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A foundational consideration in the development of computationally derived molecular feature libraries is
the generation and selection of conformers. It has been shown that several feature values have a degree of
conformer depencency — which may have significant mechanistic implications, partiticulary in the field of
homogeneous enantioselective catalysis. However, the computational cost of calculating conformers often
prohibits this analysis from being performed, especially when large flexible systems are involved. We report
here a practical, chemically-intutive conformer selection tool for bisphosphine-ligated palladium(i)
dichloride complexes that provide a good balance between representation and computational cost.
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modelling case studies, where weighted features improve model quality with respect to predictive
DOI: 10.1039/d55c04691b power. This selection methodology has the potential to be applied to a range of complex molecular

rsc.li/chemical-science systems beyond bisphosphine-ligated organometallic complexes.

Introduction

(A) DFT libraries of “ground-state” structures
The use of diverse computationally derived molecular

descriptor libraries has been crucial for interfacing data science X ‘ P.
tools with organic reaction development.® Recent examples of ©/ ) ./ ".
such libraries from our group and others include organic

compounds such as aryl halides,” carboxylic acids and amines® Substrate scope Statistical Reaction |
as well as monodentate® and bidentate® ligands in organome- design modelling optimisation
tallic chemistry. The extracted molecular features can be used in

x >
downstream machine learning (ML) and statistical modelling g g
efforts. These applications can include the deconvolution of 8 :
reaction mechanisms, definition of structure function rela- —— p—
tionships, and prediction of optimal reaction conditions.®
These libraries often consist of “ground-state” computed (B) Representation of conformer ensembles
structures from which a series of molecular features can be
extracted (Fig. 1A). A key assumption in these efforts is that sicionfon |y gege
ground-state features can be used to explain trends in reactivity | /\ feaure et | S \\ representative
or selectivity akin to the use of Hammett plots and other linear —— — ensemble
free-energy relationships in physical organic chemistry.” Full Low-E Representative

A further consideration when constructing feature libraries ensemble conformei(s)ESconformers (thiswork)

is the inclusion of conformationally derived descriptors as both
steric and electronic properties can be sensitive to dynamics
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and conformation. For example, Sterimol® (a steric measure-
ment of the maximum and minimum lengths perpendicular to
a pre-defined axis)® and Vy,i, (an electronic feature commonly
used to describe the o-donating ability of monodentate phos-
phine ligands)' can vary depending on the conformation
a molecule adopts. Reaction energy barriers can have a range of
up to 10 kecal mol ', as a result of structure conformation, and it
is challenging to know a priori which conformer(s) are required
to explain reactivity, i.e., in a transition state or intermediate
involved in the turnover-limiting or selectivity-determining
step.” This phenomenon is of particular significance in the
field of homogeneous catalysis.

In this context, incorporation of conformational information
into a descriptor library building campaign is dependent on two
key factors: ease of automation and computational costs. The
former has been enabled by packages such as AutoQChem,"*
AQME™ and molli** from the Doyle, Paton and Denmark labs,
respectively, as well as a recent workflow developed by our
group.® These methods often utilize density functional theory
(DFT) to facilitate accurate featurization. However, as molecules
increase in size and complexity (e.g., organometallic species),
DFT incurs a significant computational cost that can be limiting
on scale.” This becomes especially challenging when incorpo-
rating conformational ensembles. Our previous approach to
featurized bisphosphine ligands used a force-field approach
followed by ensemble pruning to five conformers based on
RMSD atomic positions. From these five conformers, the lowest
energy conformer defined through DFT was used for down-
stream featurization and modelling efforts.>* While this feature
library has been successful in various optimisation and exper-
imental design campaigns,”»* we hypothesised this approach
may be inadequate for the representation of the energetically
accessible ligand conformer landscape. Additionally, this may
limit the predictive ability and/or the domain of applicability of
modelling tasks (Fig. 1B).

