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cascades: an updated mechanistic
landscape

Ruth Nussinov, *abc Clil Regevc and Hyunbum Jang ac

Here, we shed physico-chemical light on major kinase signal transduction cascades in cell proliferation in

the Ras network, MAPK and PI3K/AKT/mTOR. The cascades respond to external stimuli. The kinases are

allosterically activated and relay the signal, leading to cell growth and division. The pathways are

crosslinked, with the output of one pathway influencing the other. The effectiveness of their allosteric

signaling relay stems from coordinated speed and precision. These qualities are essential for cell life—yet

exactly how they are obtained and regulated has challenged the community over four decades. Here,

we define their nature by their kinases' repertoires, substrate specificities and breadth, activation and

autoinhibition mechanisms, catalytic rates, interactions, and their dilution state. The cascades are lodged

in a dense molecular condensate phase at the membrane adjoining RTK clusters, where their assemblies

promote specific, productive signaling. Aiming to shed further physico-chemical light, we ask (i) how

starting the cascades with a single substrate and ending with hundreds is still labeled specific; (ii) what

we can learn from their different number of mutations; and (iii) why B-Raf unique side-to-side inverse

dimerization slows ERK activation and signaling. We point to the (iv) chemical mechanics of the

distributions of rates of the crucial MAPK cascade: slower at the top and rapid at the bottom. Finally, the

cascades provide inspiration for pharmacological perspectives. Collectively, our updated physico-

chemical outlook provides the molecular basis of targeting protein kinases in cancer and spans

mechanisms and scales, from conformational landscapes to membraneless organelles, cells and systems

levels.
Introduction

Kinase signaling cascades underlie life processes, including
diseases.1–6 Through their interactions, allostery plays a major
role.7–12 We focus on the classical components of the mitogen-
activated protein kinase (MAPK) and phosphoinositide 3-
kinase (PI3K)/protein kinase B (AKT)/mammalian target of
rapamycin (mTOR) cascades in the Ras signaling network and
their small molecule pharmacology. Numerous excellent
reviews have been written on kinases and their signaling,
especially focusing on these pathways, including by us (e.g., ref.
13–23). Here, we consider the attributes and characteristics of
kinases. We consider their mechanisms, roles, organization
and positions in their cascades, and whether their collective
differential characteristics can seed a new drug outlook.

MAPK is a complex interconnected kinase signaling cascade
(Fig. 1). Its multiple kinases are commonly mutated and tar-
geted in cancer. Drug resistance is a major problem, primarily
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because of pathway crosstalk and bypasses.14,24–26 Growth
factors (e.g., epidermal growth factor, EGF) bind the extracel-
lular domains of receptor tyrosine kinases (RTKs, e.g.,
epidermal growth factor receptor, EGFR, and platelet-derived
growth factor receptor, PDGFR) spanning the cell membrane,
stimulating their signal transduction cascades.27–32 The MAPK
cascade includes the Ras/Raf/mitogen-activated protein kinase
(MEK)/extracellular signal-regulated kinase (ERK)
pathway.14,33,34 Ras, a key signaling protein, is activated by
growth factors binding to an RTK. Stimulated RTK recruits the
adaptor protein, growth factor receptor bound protein 2 (Grb2).
Grb2 recruits the Ras guanine nucleotide exchange factor (GEF),
such as Son of Sevenless 1 (SOS1), translocating SOS1 to the
plasma membrane. At the membrane, it binds membrane-
anchored Ras, activating it by exchanging GDP for GTP.35

Active Ras activates Raf, a serine/threonine kinase that relays
signals from Ras to the MAPK cascade.36,37 Raf activates MEK,
which then activates ERK. ERK phosphorylates proteins in the
cytoplasm and nucleus.15,33,34,38,39 Translocating to the nucleus,
ERK at the bottom of the pathway promotes the transcription of
genes by phosphorylating and activating transcription factors,
culminating in the transcription of target genes acting down-
stream of the RTKs.40,41 Key among them are proliferation,
differentiation, and survival.14,42 MAPK signaling initiates with
Chem. Sci., 2025, 16, 15815–15835 | 15815
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single, specic substrates and peaks in activating multiple
specic cellular programs.

How can single specic substrates culminate in activating
multiple, specic cellular programs? MAPK signals in immensely
diverse cell types, each with a large number of different cell
states. Chromatin structures vary, and the environments differ
too, inuencing the expression levels of specic proteins and
thus the protein–protein interactions in their respective cellular
networks. Cell types and states—over developmental time,
disease, and broadly changing environments—inuence the
relative protein concentrations, thus homeostasis through
complex, regulated signaling crosstalks.43–46 The temporal
concentration of the substrates (ligands) in the cell type- and
Fig. 1 The MAPK pathway. When stimulated by EGF, the EGFR recruits
phorylation of kinase cascades, including Raf, MEK, and ERK. The scaffold
as either a monomer or a dimer that can phosphorylate cytoplasmic ta
regulating their functions. Upon phosphorylation by ERK, RSK negatively
lating it by phosphorylating CREB; MLCK increases MLC phosphorylation
and spreading; Cdc25 activates CDK1 to progress through the G2/M chec
cellular processes of inflammation and cell growth; MNK phosphorylates
by ERK, which leads to the suppression of NF-kB-dependent inflamm
phosphorylation, thus promoting cell survival; BIM is a pro-apoptotic pro
DUSP is a member of the MAPK phosphatase family that dephosphoryla
dimeric ERK translocates to the nucleus and activates transcription fac
factors, such as c-Myc, ELK-1, c-Jun, c-Fos, and Est-1, leading to cell pro
by phosphorylating MSK1. Abbreviations: BIM, Bcl-2 interacting media
responsive element binding protein; DUSP, dual-specificity phosphatas
leukemia 1; MLCK, myosin light chain kinase; MNK, MAPK-interacting k
nuclear factor-kappa B; RSK, ribosomal S6 kinase.

