EI considers the
confidence bounds of the Gaussian process model, choosing
points based on the biggest numerical improvement, while
balancing it with the probability of improvement as well. This
algorithm is much more exploitation focused than TS-EMO.
This characteristic is generally a quality we consider to be less
desirable in chemical reaction optimization, as seeing many
different conditions is more interesting than refining the same
set of conditions, especially with a low experimental budget.
The performance of this algorithm in the in silico study is
similar between label encoding and chemistry-based encoding,
but still significantly worse for the OHE case, more information
on the SOBO simulations can be found in the SI.

2.2. Preliminary batch experiments

A model reaction was then selected to demonstrate the
chemistry-encoding method experimentally (Fig. 4a), the cata-
lytic amidation of ethyl cyanoacetate (4) using piperidine (5).
This reaction also serves as a model for the synthesis of a frag-
ment in tofacitinib (a JAK inhibitor), an active pharmaceutical
ingredient (API).* Initially, preliminary batch experiments were
carried out with a fixed set of reaction conditions (1 eq. piper-
idine (5), 0.25 M ethyl cyanoacetate (4), 0.2 equiv. catalyst, 30
minutes of reaction time and a temperature of 70 °C), varying
only the nucleophilic catalyst to determine the impact of the
catalyst on the reaction outcome. We deliberately selected
values with the intention of not giving very low or high yields to
enable the different catalysts to be compared. OTG was not
present in the nucleophilicity database, therefore the nucleo-
philicity parameter was estimated based on linear regression
from the preliminary experiments (Fig. 4c). The results were
consistent with the expectation that higher nucleophilicity
provides higher yields in this reaction, TBD being the most
effective catalyst in this reaction, obtaining a yield of 47%
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(Fig. 4b). 1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU) and the
other guanidine bases performed slightly poorer (DBU: 35%,
OTG: 32% and TMG: 20%) and pyridine was the least active
catalyst of the set. A strong correlation (Fig. 4c) between the
performance of the different bases and their respective nucle-
ophilicity could be observed. The promising results of the
preliminary batch experiments made us confident to further
develop our slug flow platform for the self-optimization
campaigns containing a categorical variable.

2.3. Platform and approach

To carry out automated self-optimization experiments a slug
flow platform was developed, comprising of a liquid handler
(Fig. 3) to prepare the input feed. The liquid handler takes
specified quantities from different vials containing the indi-
vidual reaction components using a syringe. This setup allows
for the reactants to be varied when preparing the reaction
mixture, enabling reaction optimization involving categorical
variables. This reactor platform was adapted based on one
previously reported by our group.”® In this previous setup,
a number of HPLC pumps and an automated VICI valve were
used to form the feed for the reaction, this enabled the inves-
tigation of kinetics and rapid reactions that proceed at room
temperature. However, it was not possible to investigate cate-
gorical variables with this system. Thus, we adapted this system
incorporating a liquid-handler to form reaction slugs which
does allow for the variation of categorical variables. Reaction
slugs formed by the liquid handler have a volume of 300 pL and
consist of the reactants at the target concentrations, diluted by
solvent, as well as inert gas (N,) bubbles at the edges. By sepa-
rating the reaction slug from the carrier solvent using inert gas,
dilution of the reaction mixture by the carrier solvent is avoided.

This slug flow approach enables reactions to be performed
faster, while consuming only a relatively small amount of
material. The reaction slug simulates a steady-state flow
experiment, while only consuming a tenth of the material
required to perform the reactions. After preparing the input
feed by aspirating the desired amounts from each vial of
interest, the reaction mixture is injected into a sample loop and
introduced into the reactor (3.15 mL) using a six-port sample
injector and a carrier solvent stream (matching the reaction
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Fig. 3 Schematic of the flow setup used in the self-optimization studies, consisting of liquid handler, injection system, a heated coil reactor and
a separate flow system is used for analytics. All devices are controlled using the computer and analytical data is processed automatically to enable

closed-loop optimization.
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Fig. 4 (a) Conditions of preliminary batch reactions (b) yield and

nucleophilicity of preliminary batch reactions (nucleophilicity of OTG
estimated based on reaction results) (c) plot of nucleophilicity against
observed yield for the preliminary batch experiments.

solvent). The mixture is then flowed through the reactor at the
predetermined residence time. After the heated reaction zone,
the mixture is flowed into a sample loop with an additional six-
port valve, separating the reaction section from a modular
analysis section containing PAT. Two PATs were utilized in
tandem, FTIR to assess the consistency and reproducibility of
the slug flow system and a calibrated UHPLC to determine the
concentrations of the compounds of interest. The results of the
slug flow system are highly reproducible (total experimental
error < 5%). More information on the setup, analytics and
reproducibility can be found in the supporting information.
The system was utilized in a series of self-optimization
campaigns.

