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DeepMetab: a comprehensive and mechanistically
informed graph learning framework for end-to-end
drug metabolism prediction

Yiling Zhou,? Dejun Jiang,? Xiao Wei,? Jiacai Yi,® Yikun Wang,? Youchao Deng?®
and Dongsheng Cao & *@

Predicting drug metabolism remains a long-standing challenge in pharmacokinetics due to the mechanistic
complexity of enzymatic transformations and the fragmented nature of current computational tools.
Existing models are typically limited to isolated tasks — substrate recognition, metabolic site
identification, or metabolite generation — lacking mechanistic fidelity, holistic integration, and chemical
interpretability. Here, we introduce DeepMetab, the first comprehensive and mechanistically informed
deep graph learning framework for end-to-end prediction of CYP450-mediated drug metabolism.
DeepMetab uniquely integrates three essential prediction tasks — substrate profiling, site-of-metabolism
(SOM) localization, and metabolite generation — within a unified multi-task architecture. It employs
a dual-labeling strategy that simultaneously captures atom- and bond-level reactivity, and infuses multi-
scale features including quantum-informed and topological descriptors into a graph neural network
(GNN) backbone. A curated knowledge base of expert-derived rules further ensures

mechanistic consistency during metabolite synthesis. DeepMetab consistently outperformed existing

reaction

models across nine major CYP isoforms in all three prediction tasks. Its strong generalizability was further
validated on 18 recently FDA-approved drugs, achieving 100% TOP-2 accuracy for SOM prediction and
accurately recovering several experimentally confirmed metabolites absent from the training set.
Visualization of learned representations reveals expert-level discernment of electronic characteristics,
steric architecture, and regiochemical determinants, underscoring the model's interpretability. Together,
DeepMetab represents a next-generation Al system that bridges symbolic reaction rules and deep graph
reasoning to deliver accurate, interpretable, and end-to-end metabolism predictions, offering tangible
value for both preclinical research and regulatory applications.

the leading causes of drug withdrawals, accounting for
approximately 15-30% of all cases.®> One well-known example is

Drug metabolism, also referred to as biotransformation, is the
biochemical transformation of pharmaceutical substances by
specialized enzymatic systems, predominantly occurring in the
liver.* This sophisticated process, involving the structural
transformation of xenobiotics through Phase I and/or Phase II
reactions, is fundamental for maintaining homeostatic physi-
ological functions and plays a pivotal role in drug development.®
Moreover, the formation of toxic or reactive metabolites can
lead to severe acute adverse effects, underscoring the impor-
tance of drug metabolism in safety evaluations. Over the past
decades, hepatic metabolism, particularly metabolism medi-
ated by cytochrome P450 (CYP450) enzymes, has been recog-
nized as a primary contributor to liver toxicity, which is one of
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the global withdrawal of troglitazone in 1997, following reports
of life-threatening liver failure caused by its CYP3A4-mediated
metabolites.*

Among numerous metabolic enzymes in the human body,
the cytochrome P450 enzyme system stands out as the most
critical Phase I metabolic pathway, responsible for approxi-
mately 75% of drug metabolism processes in the human body.?
As a typical monooxygenase, CYP450 primarily introduces polar
functional groups into substrate molecules via oxidation,
reduction, hydrolysis, and other related transformations,
thereby facilitating subsequent Phase II metabolism.® Given the
versatility of its catalytic functions, the CYP450 enzyme system
is subdivided into 18 families and 43 subfamilies, with isoen-
zymes from the CYP1, CYP2, and CYP3 families accounting for
the predominant metabolic activities.” Notably, different
isoenzymes exhibit substrate specificity, catalyzing the metab-
olism of specific drugs and their metabolites through distinct
functional transformations.® For instance, CYP2C19 catalyzes
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the conversion of voriconazole to its inactive N-oxide metabo-
lite;> CYP2D6 mediates the transformation of codeine into
morphine, enhancing its analgesic activity,’ while CYP3A4
catalyzes the conversion of nefazodone to its toxic metabolite 4-
hydroxynefazodone.'" These examples illustrate the functional
diversity of CYP450 isoenzymes and their profound impact on
drug efficacy and toxicity. Therefore, comprehensive under-
standing of drug metabolism processes, particularly the eluci-
dation of metabolic pathways and metabolites facilitated by
major CYP450 isoenzymes, holds significant theoretical value
and practical implications for pharmaceutical development and
safety assessment. However, traditional experimental
approaches are often constrained by high resource demands,
time-consuming procedures, and substantial economic costs."
In contrast, computational approaches offer an efficient alter-
native, significantly reducing resource consumption.