15816 | Chem. Sci., 2025, 16, 15815–15835
state-specic environment is vital. Extracellular ligands prefer-
entially select specic RTKs and allosterically stimulate specic
phosphorylation sites, thereby activating pathways. Pathway
propagation depends on the presence of multiple regulatory
proteins, including specic kinases and phosphatases. MAPK
and PI3K/AKT/mTOR kinases preferentially locate at the outer
surface of membrane-bound organelles14 and in dynamic,
membraneless biomolecular condensates.47 A decade ago, we
described them as transient ‘inter-connected nanocluster
assemblies with gel-like properties’ spanning over nano- to
micrometers.26,48 In vivo, regulated multimolecular condensates
are far from equilibrium. They enhance target proximity and
increase local concentration.49–52 High dilution, e.g., upon rapid
Grb2–SOS1 complexes, which activate Ras. This leads to the phos-
ing protein, KSR, is also involved in the MAPK pathway. Active ERK exists
rgets. ERK phosphorylation activates or inhibits these targets, thereby
regulates the Ras/ERK pathway by inhibiting SOS1 or positively regu-
and cell motility; KLC1 acts as a cargo adaptor crucial for cell motility

kpoint; cPLA2 releases arachidonic acid and other fatty acids involved in
eIF4E, a key factor in mRNA translation and cell growth; IKKa is inhibited
atory genes; MCL-1 is an anti-apoptotic protein that is stabilized by
tein that is degraded by phosphorylation, thus promoting cell survival.
tes and deactivates ERK via negative feedback. Active, monomeric, or
tors through phosphorylation. ERK directly activates the transcription
liferation, cell growth and development. ERK indirectly activates CREB
tor of cell death; cPLA2, cytosolic phospholipase A2; CREB, cAMP-
e; IKKa, IkB kinase a; KLC1, kinesin light chain 1; MCL-1, myeloid cell
inase; MSK1, mitogen- and stress-activated protein kinase 1; NF-kB,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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mutant cell growth, degrades relay efficiencies, deteriorating
control and risking senescence. The large mammalian target of
rapamycin complex 1 (mTORC1) multimolecular assembly in the
PI3K/AKT/mTOR pathway can control phase separation by
tuning crowding.53

The P13K/AKT/mTOR cascade, also a major drug target in
cancer,54–56 is tasked with metabolic signaling and protein
Fig. 2 The P13K/AKT/mTOR pathway. RTKs recruit and activate PI3K when
recruited to the membrane by PIP3 and activated by PDK1 and mTORC2
functions. AKT phosphorylation activates or inhibits these targets, thereb
inhibited, which increases the active form of RHEB, which then activates m
ylates S6K1 and 4E-BP1. S6K1 activates rpS6. The phosphorylation of 4E-
translational activation and regulate cell growth and metabolism; PRAS4
signaling; MDM2 is activated and translocates to the nucleus, where it subse
of apoptosis and the promotion of cell survival and proliferation. p53 is a
autophagy, and metabolism; BAD binds to 14-3-3, thereby preventing its in
prevents its translocation to the nucleus and its function as a transcription
a broad impact on various cellular processes, including the promotion of
GSK3b, a serine/threonine kinase, plays a crucial role in metabolism, cell
signaling regulation, and neuronal development; YAP is inhibited by inter
functions as a transcriptional coactivator. YAP inhibition affects cell gro
decreased, which promotes cell survival and inhibits apoptosis. ASK1 is invo
cytokine production; IKKa is activated, which subsequently activates NF-
phorylation inhibits IKKa; CHK1 is inhibited and moves into the cytoplasm.
CDK1 but activatesWee1 kinase inhibition on CDK1, resulting in G2/M check
These proteins (p21Cip1, or p21Waf1, and p27Kip1) are primarily CDK2 inhib
translation initiation factor 4E (eIF4E)-binding protein; ASK1, apoptosis signa
cell division cycle 25; CHK1, cell cycle checkpoint kinase 1; FOXO1, forkhe
kinase a; IRS, insulin receptor substrate; MDM2,murine doubleminute 2; NF
RHEB, Ras homolog enriched in brain; TSC1/2, tuberous sclerosis comple