2.4. Model reaction

Finding this strong correlation between nucleophilicity and
reaction outcome, a set of self-optimization campaigns was
carried out with the aim of comparing the label encoding
approach to the chemistry-based encoding approach. The
algorithm selected was TS-EMO to allow for wider exploration of
the design space. The parameters varied (Fig. 5a) were: piperi-
dine (5) equivalents (1.0-2.0 eq.), ethyl cyanoacetate (4)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Reaction and optimization ranges for self-optimization
campaign. (b) List of nucleophilic catalysts used in this optimization
campaign. (c) Results of self-optimization using label encoding. Most
selected catalysts do not possess high nucleophilicity and results are
on average lower. (d) Results of self-optimization using nucleophilicity
to encode the catalysts, showing rapid improvement in results.

concentration (0.1-0.25 M), temperature (20-100 °C), reaction
time (2-12 min), catalyst equivalents (0.2-1.2 eq.) and catalyst
type (6 options). With the exception of triethylamine (TEA),
which was added as a 6™ catalyst with low expected reactivity,
the catalysts (Fig. 5b) are identical to the set of bases used in the
preliminary batch study. These optimization boundaries were
selected to observe a range of results for conversion and yield to
emphasize the impact of base selection in the optimization
process. The chosen optimization parameters were: 12 initial
space-filling experiments (twice the number of variables and
two per base) and 10 iterations of the optimization algorithm.

In the chemistry-based encoding approach (Fig. 5d), the base
favoured by the optimization algorithm was TBD with an average
yield of 40%. While it can appear that the results of the label-
encoding based optimization (Fig. 5c) were comparable, it is
necessary to recognize that the algorithm primarily focussed on
optimizing the second-most impactful variable, reaction time,
while selecting bases near-randomly. All non-TBD results above
30% yield in this campaign were near the maximum possible
reaction time with high equivalents of catalyst and 5. Another key
factor is the speed at which the algorithms chose their relative
bases, with the chemistry-informed approach primarily choosing
TBD after the second experiment, while label encoding took until
the 10 experiment to suggest the use of TBD.
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This proof-of-concept study clearly demonstrated the benefit
of chemical encoding to assist the optimization algorithm in
selecting the correct catalyst in this chemical transformation.

2.5. API example

To investigate and demonstrate the chemistry-encoding
method further, an API example was investigated. Bersacapa-
vir is an experimental drug for the treatment of hepatitis B.
Medina et al. have developed batch processes for the synthesis
of this API using a haloform amidation reaction, using both
TBD and DBU.* This API intermediate can be synthesized using
trichloromethyl ketone 7 and aniline 8 in the presence of
a nucleophilic catalyst/reagent, releasing chloroform as
a leaving group. In the initial investigation developing a batch
process for the synthesis of 9 by Medina et al. the nucleophi-
licity of several potential reagents was considered and a strong
correlation between the nucleophilicity and the reaction
outcome was observed, making this reaction an ideal candidate
to serve as a complex real-life example for the approach.

The reaction was optimized with respect to yield as an
objective using the TS-EMO algorithm within the slug flow
platform, comparing a label encoding approach and a chem-
istry-based encoding approach. The parameters varied
(Fig. 6a) for this example were: concentration of trichloromethyl
ketone 7 (0.1-0.2 M), equivalents of aniline 8 (0.5-1.5 eq.),
catalyst equivalents (0.2-2.5 eq.), temperature (30-120 °C),
reaction time (2-14 min) and identity of the catalysts (6
options), a total of 5 continuous variables and one categorical
variable, for a challenging optimization problem. For this
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0.2 - 2.5 equiv.
nucleophilic
o catalyst A o]
N\ ccly N 30-120°C \ N
0.1-02M 0.5-1.5 equiv. 2=44min
b) Label encoding for self-optimization High N
100
Initial Experiments
g ™ n M
< Y TBD
e} 50 . [/N
2 N
> sl 2N R ﬁ \ ? N
v R ] b DBN
NEVELEX AR I8 . G
0 5 10 15 20 25
N
Iterations \19 bBU
°)  ch | based ding for self
P ] P |
100 “\N\") MeTBD
Initial Experiments
_ 75 ~
& ‘0’ 13.6° Iy THTMG
T 50 4 P N
o ' ¢ T L]
2 ' h /IR
> 254 Yy 8! N
) W \J 129 (Y] Pyridine
0 - A & Z
5 10 15 20 25
Low N
Iterations
Fig. 6 (a) Boundaries of API self-optimization example. (b) Results of

label-encoding self-optimization campaign. Low yields are observed
with all non-active nucleophilic catalysts and even after a 50% increase
in iterations, the optimization could not identify the correct nucleo-
philic catalyst. (c) Nucleophilicity-based encoding self-optimization
campaign. The correct catalyst is identified rapidly and yields are
improved consistently.