When considering the design of a DFT feature library for
systems of high molecular complexity and conformational
flexibility, there is clearly a need for effective conformer selec-
tion. Herein, we report the development of a feature-based
approach for effectively sampling the bisphosphine ligand
conformational landscape. Specifically, a privileged geometric
feature, bite angle, was used to select conformers derived from
a library of bisphosphine-ligated palladium(u) dichloride
complexes. This strategy functions as an effective compromise
between ensemble representation and computational cost. To
evaluate this approach, two previous challenging statistical
modelling campaigns were examined, where inclusion of
conformer-derived features was found to improve predictive
power. We anticipate that with the appropriate selection of
a feature or features, they could be used for the sampling of
other systems of high complexity.

Selection and calculation of complexes

Several strategies towards conformer selection have been re-
ported, including tools such as CREGEN from Grimme et al.,*
COSMOconf from Klamt and co-workers,” the ReSCoSS
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workflow (Udvarhelyi, Rodde and Wilcken)' and CONFPASS
from Goodman and co-workers.” Many of these methods rely
on sampling conformers by energy, RMSD atom deviations or
changes in dihedral angles. For complex organometallic struc-
tures, this can result in impractically large ensembles depend-
ing on computational resources. To further down select and
lower the computational cost, we hypothesized that conformer
selection should be informed by a chemically intuitive
feature(s). We chose to examine the accuracy trade-off between
the computational approaches used, and thereby the cost
incurred for calculation of conformation ensembles (vide infra).

To accomplish this, 12 palladium(n) dichloride complexes
were selected from our group's previously computed bi-
sphosphine descriptor library,* to represent scaffold variance
across chemical space. This was visualized using ¢-distributed
stochastic neighbour embedding (+-SNE) and hierarchal clus-
tering (n = 10) (Fig. 2A).*° This feature space was constructed
with predominantly free ligand descriptors as this was
presumed to be more generally representative of ligand diversity
compared to metal complex descriptors. Pleasingly, these
dimensionality reduction and clustering techniques intuitively
categorized ligand backbones together and informed the
subsequent selection of 12 bisphosphine ligands for calcula-
tion.”* Fig. 2B shows the diversity of ligands used in the
following analyses, including ligands with alkyl backbones (L1,
L8), aromatic backbones (L2, L3, L7 and L9-L12), as well as
those based on ferrocene (L4-L6).

Using the initial library of DFT computed structures as
starting coordinates, conformer ensembles for these ligands
were generated using the open-source CREST program (where
conformers are differentiated using rotational constants).'® A
5 keal mol™" energy window using the GFN2-XTB//GFN-FF
composite method (Fig. 3A) was applied to each conformer
search.”” This method was chosen as structure optimization at
the GFN-FF level has been shown to produce geometries with
high accuracy when compared to other force field approaches.
Structurally redundant conformers were removed using a PCA/
k-means clustering technique of relevant dihedral angles (as
implemented in CREST).**

We then probed whether the geometries produced using this
workflow were sufficiently accurate for generating ligand
features, which would remove the costly DFT geometry refine-
ment step. To evaluate this, subsequent DFT single point
correction (SPC) calculations, required for property collection,
were performed on the CREST geometries at the PBE(0)-D3(BJ)/
def2-TZVP level of theory. The Perdew-Burke-Ernzerhof (PBE)
functionals® were selected as they have been previously used in
our library building campaigns**** and demonstrated to effec-
tively predict *'P NMR chemical shifts.® These calculations
form “Set 1”. These were then compared to calculations defined
as “Set 2”, in which the CREST generated structures were
calculated at the PBE0-D3(BJ)/def2-TZVP//PBE-D3(B])/def2-SVP
level of theory prior to featurization.

For each Set, a representative series of steric, geometric, and
electronic descriptors were collected for comparison.”” In the
case of steric features, ligand equivalent cone angle (derived
from a solid angle calculation), percentage buried volume (%

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(B) Selected ligands
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Fig. 2 (A) Selection of representative ligand using clustered chemical space and (B) selected ligands by cluster. Ar' = 3,5-'Bu-4-OMe-Ph;

Ar? = 4-(CF-di-CFs)-Ph.