© 2025 The Author(s). Published by the Royal Society of Chemistry
synthesis in cell growth (Fig. 2). It too can be activated via RTKs
and Ras,57 also promoting cell survival, growth, and proliferation
in response to RTK stimuli,58–60 and with crosstalk with other
pathways, including MAPK.61–63 PI3K, a lipid kinase, phosphory-
lates the signaling lipid, phosphatidylinositol 4,5-bisphosphate
(PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), an
action reversed by phosphatase and tensin homolog (PTEN), both
stimulated by insulin or IGF. Active PI3K then converts PIP2 to PIP3. AKT is
. Active AKT then phosphorylates a number of proteins, regulating their
y regulating their functions. Upon phosphorylation by AKT, TSC1/2 is
TORC1 allosterically at the lysosomal membrane. mTORC1 phosphor-
BP1 removes its inhibitory role on eIF4E. S6K1 and eIF4E participate in
0 interacts with 14-3-3, inhibiting its function as a regulator of mTOR
quently degrades p53 through ubiquitination. This results in the inhibition
tumor suppressor that regulates cell cycle arrest, DNA repair, apoptosis,
teraction with Bcl-xL and inhibiting apoptosis; FOXO1 is inhibited, which
factor for apoptosis and cell cycle arrest; GSK3b is inhibited, which has
cell survival, growth, and proliferation, and the inhibition of apoptosis.
cycle regulation, cell proliferation, cell differentiation, cell survival, Wnt
acting with 14-3-3, which prevents its translocation to the nucleus and
wth, differentiation, and apoptosis; ASK1 is inhibited, and its activity is
lved in the activation of JNK and p38 pathways, as well as inflammatory
kB. This leads to cell survival and proliferation. In contrast, ERK phos-
When DNA is damaged, CHK1 inhibits CDC25 phosphatase activation on
point arrest; both p21 and p27 are inhibited andmove into the cytoplasm.
itors, arresting the G2/S checkpoint. Abbreviations: 4E-BP1, eukaryotic
l-regulating kinase 1; BAD, Bcl2-associated agonist of cell death; CDC25,
ad box protein O1, a.k.a. FKHR; IGF, insulin-like growth factor; IKKa, IkB
-kB, nuclear factor-kappa B; PRAS40, proline-rich AKT substrate 40 kDa;
x 1/2; YAP, Yes-associated protein.

Chem. Sci., 2025, 16, 15815–15835 | 15817
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catalytic actions at the membrane.64 In turn, phosphoinositide-
dependent protein kinase 1 (PDK1) binds to PIP3 through its C-
terminal Pleckstrin homology (PH) domain, with high affinity.
This binding is essential for PDK1 to phosphorylate and activate
AKT kinase, which also binds PIP3, through its PH domain.65 AKT
is phosphorylated by PDK1 and mTORC2, the next kinase in the
cascade. Thus, PI3K, PTEN, PDK1, and AKT are all recruited to the
membrane through the signaling lipid—unphosphorylated (PIP2;
PI3K) or phosphorylated (PIP3; PTEN, PDK1, and AKT). PDK1
activation was proposed to involve trans-autophosphorylation by
a PIP3-mediated face-to-face dimer.66 Finally, both kinase
cascades enter the cell cycle, which also involves cascading cyclin-
dependent kinases (CDKs) interacting with their cyclins in each
of the phases.67–69

Below, we rst describe the spatial structure of the cell
signaling systems, which permits efficiency and specicity. We
then ask how cascades, which start with single-substrate kinases,
and end at their bottoms with tens, or hundreds of substrates, can
still be designated specic. We discuss theirmutations, asking why
some have multiple, or many mutations, whereas others may
have few or practically none. We further investigate the kinases'
activation mechanisms and autoinhibition, which has evolved
for some kinases, but not for others, raising questions about why
the difference exists, why activation rates differ, and how these
could have arisen. We discuss kinase signal transduction in the
chemical framework of molecular condensates and the risk of
high dilution resulting from signaling overdrive in cancer due to
rapid cell growth. Finally, we survey available drugs for the main
kinases in these major cell proliferation cascades, asking
whether the cascades' distinct properties, organization and
environment can spawn new therapeutic strategies.

Altogether, our review stands apart in its innovative frame-
work, which we hope will help inspire new, creative therapies.
The dynamic spatial structure of cell
signaling systems

The common, simplied representation of the cell and signaling
pathways is helpful.48 Pathway diagrams depict single protein
nodes connected by edges, linking extracellular domains of
membrane-spanning receptors through the cytoplasm to the
nucleus. From the biophysical standpoint such diagramsmay be
misleading, obscuring cell coordination.70 Signaling requires
coordinated, transient physical interactions, which are not
captured in the classical MAPK and PI3K/AKT/mTOR diagrams.
They do not discern, or epitomize, exactly how a signal is regu-
lated and relayed. In reality, the kinases do not lie as rigid bodies
on a two-dimensional surface. A high level of cellular organiza-
tion requires signaling that imparts homeostasis, with the
internal environment varying in different cell types and cell
states. That is, the interactions (edges) between the proteins
should be transient, likely with certain time frames. For kinases,
the time is commonly short. The phosphorylation reaction oen
occurs within seconds or minutes,71 typically between 13 and 35
seconds for the receptors and between 25 and 200 seconds for
downstream kinases, underscoring the gap between simplied
15818 | Chem. Sci., 2025, 16, 15815–15835
diagrams and cell coordination. Our view of cell signaling has
been in terms of dynamic, short-lived, allosteric interactions
within and among distinct, spatially organized transient clusters.

Clustering is oen at the membrane, with some cluster
members anchored. This is the case for MAPK (Fig. 1) and Ras/
PI3K/AKT/mTOR (Fig. 2). While MEK and ERK are not
membrane anchored, Ras activation is, as is Raf's, and their
activation is in response to signals received at the membrane,
making them functionally linked to the membrane and trans-
ducing membrane-transduced signals. As to PI3K/AKT/mTOR,
PI3K binds the PIP2 signaling lipid which recruits it, and PIP3
recruits PDK1, AKT, and PTEN. mTOR is also at the cluster,
phosphorylating AKT. Nawrocki et al.72 offered an additional
advantage to dynamic clustering at the membrane. Their molec-
ular dynamics simulations suggested that nonspecic protein–
membrane interactions create a water-rich protein depletion zone
between themembrane and the crowded environment, leading to
an increased propensity of proteins to aggregate in bulk, but also
allow for accelerated diffusion on the surface of the membrane
when proteins occasionally come closer to the surface. Consid-
ering the crowded cytosols and membrane surfaces, this provides
a tantalizing hypothesis. Their results further suggested that
crowding near the membrane could constitute a nonspecic
mechanism for protein-induced membrane curvature formation.
At the same time, considering the rapid cell growth in cancer,
there is a risk of high dilution in the membraneless condensates.
The sparser protein interactions in the highly diluted environ-
ment can stall physiological processes, blocking the cell cycle, and
precipitating senescence.73,74 The key pathway in cell growth is
PI3K/AKT/mTOR, consistent with the observation that highly
active mTORC1 is a key player.75