Chem. Sci.

View Article Online

Edge Article

reason, several of the catalysts were changed to more reactive
compounds. TMG was replaced with TbTMG, as literature
suggested that acylation of the base was the predominant
reaction. OTG was replaced with MeTBD due to low amounts of
product formation in the preliminary study. TEA was removed
in favour of DBN, a compound similar in structure and elec-
tronics to DBU.

In this example, the label-encoded optimization campaign's
experimental budget was increased by 50%. Even with this
increase in iterations, the label-encoding approach was unable
to identify the “correct” catalysts among the selection (Fig. 6b).
As choice of catalyst is very important in this reaction, the label-
encoded optimization campaign only obtained moderate yields,
with no result above 50%. The disordered label encoding
approach (Fig. 6b) struggled greatly and consequentially also
struggled with obtaining good yields, finding no yield above
50%. TBD was only chosen once after 21 experiments; this
experiment was the highest yielding result in the label-encoding
based campaign at 40%. TbTMG performed significantly better
than expected. It was chosen several times throughout the
campaign, with an average yield of 28%, the highest among the
non-TBD bases in this campaign. We hypothesize that this is
due to the bulky substituent on the iminic nitrogen destabiliz-
ing the intermediate, leading to the TbTMG being eliminated
more readily compared to other catalysts.

Meanwhile the chemistry-based encoding approach (Fig. 6c)
favoured TBD, achieving 66% yield within only 4 algorithm-
suggested experiments and similar yields were achieved in
subsequent algorithm guided experiments. This much faster
reaction optimization demonstrates the advantage of inte-
grating chemical information into the Bayesian optimization
process. Another interesting trend observed in this optimiza-
tion was the relatively low impact of the residence time past
a certain point and the need for an excess of trichloromethyl
ketone 7, due to the decomposition of 7 to form the corre-
sponding carboxylic acid. In a similar fashion, increasing the
temperature improves the yield by accelerating the reaction rate
towards the desired product up to a certain point. Increasing
the temperature beyond 80 °C in the presence of the more
nucleophilic catalysts in the optimization set appears to start
reducing the yield due to the decomposition of the starting
material to the acid. Unsurprisingly, increasing the equivalents
of the nucleophilic catalyst beyond catalytic amounts also has
a significant impact on the reaction outcome, improving the
yield even for less reactive catalysts.

After these promising single-objective optimization studies,
a multi-objective optimization problem was conceived to
determine the impact of this chemistry-based encoding
approach on a more complex optimization problem. Three
objectives were considered simultaneously: maximizing the
yield of the reaction, minimizing the cost of base per g of
product formed and minimizing the process mass intensity
(PMI),** defined as the total mass of materials used/mass of
product. PMI is a green chemistry metric commonly used within
the pharmaceutical industry. To make the system more
comparable, the obtained PMI was normalized to 1 mL. Opti-
mizing the cost of base, the PMI and the yield is a representative

© 2025 The Author(s). Published by the Royal Society of Chemistry
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problem in reaction optimization, as these objectives will be
important (among others) in process development.

These three optimization objectives are competing, but they
are all linked to the yield to a certain extent, pushing the algo-
rithm to find higher yielding results. The input parameters
considered in the multi-objective optimization were the same as
in the single-objective yield maximization case, for a total of 6
inputs and 3 outputs. Both the PMI and cost of base per g
product were assigned an upper limit.

The multi-objective case proved to be more complicated for
the algorithm to optimize, as a balance between the three-
objectives needed to be found. The key optimization problem
here is that most of the catalysts result in relatively low yields
and therefore also worse performance on the other metrics.
This places additional emphasis on selecting the correct base.
In the label encoding case, it took 20 iterations until TBD was
selected, but this point was low-yielding within the context of
the design space for the best TBD-using reaction, di-
sincentivizing the selection of the same base afterwards. The
label encoding approach began continuously improving after 8
iterations with a final result selecting TBD and finding 45%
yield with good PMI and catalyst cost as well.