Vpur) at Pd (with radii, r, between 2 A and 7 A, in increments of 1
A), total molecular volume, and the solvent accessible surface
area (SASA) at Pd were selected. For geometric descriptors, Pd-
Cl and Pd-P bond lengths, and bite angle (£P-Pd-P) were
selected. Frontier molecular Kohn-Sham orbital (HOMO and
LUMO) energies and molecular dipole were chosen as examples
of global electronic descriptors. Atom-specific properties
included atomic partial charges (on Pd, P and Cl atoms) derived
from a natural population analysis (NPA) calculation and
isotropic and anisotropic *'P NMR chemical shifts. In instances
where there can be more than one possible value for
a descriptor (e.g., Pd-P bond length or P NPA charge), feature
values were averaged.

This comparison provides information on whether the time-
intensive geometry refinement step of this computational
workflow could be circumvented, which would allow for more
conformations to be computed.

Effect of DFT geometry refinement on GFN-FF optimized
structures

To compare the quality of the features from calculation Set 1
and Set 2, the average (over the 12 ligands) percentage differ-
ence between the descriptors were initially evaluated. Fig. 3B
(top) shows the comparison of lowest energy DFT-PBEO feature
values. Similar analyses for Boltzmann-weighted average

© 2025 The Author(s). Published by the Royal Society of Chemistry

descriptors (298 K) as well as the maximum and minimum
values are given in the SI.

For steric and geometric features, there is generally good
agreement between Set 1 and Set 2, where average differences
are approximately 5% or less. In contrast, there is less agree-
ment between feature values from Set 1 and Set 2 for electronic
descriptors. For example, LUMO energy and anisotropic >'P
NMR chemical shift show significant differences in their feature
values (>15%). This indicates that both the global and atom-
level electronic structure are poorly described in structures
that did not undergo DFT geometry refinement.

While the absolute electronic feature values between the two
calculation Sets are different, their relative values may have
better agreement. To test this, the collinearity between the two
Sets was considered (Fig. 3B, middle). However, in all cases,
poor correlations (R*> < 0.5) were observed between feature
values in Set 1 and Set 2. Notably, the anisotropic *'P NMR
chemical shift gave an R* value of 0.24. Similar results were
obtained with HOMO energy, LUMO energy and isotropic *'P
NMR chemical shift (giving R*> = 0.64, 0.56, and 0.46, respec-
tively). We suspect these differences result from a mismatch in
the electronic structure theory methods used (i.e., different
optimized local minima between semi-empirical vs. DFT and/or
inaccurate bond lengths/angles with semi-empirical methods)
to determine the complex geometries. Resultant minor struc-
tural changes between Set 1 and Set 2 are enough to cause

Chem. Sci., 2025, 16, 20473-20485 | 20475
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(A) Computational workflow
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(A) Computational methods for generating “Set 1" and “Set 2" structures and bisphosphine ligand features collected and (B) comparison of

“Set 1" and “"Set 2" features: (top) comparison of absolute average % differences in feature values; (middle) linear regression models comparing
DFT-refined and non-DFT-refined structure feature values and (bottom) description of the three features used in the linear regression models.

For a description of all other features used here, see the SI.

divergences in the electronic structure of the metal complex
and, therefore, electronic features obtained. Unsurprisingly,
correlations observed with steric and geometric features were
significantly better. These show a good linear relationship
between descriptors in Set 1 and Set 2 (R* > 0.8, see SI for
full set).