Mesoscale assemblies are favored by active crowded envi-
ronments.76 Mechanistically, dynamic clusters can be viewed as
membraneless assemblies, formed by phase separation at the
membrane and extending into the cell, enhanced by scaffolding
proteins and the cytoskeleton.26,48 Membrane-associated
proteins participate in the phase separation.77 They maintain
the relevant homeostasis of their protein–protein interaction
networks.78 Membraneless molecular condensates involving
specic interactions appear to be an apt description for specic
and efficiently regulated kinase cascades.47 Their site-specic
localizations at the RTK (e.g., EGFR and PDGFR) oligomer
clusters, and the crosslinked signaling that they stimulate upon
growth factor binding, could be a prime example of how basic
physical chemistry guides efficient biological processes. We
propose that site-specic kinase condensates and the chemi-
cally specic interactions of their assemblies, as their core
composition, promote allostery and phosphorylation reactions,
regulating signaling and gene expression.
The cascades: number of substrates
and of mutations

The functions of the kinases clarify their associated substrates
and mutation numbers. As to substrates, both cascades start
with single, specic substrates for upstream kinases and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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culminate with many, coinciding with their diverse functions.
As to the number of mutations, the situation appears more
complex. While each of the PI3K/AKT/mTOR kinases evidences
multiple mutations, that is not the case for the MAPK components.

What we can learn from the number of substrates

Considering the number of substrates, B-Raf has one primary
substrate, which is MEK, specically the isoforms MEK1 and
MEK2.79,80 C-Raf (Raf-1) and A-Raf also primarily have only MEK.
MEK also phosphorylates a single substrate, ERK. This is its sole
function. ERK can phosphorylate hundreds of proteins (key
target proteins of ERK are shown in Fig. 1), with estimates
reaching over 1000 substrates.81 However, several kinases can
phosphorylate B-Raf, including AMP-activated protein kinase
(AMPK), which phosphorylates B-Raf at Ser729 and ERK at
Ser151 and Thr401, in a negative feedback loop. AMPK also
negatively regulates mTOR signaling.82 MEK is mainly phos-
phorylated by MEK kinase (MEKK1 or MAP3K1) and Raf, both
phosphorylate MEK on specic serine residues in its activation
loop.83 ERK is activated by MEK. As to PI3K/AKT/mTOR, PI3K
phosphorylates a single substrate PIP2. PDK1 is estimated to
phosphorylate approximately 23 proteins.84 AKT is estimated to
phosphorylate over 100 proteins58,85 (key target proteins of AKT
are shown in Fig. 2) and mTOR is estimated to phosphorylate
several hundred proteins.86 PI3K is not directly phosphorylated
by a single protein but activated mostly by conformational
changes triggered through interactions with RTKs. PDK1 is
activated by autophosphorylation.66,87 While mTORC2 and
mTORC1 phosphorylate AKT and S6K1, respectively, leading to
activation, active S6K1 can directly phosphorylate mTOR,88

indicating a bidirectional relationship.
So how does the specicity of the cascades work when starting

with a single substrate and ending with hundreds and still being
labeled specic? The numbers above tell the story, and they are
supplemented by considering cell types and cell states. We
believe that at least two main factors are at play. First, specic
cell types and states may be associated with different functions.
For example, cell differentiation occurs over developmental
time, while cancer involves overexpression of certain proteins
during evolution and metastasis. Second, not all possible
substrates are available in the condensates, which limits the
temporal repertoire and related regulatory mechanisms.

What we can learn from the number of mutations

As to mutations, the situation varies but can be understood.
PI3Ka (encoded by PIK3CA) has multiple mutations, the most
common hotspots at residues E542 and E545 in the helical
domain and H1047 in the kinase domain,89–91 as does PTEN,92–96

which has over 110 germline and 332 somatic mutations iden-
tied. There is no count for PDK1, although some are docu-
mented.97 Numerous possible mutations occur in the gene, with
varying prevalence in AKT98,99 and a signicant number in
mTOR.100,101 As to the MAPK pathway, B-Raf has over 30 muta-
tions, with the most prevalent being the V600E mutation, oen
observed in melanoma. It is also the most common in glio-
blastoma,102 in addition to papillary thyroid cancer, colorectal
© 2025 The Author(s). Published by the Royal Society of Chemistry
cancer, and serous ovarian cancer.103 MEK has over 20
mutations.104–106 However, ERK mutations are rare.