The chemistry-informed encoding method only selected TBD
in this optimization campaign, highlighting its better perfor-
mance in this reaction compared to the other options. The best
point with a yield of 84% was found after only 3 iterations of the
algorithm, also showing the best outcome in terms of PMI and
catalyst cost. This result clearly showed the advantage of using
this approach, as virtually no experiments are “wasted” on bad
outcomes and good results are found rapidly. This behavior
closely reflects more complex pruning-based algorithms for
categorical variables, such as MINLP2.**

2.6. Steady state long run comparison

Finally, to verify the validity of the established liquid handler
platform, a validation experiment was carried out by operating
a long-run reaction in continuous flow. The automation plat-
form was reconfigured from slug flow mode to continuous flow
(Fig. 7¢) by replacing the liquid handler with several HPLC
pumps feeding reactants in a continuous fashion and bypassing
the diversion loop towards the analytical instruments, directly

a) 1.6 equiv.
TBD
@—{O HN F mu F
N ccly \
\ N
65°c tN
0.15M 0.92 equiv. 6.5 min Yield
b) ©)
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_
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2
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0 30 60 9% 120 Homb Collection
time [min]
Fig. 7 (a) Conditions of steady-state long run (b) UHPLC yield plotted

against time in long-run experiment, black line marks expected yield.
(c) Setup of long run experiment.
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analysing the reaction stream. The optimal experimental
conditions selected during the multi-objective optimization was
identified (Fig. 7a) as an attractive candidate for continuous
flow operation due to performing best on all three optimization
objectives. To validate the robustness of the optimized condi-
tions the reactor was continuously operated using these set-
points. The process was operated continuously in a stable
manner for 90 minutes without issues with an average yield of
74% (Fig. 7b), which is a difference of 9% from the expected
yield of 83%. We subsequently experimentally validated that
this difference in yields was caused by the reaction slowly
occurring in the liquid handler during the droplet preparation
process. It is important that users keep in mind that for liquid-
handler based setups where reactions can occur at room
temperature during preparation that this can slightly bias the
results. In addition, we note that this is the set of conditions
where the highest reaction rate would occur in the droplet
process, as it provided the best results. One potential way to
address this in the future would be splitting the reaction
mixture into two distinct slugs and mixing them just prior to
entering the reactor.

While there is a small difference in the results produced by
the liquid handler and the continuous flow experiment, using
this chemistry-encoding strategy the optimal base was identi-
fied quickly and efficiently while requiring only a tenth of the
material ordinarily required to perform these experiments. The
collected data also gives a clear indication of the relative reac-
tion rates between the different catalysts and provides insight
into the trends within the process space and very good oper-
ating conditions.

3 Outlook

We have shown the application of a chemistry-based encoding
approach that exploits nucleophilicity for chemical encoding.
In principle, any numerical chemistry descriptor, such as
solvent polarity or pK, of participating bases, could be utilized
as a representation and applied in a similar fashion to encode
categorical data in Bayesian optimization and machine learning
applications. This approach would be especially attractive for
descriptors that are easy to measure or widely accessible in
databases. Potentially, the approach could also be refined
further by only considering the order of the categorical
parameters, instead of their discrete values. Another benefit is
that utilizing this approach has some limited predictive ability,
by interpolating between the relative reactivities of the different
categorical parameters, the reactivity of an untested catalyst
with a known nucleophilicity can be predicted and identified as
a potentially promising one to test experimentally.

4 Conclusion

We have developed an efficient strategy for the investigation of
categorical variables within an automated self-optimization
platform, which leverages a liquid-handler and slug flow plat-
form to explore the design space. The chemical encoding
enabled the rapid identification of the best categorical variable
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and optimal conditions. This approach was compared to more
established approaches, one-hot encoding and label encoding.
By operating in a slug flow platform, relatively smaller quanti-
ties of material were used. The chemistry encoding approach
enabled very good conditions to be identified within only 4
iterations in a fully automated closed-loop fashion.

This encoding technique was demonstrated using nucleo-
philicity as a chemical parameter, first in a simulation study
including different number of entries in the categorical
parameter and two different optimization algorithms,
comparing it to label encoding and one-hot encoding methods.
Automated flow experiments were then performed to demon-
strate the utility of this approach for two nucleophilic amide
formation reactions, including the formation of a fragment
toward an API. The optimization was performed using label-
encoding and the chemistry-based encoding approach. In
both cases the chemistry-based encoding method outperformed
the label encoding method.
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