Given these significant differences observed between elec-
tronic descriptors obtained from DFT-level geometry refine-
ment and geometries obtained from CREST, structures from the
latter (Set 1) were deemed inappropriate, even in relative terms.
Additionally, the accuracy of electronic features is crucial as
these have been demonstrated to be key in previous modelling

20476 | Chem. Sci., 2025, 16, 20473-20485

efforts for both mono-** and bisphosphine ligands.*** However,
due to the size and complexity of the bisphosphine complexes
used in this study, as mentioned above, DFT-level geometry
refinement on all complexes generated from a conformer search
would incur significant computational cost if this approach was
extended to the entire bisphosphine ligand library of >600
ligands. As the steric and geometric features obtained from
CREST were in good agreement with those derived from
a subsequent DFT refinement, we considered whether ensem-
bles could be pruned based on one (or a combination of) steric
and geometric features. Notably, a similar approach was taken
in the kraken monophosphine ligand library, where

© 2025 The Author(s). Published by the Royal Society of Chemistry
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representative conformers were selected based on a number of
steric descriptors.*

Selection of conformers using geometric and steric features

In choosing features to use in the selection of conformers for
calculation at the DFT level, we took inspiration from previous
descriptors used for bisphosphine ligands in the literature. For
example, bite angle has been an informative descriptor of bi-
sphosphine ligands inspiring the development of many transi-
tion metal-catalysed processes such as hydroformylation.>
Additionally, this geometric descriptor encompasses both an
electronic and steric effect. With increasing bite angle, the
symmetry and energy of the coordinated metal's frontier orbitals
change leading to a subsequent destabilization of a metal
complex.* This destabilization, in several cases, enhances reac-
tivity such as a higher propensity to undergo oxidative addition.
Bite angle also impacts the steric profile of the metal centre that
substrates can access during catalysis (akin to a binding
pocket).** Narrow bite angles can be used to alleviate steric
interactions which, for example, can lead to increased transition
state stability. Other descriptors often used are the equivalent
cone angle and %V, The equivalent cone angle was originally
developed by Weigand and co-workers and serves as a useful
analogue to Tolman's cone angle at bisphosphine-ligated metal
complexes.** %V, pioneered by Nolan and Cavallo et al. has
also been used to effectively describe the steric environment of
both mono- and bisphosphine ligands.**

Before examining steric and geometric features for choosing
conformers, selection based on the GFN2-XTB energy was first
investigated. This would provide a good comparison with
selection based on steric and geometric features for all 12 bi-
sphosphine palladium(u) dichloride complexes (Fig. 4A).
Conformers were selected based on their equidistant GFN2-xTB
energy values, i.e., taking the minimum and maximum values as
well as evenly distributed points in between. For practical
purposes, up to ten conformers in each selection was used to
acquire the maximum conformer diversity at a reasonable
computational cost. The use of five conformers was also inves-
tigated but gave inadequate representation - especially with
larger conformer ensembles.

Selections for complexes of ligand L11 and L9 are depicted in
Fig. 4B and C, respectively as illustrative examples, with the
average and largest conformer ensemble sizes, respectively (for
analysis of the remaining ten ligands, see the SI). Selection
based on GFN2-XTB energies gives a structurally limited
ensemble. For example, the distribution of bite angles obtained
is limited compared to the entire ensemble i.e., the range of the
pruned ensemble is less than that of the full ensemble (4° vs. 6°
for L9). Similar observations are made with ligand %V, values.
To obtain better structural diversity, a similar selection meth-
odology was applied using bite angle. In addition to increased
structural diversity in the new conformer ensemble, this
approach also resulted in a good distribution of GFN2-xTB
energies across the full 5 kcal mol™" window. It was deter-
mined that the lowest GFN2-xTB energy conformer would also

© 2025 The Author(s). Published by the Royal Society of Chemistry
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be included (if not one of those selected) to further increase the
conformer energy span.**