So how to understand these numbers? Overall, mutations in
kinases in PI3K/PDK1/AKT/mTOR (including PTEN phospha-
tase) are more abundant than inMAPK. Both pathways feed into
the cell cycle in the G1 phase. We suggest that the numbers are
consistent with PI3K/PDK1/AKT/mTOR being a cell growth
pathway, and MAPK is the major pathway driving cell prolifer-
ation. Oncogenic driver mutations lead to stronger
signaling.12,20,96 Excessive cell growth causes cytoplasm dilution
and contributes to senescence.74 Signaling which is too strong
can elicit OIS, oncogene induced senescence. The absence of
driver mutations in ERK indicates that cells cannot sustain
signaling, which is too strong. In line with this, the critical role
of ERK in cell proliferation could be why it has no auto-
inhibition mechanism and is the sole phosphorylation target of
MEK, which is the sole target of Raf. The catalytic rate of ERK is
high compared to many other protein kinases, ∼5 mM−1 min−1

mg−1; that is, in its fully activated state one ERK molecule can
catalyze the phosphorylation of a substrate at a rate of 5 milli-
moles per minute per milligram of enzyme protein. It is 5 to 6
orders of magnitude higher than ERK basal activity.33,107 In
addition to its single-substrate high selectivity, the catalytic rate
of MEK is also high, which is why it is used commercially. Raf
has a slower rate, likely due to its mechanism of activation
involving dimerization and autophosphorylation.108

Collectively, this informs us about the chemistry of the selectivity
and the chemical mechanics of the distributions of rates of the
MAPK cascade: slower at the top and rapid at the bottom.
The kinase structural organization,
activation and autoinhibition

The MAPK signaling pathway involves a cascade of three main
kinases, Raf, MEK, and ERK (Fig. 1). These kinases share some
structural similarities in their conserved kinase domains but
have distinct structural characteristics that allow them to
perform their specic functions in the cascade (Fig. 3). These
structural traits imply that kinases have different characteristics
and that they exhibit context-dependent behaviors shaped by
many different traits.109 Raf and MEK are primarily cytoplasmic
kinases, while ERK can be found both in the cytoplasm and in
the nucleus. MAPK initiates with Raf.110–114 B-Raf is auto-
inhibited by its Ras binding domain (RBD) and cysteine-rich
domain (CRD) interacting with its kinase domain and the 14-
3-3 dimer. 14-3-3 interaction stabilizes the autoinhibited
‘closed’ state, interfering with the kinase domain dimerization,
which is required for B-Raf activation.110 For monomeric B-Raf,
this autoinhibited conformation is highly populated, domi-
nating the landscape. Activated monomeric B-Raf is in the
‘open’ state. Since this is an unstable conformation, its pop-
ulation is a minor species. Membrane-anchored, GTP-bound
Ras interacts with the RBD, stabilizing the open B-Raf confor-
mation, which is further stabilized by the high affinity CRD–
membrane interaction. This allosterically shis the equilibrium
toward the now stable open state.111 The released RBD–CRD
Chem. Sci., 2025, 16, 15815–15835 | 15819
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promotes uctuations of the kinase domain, predisposing it for
its unique side-to-side inverse dimerization.115,116 We discovered
that the driving force for the side-to-side inverse dimerization is
the intermolecular p–p stacking at the dimer interface, which
replaces the intramolecular p–p stacking, thereby stimulating
the OFF-to-ON transition. Subsequent conformational events
culminate in the ON-state kinase domain stabilized by the N-
terminal basic motif in the dimer for Raf signaling.115 Why did
evolution opt for this unique side-to-side transverse dimerization
Fig. 3 Kinases in theMAPK pathway. The domain structures of Raf-1, B-R
ERK2 isoform) are depicted (top panel). The phosphorylation sites are
activation loop (A-loop). In the case of Raf, phosphorylation in the linker
domain structures of Raf-1, B-Raf, MEK, and ERK (middle panel). The mo
their respective crystal structures (PDB IDs: 9AYA and 6NYB). The model
respective crystal structures (PDB IDs: 7JUW and 8ZJV). Raf-1 exhibits
conformations. Crystal structures of the B-Raf/MEK tetrameric complex
the crystal structure (PDB ID: 7JUW) (bottom panel). The schematics of t
activation requires relieving its autoinhibited monomeric state by binding
of a side-to-side inverse homodimer.115 MEK phosphorylation also require
heterodimer acts as an allosteric activator for Raf. In the tetrameric comp
of Raf dimers in this organization slows Raf activation. Formation of the
suggest that these organizations were adopted by nature to slow MAPK

15820 | Chem. Sci., 2025, 16, 15815–15835
scenario? We suggest that the main reason is slow kinetics in the
rst MAPK step, whose subsequent steps are fast, thereby reining
proliferation.

MEK1 is activated by phosphorylation of Ser218 and Ser222
in its activation segment catalyzed by Raf, with the kinase
suppressor of Ras (KSR) proposed as a scaffold.117 Still, key
questions remain,112 including why, despite the similarity of the
kinase domains of B-Raf and KSR1, B-Raf is the key activator of
MEK—not KSR—and what the exact role of KSR is. We observed
af, MEK (shown here for theMEK1 isoform), and ERK (shown here for the
marked in red. Phosphorylation in the kinase domain occurs at the
and C-terminal tail targets the 14-3-3 binding during activation. Kinase
deled kinase domain structures of Raf-1 and B-Raf were derived from
ed kinase domain structures of MEK and ERK were adopted from their
active conformation, whereas B-Raf, MEK, and ERK exhibit inactive
(PDB ID: 4MNE) and the modeled KSR/MEK heterodimer derived from
he Raf/MEK and Raf/KSR/MEK tetramers are provided below. Thus, Raf
to active Ras and high affinity membrane attachment,110 and formation
s the formation of a tetramer in a specific organization.112 The KSR/MEK
lex, Raf and KSR form a side-to-side inverse heterodimer.112 Formation
Raf/MEK tetramer for MEK phosphorylation slows MEK activation. We
signaling upstream.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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that if KSR1 were to adopt an active conguration with an
extended A-loop resembling that in other protein kinases, then
the MEK1 proline-rich loop (P-loop) would extend as in the
active B-Raf/MEK1, triggering a more exible MEK1 A-loop and
rendering KSR1 B-Raf-like. KSR1/MEK1 can serve as a scaffold
or an allosteric activator.112 As a scaffold, in the heterodimer,
KSR1 interacts with B-Raf through a side-to-side interface,
resulting in the Raf/KSR1/MEK1 complex translocating to an
active B-Raf dimer which phosphorylates it.118,119 As an allosteric
activator, KSR1/MEK1 blocks KSR1 autoinhibition, which
promotes KSR/B-Raf side-to-side heterodimerization (refer to
Fig. 4 Kinases in the PI3K/AKT/mTOR pathway. The domain structures o
isoform), PI3Ka, and mTOR are depicted (top panel). As marked in red,
activation loop (A-loop). Molecular structures of PI3Ka and mTOR, and th
structures of PI3Ka and mTOR were derived from their respective crystal
PDK (bottom panel). The modeled AKT structure in an autoinhibited stat
PDK structure in an autoinhibited state adopted the AKT autoinhibition s
stabilities of their autoinhibited states differ.87 AKT has been crystallized
specific variable loop-mediated interaction between the PH and kinase
estimated to phosphorylate approximately 23 proteins, whereas AKT ph
have arisen from a weak interaction between the PH and kinase domai
substrate while binding PIP3, but phosphorylates S6K, SGK, and RSK kin
domain; FAT, FRAP, ATM, and TRRAP; FRB, FKBP–rapamycin binding.

© 2025 The Author(s). Published by the Royal Society of Chemistry
the schematics in Fig. 3) with a B-Raf monomer that has already
been recruited to the membrane by active Ras. Active B-Raf
phosphorylates a second MEK1 kinase.120 This mechanistic
scenario can explain MEK1 activation.

ERK dynamics has been reviewed in detail.121–125 Its activa-
tion mechanism poses a few questions, including why two
phosphorylation events occur on tyrosine and threonine residues in
the activation loop and why there appears to be a preferred phos-
phorylation order, rst pY187 and then pT185,126–131 and why no
autoinhibition. As to the phosphorylation, our recent molecular
dynamics simulations suggested that tyrosine is more
f AKT (shown here for the AKT1 isoform), PDK (shown here for the PDK1
phosphorylation in the kinase domains of AKT and PDK occurs at the
e superimposition of their kinase domains (middle panel). The in silico
structures (PDB IDs: 4OVV and 4JSP). Molecular structures of AKT and
e was derived from the crystal structure (PDB ID: 4EJN). The modeled
tructure. Despite the structural similarity of PDK and AKT, the relative
in its autoinhibited state, whereas PDK was not, due to the absence of
domains, resulting in a sparsely populated autoinhibited state. PDK is
osphorylates over 100. This evolutionary advantage of PDK is likely to
ns compared to AKT, ensuring that PDK effectively phosphorylates its
ases independently of PIP3. Abbreviations: PHD, Pleckstrin homology

Chem. Sci., 2025, 16, 15815–15835 | 15821
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accessible than threonine.132 Phosphorylating it extends the
activation loop favoring the successive phosphorylation of
threonine by making it more accessible, establishing an allo-
steric phosphorylation code in ERK activation. ERK phosphoryla-
tion states—unphosphorylated, monophosphorylated, and dual
phosphorylated—can effectively modify the strength of the
interactions of the lobes and ATP binding and stabilize ERK
active state, in which the catalytic domain can facilitate phos-
phoryl transfer. This is crucial for a kinase that activates over
hundreds of substrates,81 and whose sustained activation lasts
several hours, with a transient activation peaking at
∼20 min.121–125 As we noted above, the apparent absence of an
autoinhibited state underscores its critical role in cell prolifer-
ation, activating a very large number of substrates in different
environments and spatial locations and over developmental
time.
Fig. 5 Four primary MAPK pathways. The four major mammalian MAPK
These MAPK pathways are initiated by extracellular stimuli, such as growth
oxidative stress. These signals cascade to activators, including Ras family
Rac1 and Cdc42; adapter proteins, such as TRAF2 and TRAF6; and non
convey the signal to downstream protein kinases, which activate a cascad
ERK pathway, Rafs (MAP3Ks) activate MEK1/2 (MAP2Ks), which then activ
TAK1, activate MEK3/6 (or MKK3/6) and MEK4/7 (or MKK4/7), which then
JNK pathways. In the ERK5 pathway, Src activates MEKK2 and MEKK3, w
pathways activate multiple cytoplasmic proteins and nuclear transcriptio
apoptosis signal-regulating kinase; MEKK, MEK kinase; MLK, mixed lineag
tumor necrosis factor receptor-associated factor.