As this strategy provided a good coverage of the conformer
ensemble in terms of energy and structural diversity, we then
examined the effects of this treatment in the full DFT-generated
conformer ensembles in calculation Set 2 (Fig. 4B and C,
bottom). Given the diversity of ligands used in this study, this
method provided a simulation if this selection method would
be applied to the entire bisphosphine ligand library. DFT-level
feature distributions for the Set 2 ensembles of ligands L11
and L9 are again analysed. Equivalent cone angle, bite angle,
anisotropic *'P NMR chemical shift and the HOMO energy were
chosen as representative features (see SI for analysis with all
features). Dots highlighted on the distributions in Fig. 4B and C
(bottom) show the feature values of bite angle-selected
conformers to directly compare with the full DFT conformer
ensemble. In the case of ligand L11 with an average size
ensemble, there is an adequate distribution of selected
conformers for all four features indicated by their ranges being
nearly identical. However, for the larger ensemble of ligand L9,
there is reduced coverage of the DFT ensemble by the selected
conformers where some of the extrema of feature values are
missed upon selection. For example, smaller values of solid
cone angle and bite angle are not included in the selection
method. Nevertheless, maintaining a practical view on what
calculations are performed in the context of a large ligand
library building campaign, we view this as a reasonable
compromise between conformer feature representation and
computational cost. For the ligands examined in this workflow
preparation, a comparison was made between DFT optimiza-
tion times required for the full ensemble of ligands and the
representative selection of ligands. By reducing the conforma-
tional ensemble size to 11 or fewer ligands, the total time
required for DFT geometry refinement was reduced by 70.1%.

Application of selection method in bisphosphine modelling
campaigns

With a conformer selection methodology established, we
generated new ligand features analogous to those from our
previously published bisphosphine library which now include
conformer-weighting. Conformer-weighted features include
lowest energy conformer value, minimum and maximum
feature values as well as Boltzmann-weighted averaged features
(at 298 K) and conformer arithmetic mean values giving a total
of 2088 features. This set was reduced to features that were
conformationally dependent (i.e., those showing variance in
feature value across an ensemble). For features that showed low
variance across an ensemble, only the Boltzmann-weighted
average value was retained, reducing the feature set to less
than 1300 descriptors.*® To test the performance of the new
ligand features, they were applied in two bisphosphine model-
ling case studies previously reported by our group. Both of these
examples represent small dataset sizes where model building
can be a challenge but is often the reality the chemical
sciences.*®

Chem. Sci., 2025, 16, 20473-20485 | 20477
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(A) Potential conformer selection methods
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Fig. 4

(A) Depiction of possible conformer selection methods investigated here and analysis of both methods for two ligands: (B) L11 with a total

of 17 conformers with (top) selection based on GFN2-xTB energy and bite angle and (bottom) performance in the full calculated DFT ensemble.
(C) Shows equivalent analysis with L9 with a total of 55 conformers.
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(A) Case study 1: Hayashi-Heck cross-coupling regioselectivity
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Fig. 5 (A) MLR model for Hayashi—Heck cross-coupling regioselectivity including examples of representative ligands, (B) analysis of model
performance with and without conformer-weighted features represented as distributions of individual ligand absolute prediction error and (C)
analysis of feature conformer dependence. For a full definition of model features see the SI.
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Hayashi-Heck cross-coupling regioselectivity

The first case study for feature comparison concerns a palla-
dium-catalysed = Hayashi-Heck cross-coupling reaction
(Fig. 5A).° Here, the arylation regioselectivity (AAG*) was
modelled using multivariate linear regression (MLR). However,
prediction of validation ligands led to mixed results with some
examples giving a mean absolute error (MAE) of up to 1.8 kcal-
mol~". The reason we previously presented for these types of
poor predictions was due to the structures being outside the
domain of model applicability. Therefore, we hypothesised that
our new conformer-weighted ligand features could enhance the
predictive ability of validation ligands. With the full set of
ensemble features (a combination of conformer-weighted and
lowest energy conformer features), a three step forward stepwise
model search was conducted using 22 ligands to train models
and tested on 30 ligands, which were defined in the previous
study.’ This gave a model where AAG* is described by the
conformer maximum 3'P NMR chemical shift and the
Boltzmann-weighted average of the Pd-P o-bonding occupancy
(from a NPA calculation). Interestingly, both of these terms are
derived from the phosphorus atom with the smallest % Vi, (7 =
3.0 A). Additionally, the P-R c-bonding energy from the free
ligand is also present in the model equation. Together these
features indicated a strong electronic influence of the ligand on
the observed regioselectivity similar to the previously reported
statistical model. Moreover, the steric dependence incorporated
into the workflow to define these features may infer that
experimental regioselectivity is based on binding or donating
ability of the smaller of the two phosphorus donors. To assess
the overall statistical model quality, we used the R* mean
absolute error (MAE) and root mean squared error (RMSE) of
both the training and test set ligands. Overall, the generated
three-term MLR model gave adequate training (R*> = 0.76, MAE
= 0.30 kcal mol™", RMSE = 0.41 kcal mol ') and validation
statistics (R*> = 0.57, MAE = 0.51 kcal mol™', RMSE =
0.64 keal mol™"). The prediction error (the absolute difference
between predicted and measured AAGI] of the training and test
split is also described in Fig. 5B, left. Ligands in the training
and test sets are represented as a distribution (from a kernel
density estimation) to allow ready visualization of the error of
individual datapoints. Unsurprisingly, this analysis revealed
a wider distribution of the test set of ligands compared to those
in the training set.

To investigate the effect of conformer-weighting on model
performance, a model was generated using the analogous
lowest energy features. Compared to the model containing the
conformer-weighted features, the statistics of the training set
were somewhat preserved when using the lowest energy
conformer features (R*> = 0.46, MAE = 0.48 kcal mol ', RMSE =
0.61 kcal mol ™). However, when evaluating the validation set
the model statistics are significantly poorer (R> = 0.29, MAE =
0.69 kcal mol ™", RMSE = 0.82 keal mol ™). This can also be seen
in the prediction error distribution (Fig. 5B, right). Compared to
the error distribution of the model generated from conformer-
weighted features, there are a greater number of datapoints
that have a higher prediction error.
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From the overall model statistics and examining the indi-
vidual prediction errors of ligands, there is improvement when
including conformer-weighting into bisphosphine ligand
features. To understand the origin of the conformational
impact of the features on model performance, violin plots of the
feature values were constructed (Fig. 5C). Four representative
ligands are depicted with the highest and lowest AAG* as well as
two mid-range AAG* values. For electronic features, one would
expect a lower conformational dependency compared to steric
or geometric features, which is consistent with the observed
distributions. Nevertheless, there are modest distributions of
feature values across the ensembles, in keeping with observa-
tions in Fig. 4B and C. In the case of the *'P NMR chemical shift,
there is a small distribution of feature values for the most
selective ligand (L13), where the least selective ligand has
a range of chemical shift of ~30 ppm. Similar trends are
apparent with the P o-bonding occupancy and P-R o-bonding

(A) Case study 2: Sulfonamidamide aryl carbonylation
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(B) Ligand diversity in the two case studies
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Fig. 6 (A) Sulfonamidamide aryl carbonylation reaction used for
modelling case study 2 with representative ligands show. (B) A
comparison of the ligand diversity in the Hayashi—Heck and sulfona-
midamide carbonylation datasets using the t-SNE chemical space
from Fig. 2. Ar = 3,5-bis(trifluoromethyl)phenyl.
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energy features. The conformational dependence of these
features provided further evidence that incorporating dynamic
information improves the MLR model performance.

Sulfonimidamide aryl carbonylation enantioselectivity

Following the increase in predictivity of an MLR model by
including conformer-weighted features in the Hayashi-Heck
cross-coupling case study, we turned our attention to a more
complex statistical modelling challenge. In this second case

(A) Decision tree regression model analysis
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study, a data-driven ligand selection was used to design
a training set for evaluation against an enantioselective aryl
carbonylation of sulfonimidamides (Fig. 6A). From this initial
screen, a MandyPhos-type ligand L17 was identified to produce
100% conversion and excellent enantioselectivity (96:4 er).
However, a linear statistical model to explain the resultant
enantioselectivity (and perhaps prediction of a Dbetter
performer) was not found. In lieu of this, a second round of
ligands was also evaluated using similarity to the best