15822 | Chem. Sci., 2025, 16, 15815–15835
The major kinases in the cell growth pathway include PI3K,
PDK1, AKT, and mTOR (Fig. 2). PI3K is a lipid kinase, whereas
PDK1, AKT, and mTOR are protein kinases. The structure of the
kinase domain of PI3K is similar to that of mTOR, as both are
members of the PI3K-related kinase family (Fig. 4). The PI3K/
AKT/mTOR pathway initiates with PI3K activation by an RTK,
supported by active Ras at the membrane.133,134 As to PDK1, its
PH domain structure resembles that of AKT, as they belong to
the AGC family of kinases. However, the linker and C-terminal
region differ. We surmised that PDK1 samples AKT-like auto-
inhibited states. Consistently, the simulations identify
a conformation resembling that of AKT.87 As to why the auto-
inhibited PDK1 structure has not been captured by crystallog-
raphy while AKT was,135 unlike AKT, the monomeric
autoinhibited state of PDK1 is relatively only stable, with low
kinetic barriers that appear to further facilitate PDK1 PIP3-
pathways include the Ras/ERK, p38 MAPK, JNK, and ERK5 pathways.
factors, cytokines, UV irradiation, and internal or external processes of

proteins, such as H-Ras, N-Ras, and K-Ras; Rho family proteins, such as
-receptor protein tyrosine kinases, such as Src. These activators then
e involving at least three kinases: MAP3K, MAP2K, andMAPK. In the Ras/
ate ERK1/2 (MAPKs). Other MAP3Ks, including MEKKs, ASKs, MLKs, and
activate p38a/b/g/d and JNK1/2/3, respectively, in the p38 MAPK and
hich then activate MEK5 (or MKK5) and subsequently ERK5. The MAPK
n factors, resulting in various biological functions. Abbreviations: ASK,
e kinase; TAK1, transforming growth factor-b-activated kinase 1; TRAF,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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mediated shi to its active state. PDK1 linker is the key player,
with intramolecular interactions between the kinase domain,
the PH domain, and the linker region.87 The detailed activation
mechanism of mTOR has been challenging, which is not
surprising given its complexity. Simulations coupled with
experimental data recently established how its motifs can allo-
sterically govern its kinase activity.136 The disordered negative
regulator domain (NRD) is a key regulator. When in the catalytic
cle—it promotes a closed conformation; when outside—
mTOR prefers an open state, which exposes the substrate-
binding site on the FRB domain. mTOR's mechanism has
been dubbed “active-site restriction”. This mechanism features
protein domains partially blocking the catalytic site, acting as
a lever in permitting substrate access thereby controlling its
activity. Full activity requires specic signals unleashing
a conformational change to open the catalytic site allowing
substrate access.

Finally, above, we referred to the ‘classical’MAPK cascade. In
mammals, MAPK has four cascades137 (Fig. 5) including Ras/
ERK, p38, JNK, and ERK5 pathways (details in ref. 138). Some
feature alternatively spliced isoforms.139 Some have different
modes of regulation.140 They may be stimulated by different
signals and have distinct primary roles, although they may
complement each other under pharmacological regimes. The
ERK1/2 cascade is the key in proliferation, differentiation (in
development, including neurodevelopmental disorders141,142),
and migration;143 p38 in immune responses;143 JNK in
apoptosis;144 and ERK5 in cancer (proliferation),145 and known
to play a role in drug resistance to Raf.146,147
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Learning the cascades to generate
pharmacological perspectives
Drugs approved in the pipeline

We learn the kinase cascades. We survey available drugs in
these cascades and then ask whether the pathways' properties
can spawn new strategies. Starting with Ras, approved K-Ras-
targeting drugs148–152 include sotorasib (Lumakras) and ada-
grasib (Krazati) for K-RasG12C. Ras clinical trials include RMC-
6236, RMC-6291, and RMC-9805, and preclinical development
includes RMC-5127, RMC-0708, and RMC-8839 (Table 1), which
are being developed by Revolution Medicines, Inc.153 Recently,
RMC-7977 was developed as a broad-spectrum inhibitor tar-
geting both the mutant and wild type forms of multi-selective
Ras (ON).150,154,155 These Ras (ON) drugs are small molecule
inhibitors that act as molecular glues, forming a tricomplex
with Ras and cyclophilin A (CypA), preventing effectors from
binding to Ras and thereby disrupting downstream signaling.

There are several kinase inhibitors that target different
points along the MAPK pathway (Table 2), including B-Raf,
MEK, and ERK inhibitors (Fig. 6). B-Raf inhibitors prescribed
for BRAF mutations include vemurafenib (Zelboraf), dabrafenib
(Tanlar), and encorafenib (Braovi). The combination of
dabrafenib with trametinib (Mekinist) has been approved for
solid tumors.156 The combination of encorafenib with cetux-
imab (Erbitux) and mFOLFOX6 (leucovorin calcium (folinic
© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2025, 16, 15815–15835 | 15823
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acid) + uorouracil (5-FU) + oxaliplatin) has also been approved
for metastatic colorectal cancer.157 More are in clinical trials,
including the pan-mutant BRAF inhibitor claturafenib.158 Allo-
steric drugs for MEK mutations include trametinib (Mekinist),
cobimetinib (Cotellic), binimetinib (Mektovi), selumetinib
(Koselugo), avutometinib (Avmapki Fakzynja Co-pack), and
mirdametinib (Gomekli). MEK inhibitors are oen combined
with B-Raf inhibitors. Targeting ERK directly is challenging,13

although several inhibitors are available, including rineterkib,
HH2710, temuterkib, and SCH77298. Its multiple functions,
regulatory mechanisms, and complex feedback loops make it
difficult, leading to harnessing MEK drugs.