Conformer-weighted features

8 K : Training MAE
\ ! ~ 7 (0.08 keal mol™?)
bé ! __ TestMAE
5 ; " (0.35 keal mol™?)
[ =4
93 4 I 1
o 2 1 |
0 1 1
! . L @ Training set
P ! = B Testset
< I
o
o 0 ‘
5 |
K |, -]
S ) | (]
| . ]

-0.50 -0.25 0.00 0.25 0.50 0.75

Absolute error
(Ipredicted AAG* — measured AAGH) / keal mol ™!

1.00 1.25 1.50

(C) Model feature conformer dependence
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in the decision tree regression model and analysis of their conformer
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performing ligand as determined through chemical space
analysis. A considerably more diverse set of bisphosphine
ligands were selected for this reaction compared to the previous
Hayashi-Heck example, the comparison of the two case study
datasets represented in -SNE chemical space (introduced in
Fig. 2) is shown in Fig. 6B. Perhaps as a result of the increased
complexity of this dataset, a linear statistical model to explain
the resultant enantioselectivity was not found. A total of 53
ligands were evaluated for the reaction, and still with this larger
dataset, no linear statistical models were found, which we
assumed was a result of the increased complexity of the dataset.
This provided us with an opportunity to directly compare how
the newly developed conformer-weighted features would
perform on a challenging dataset.

Recent analysis of the bisphosphine ligands in the sulfona-
midamide carbonylation dataset showed that eight ligands
originally used had oxidised (the majority giving low enantio-
selectivity) and these were removed from our analysis (see SI).
Using the enantioselectivity data for the remaining 42 bi-
sphosphine ligands with 4-methylmorpholine base, we opted
for a decision tree regression modelling strategy (Fig. 7A). We
speculated that the use of a non-linear modelling architecture
would be able to provide a correlation required to include the
high diversity of ligand structural types. This model was con-
structed following feature reduction from the original 1242
features down to four using the permutation feature impor-
tance metric (on the test set) and subsequent hyperparameter
tuning (see SI for full details) with a randomized 33 : 9 train:test
split. The four features used in this model are: the Boltzmann-
weighted average of the chloride NPA charge (maximum value
of the two possible chloride ligands); the Boltzmann-weighted
average of the phosphorus-backbone angle; the Boltzmann-
weighted average of the P-Pd bond occupancy (average value
of the two phosphine donors) and the conformer minimum
value of the free ligand P-R bond occupancy (depicted in
Fig. 7C). This combination of features indicates that there is an
electronic and geometric dependence on the enantioselectivity
for the evaluated reaction. For example, the chloride NPA partial
charge provides an electronic readout of the phosphorus donor
atom trans to the chloride. The two phosphorus-backbone
angles could be related to the flexibility of the phosphorus
donors with respect to the backbone that enforce the chiral
metal environment. Details on the feature importance from the
decision tree regression model can be gleaned by performing
a SHAP analysis (Fig. 7B).*”” This ranks features in order of
importance: Boltzmann-weighted average of the chloride NPA
charge; Boltzmann-weighted average of the phosphorus-back-
bone angle; Boltzmann-weighted average of the average P-Pd
bond occupancy and the conformer minimum value of the free
ligand P-R bond occupancy

Using the same metrics used for the MLR model analysis
with the Hayashi-Heck cross-coupling reaction, the decision
tree regression model provided excellent statistics for the
training set (R> = 0.96, MAE = 0.08 kcal mol ™!, RMSE =
0.10 kcal mol ™). Aside from a clear outlier in the test set, the
validation statistics were adequate (R> = 0.45, MAE =
0.36 kcal mol ™!, RMSE = 0.53 kcal mol '). Analysis was
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performed on this outlier ligand, compared to the better pre-
dicted ligands in the test set with respect to their SHAP values
and decision tree paths (see SI, Section 6.2.3). Unfortunately,
this did not provide conclusive reasoning for the origin of this
outlier. Removing this outlier gave R> = 0.86, MAE =
0.22 keal mol ™" and RMSE = 0.26 keal mol ™. Conscious of the
decision tree regression model overfitting the data, we per-
formed a series of cross-validation analyses. A leave-one-out
(LOO) cross-validation gave R* = 0.49, MAE = 0.31 kcal mol "
and RMSE = 0.31 kcal mol™ . Additionally, a five-fold cross-
validation gave an average R*> = 0.31, MAE = 0.39 kcal mol *
and RMSE = 0.51 kcal mol . Following these cross-validation
tests, the effect of the random state and the training:test split
ratio was examined. Using 100 randomly generated starts, an
average test MAE = 0.38 kcal mol ' was obtained. Changing the
split ratio from 0.1 to 0.5 in 0.1 increments, gave an average test
MAE = 0.43 kcal mol *. While these analyses may suggest some
degree of overfitting the data, we determined this model was
adequate for the examination of conformer ensemble impor-
tance in bisphosphine ligand feature generation.

As before, the equivalent decision tree regression model was
generated with the same hyperparameters and training:test
split ratio was generated with the analogous lowest energy
conformer features. In this model, almost identical training set
statistics were obtained (R*> = 0.94, MAE = 0.10 kcal mol *,
RMSE = 0.12 kcal mol™"). However, the test set statistics
showed significant deterioration (R*> = 0.06, MAE =
0.56 kcal mol™!, RMSE = 0.70 kcal mol '). This can also be
shown by comparing the absolute error distributions of both
models in Fig. 7A. This indicated that use of lowest energy
conformer features, compared to their conformer-weighted
congeners, gave rise to a poorly predictive model.

Next, we investigated the degree of conformational depen-
dence on the four features used in the decision tree regression
model (Fig. 7C). This analysis used ligands L18, L19, L11 and
L20, which are representative of the range of enantioselectivities
obtained (full analysis of all ligands used in the data set is
provided in the SI). With the exception of ligand L19, all ligands
exhibit conformational flexibility. This is consistent with the
hypothesis that including conformational flexibility in feature
design can enhance model performance.

Conclusions

In conclusion, we have developed a method of selecting
conformers for bisphosphine-ligated palladium(u) dichloride
complexes that provides balance between representation and
practicality in terms of computational time. In addition to this,
strategy relies on chemical intuition by utilizing bite angle,
a historically important stereo-electronic bisphosphine feature
for conformer down selection. This was accomplished by the
finding that geometries from the CREST conformer search were
sufficiently accurate, with respect to their steric and geometric
features, compared to DFT-refined geometries. Balance between
representation and computational cost as well as providing
a chemically intuitive means of conformer selection are critical
considerations when constructing a DFT feature library. The

© 2025 The Author(s). Published by the Royal Society of Chemistry
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new descriptor set was applied to statistical modelling
campaigns of two previously analysed palladium-catalysed
reactions which employ bisphosphine ligands. An MLR model
was generated for a Hayashi-Heck cross-coupling case study
which showed improved performance with the use of
conformer-weighted features compared to their lowest energy
conformer equivalents. The increased diversity in ligand
sampling for the SIA carbonylation case study, compared to the
Hayashi-Heck cross-coupling example, presented additional
challenges in modelling campaigns and required the use of
a decision tree regressor to describe ligand performance. Using
this non-linear modelling technique, we were also able to
showcase the improved model performance when using
conformer-weighted features. Additional work on enhanced
bisphosphine ligand training set design and featurisation are
currently underway to address further challenges one might
encounter when undertaking modelling campaigns with bi-
sphosphine ligands (e.g., improved feature design) and will be
reported in due course. Nevertheless, this chemically intuitive
feature-based conformer selection methodology has the
potential to be applied to complex molecular systems (i.e., one
which is large and flexible) beyond bisphosphine ligands where
an important steric or geometric feature is anticipated.
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