Kinase inhibitors that target different points along the PI3k/
AKT/mTOR pathway (Table 3) include PI3K, PDK1, AKT, and
mTOR inhibitors (Fig. 7). Drugs that treat PI3K include alpe-
lisib (Piqray), copanlisib (Aliqopa), duvelisib (Copiktra), ide-
lalisib (Zydelig), and inavolisib (Itovebi).159 Allosteric drugs for
PI3K mutations include tersolisib, RLY-2608, and LOXO-
783.159–161 As to PDK1, there are no direct FDA-approved drugs,
but several are in clinical trials, including GSK2334470, BX-
795, leelamine, OSU-03012, and PS210.162 Drugs that target
Fig. 6 Molecular structures of drugs targeting the Ras/ERK pathway. Ex
proliferation pathway. The molecular formula of each drug is given in pa
PubChem (https://pubchem.Ncbi.nlm.nih.gov), a public chemical datab
orthosteric drugs are colored red and allosteric drugs are colored blue.

© 2025 The Author(s). Published by the Royal Society of Chemistry
AKT in cancer include capivasertib (Truqap), ipatasertib, MK-
2206, perifosine, and miransertib.163 For mTOR, rapamycin
and its analogs are the main inhibitors, including ridafor-
olimus (Taltorvic), sirolimus (Rapamune), everolimus (Ani-
tor), and temsirolimus (Torisel). Sirolimus, everolimus, and
temsirolimus have already been approved by the FDA. Ros-
koski has recently updated the kinase-targeting small mole-
cule drugs, including their molecular weight, number of
hydrogen bond donors/acceptors, polar surface area, potency,
solubility, lipophilic efficiency, and ligand efficiency.162

Combinations of drugs listed above oen target mutants of the
same proteins, as well as different kinases in the same and in
complementary pathways.148,164
The cascades offer pharmacological perspectives

Drug resistance may emerge, and temporal drug combinations
are expected to have better outcomes than consecutive single
drugs. Our chemical framework underscores several points
when planning a pharmacological regimen. (i) Regulation of the
signal is at least on two levels: efficient kinase activation and
inhibition at the protein level, and homeostasis at the systems
amples of drugs targeting the B-Raf, MEK, and ERK kinases in the cell
rentheses. The three-dimensional drug structures were obtained from
ase of the National Library of Medicine (NLM). In the pathway diagram,
Table 2 summarizes the details of drugs in the Ras/ERK pathway.
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Fig. 7 Molecular structures of drugs targeting the PI3K/AKT/mTOR pathway. Examples of drugs targeting the PI3K, PDK1, and AKT kinases in the
cell growth pathway. The molecular formula of each drug is given in parentheses. The three-dimensional drug structures were obtained from
PubChem (https://pubchem.Ncbi.nlm.nih.gov), a public chemical database of the National Library of Medicine (NLM). In the pathway diagram,
orthosteric drugs are colored red and allosteric drugs are colored blue. Table 3 summarizes the details of drugs in the PI3K/AKT/mTOR pathway.
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level. (ii) Considering cell types and cell states is vital, as is (iii)
tumor evolution. To overcome drug resistance, learning single-
cell transcriptomes over time could offer valuable insights into
tumor evolution. Learning single cell data helps address the
tumor heterogeneity challenge. The variability in tumor
behavior is not random.165 Cell types and states are determined
by their networks and their transitions.43,166 The network of
a skin cell differs from that of a liver cell. Cells metastasize to
tissues where their normally expressed proteins are overex-
pressed. Melanomas overexpress the highest number of brain-
selective genes and this may contribute to melanoma metas-
tasis to the brain.167 Combining experimental and clinical data
with computational (AI) tools can unravel how these complex
data change over time. (iv) Position in the pathway matters:
single substrate B-Raf is upstream of the MAPK pathway and its
activation is slow. ERK downstream is challenging due to its
feedback loops, large number of substrates, fast kinetics and
continuous ON state,168–170 suggesting their pharmacological
combination. However, (v) kinases with high activation rates are
commonly considered better drug targets because their dysre-
gulation can have a more signicant impact on cellular
15828 | Chem. Sci., 2025, 16, 15815–15835
processes.171–173 (vi) Accounting for pathway crosslinks, feed-
back loops and connectors.164,174 Finally, (vii) kinase cascades
exist in biomolecular condensates associated with LLPS, liquid–
liquid phase separation. The condensates can be drug targets.175

The condensates may also enrich and prolong the retention of
small-molecule drugs.176 Even though the principles and func-
tions of condensate modifying drugs have been considered,177

development of specic drugs is challenging.
Conclusions

A single, constitutively active kinase can transform a healthy cell
into an oncogenic cell;178 pharmacology can vanquish kinase
activity, decimating oncogene ‘addicted’ cancer cells, while
sparing others. The active—but not the autoinhibitory—kinase
conformation has a awlessly organized structure. Next-
generation inhibitor development requires knowledge of the
activation mechanism and an insight into how activating
mutations transform a kinase into its constitutive state, and
importantly, foretell the emerging mechanism of drug resis-
tance. Acquired relapse mutations interfere with drugs that
© 2025 The Author(s). Published by the Royal Society of Chemistry
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block signaling by compensating for mutational lesions in the
same kinase or by an aberrant kinase hijacking an alternative
pathway, vertically or horizontally bypassing the blockade. The
future challenge of small molecule kinase inhibitors relies on
combinations of optimized drugs to target individual learned
cancer subtypes. It should also benet from innovative
perspectives.

Here, we learn kinase cascades to foster such innovations.
Formalizing and computing a biological multivariable system,
as here, is a complex challenging task. A possible avenue could
include a protein language model, which includes a protein
sequence model and its 3D structure, integrated with
a computer vision model to image information about the cell,
such as its type, localization, and spatial features.179
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