Current computational approaches on drug metabolism
prediction primarily employs two approaches. The first is
a data-driven method based on natural language processing
(NLP) models, such as MetaPredictor."* The second approach is
mechanism-based, emphasizing the systematic prediction of
metabolic enzymes, identification of sites of metabolism, and
application of relevant metabolic transformation rules to
generate metabolites, as exemplified by tools such as GLORYx"
and BioTransformer3.0."> While the data-driven approach offers
end-to-end metabolite prediction, it often overlooks critical
intermediate metabolic representations, such as metabolic
pathways, which are equally important. Additionally, its
performance in metabolite prediction tasks remains subop-
timal. For example, MetaPredictor,"” due to its reliance on
promiscuous datasets and the inherent limitations of text
generation algorithms, demonstrates limited accuracy in
metabolite generation. Specifically, its site of metabolism (SOM)
predictor achieves only 57.8% of TOP-1 accuracy on the test set.
Moreover, MetaPredictor”® frequently generates meaningless
text, requiring multiple filtering steps through automated
scripts following the prompt-based metabolite predictor
module.

Mechanism-based approaches, which offer more profound
insights into the intricate stages of metabolism, have gained
significant recognition. Nevertheless, current approaches face
critical challenges. Firstly, previous studies are typically limited
to isolated tasks and have not provided comprehensive
predictions for metabolic characterization, particularly in terms
of metabolite generation.'® For instance, CypReact' and CYP-
strate just concentrate on metabolizing enzyme prediction,
while SMARTCyp3.0,'> FAME3,* and CyProduct® (the CYP450
metabolism prediction module of BioTransformer3.0 (ref. 15))
only specialize in SOM prediction. Among these, FAME3 (ref.
20) does not differentiate between isoforms, while tools like
SMARTCyp3.0 (ref. 22) only predict metabolism for just three
CYP450 isoforms. Secondly, existing work constrained accuracy
stemming from algorithmic limitations and insufficient
exploitation of available features. While studies like Bi-
oTransformer 3.0," which integrates CypReact,"”” CyProduct,**
and a metabolite generation module,* claim to offer relatively
comprehensive coverage of major isoforms and metabolic
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phenotypes, key limitations remain. Specifically, the metabolite
generation module lacks induction of several critical reaction
rules (e.g., de-halogenation), its algorithmic framework relies
solely on simple machine learning (ML) models such as random
forest, and it utilizes only basic descriptors, restricting the
richness of the information employed. Unlike traditional ML
methods, deep learning (DL) also has been applied to SOM
prediction for its superior ability in molecular representation
learning. Vladimir et al*® (2023) demonstrated that Graph
Convolutional Networks (GCNs), extracting features directly
from molecular topology graphs, deliver more better perfor-
mance in predicting enzyme metabolic sites than traditional
ML methods. However, these methods rely on basic chemical
features, lacking critical reactivity and physicochemical details
necessary for accurate predictions, and depend on promiscuous
enzyme data, which fail to effectively distinguish the metabo-
lism of different enzymes. While ML and DL methods tend to
offer increased convenience and faster processing times,
quantum chemistry approaches are capable of delivering more
comprehensive and detailed information regarding molecular
interactions and mechanisms. In 2022, StarDrop* addressed
this by integrating semi-empirical quantum chemical descrip-
tors with ML techniques. Despite the limited dataset and the
use of simpler algorithms, this approach enhanced efficiency
and accuracy to a certain extent, suggesting that combining
computational chemistry with DL may produce more robust
and generalizable models for metabolic predictions. All in all,
despite significant advances, contemporary mechanistic-driven
metabolism prediction models remain largely confined to
discrete tasks, with their predictive capacity further hampered
by intrinsic algorithmic and representational limitations. These
constraints substantially undermine both accuracy and trans-
latability across the vast chemical and structural diversity of
drug-like molecules. Moreover, the persistent absence of
a comprehensive, systematized, and hierarchically structured
formalization of metabolic rules continues to fundamentally
compromise the robustness, reproducibility, and precision of
metabolite generation.

To address these challenges, we present the first integrated
and mechanistically grounded graph learning platform for end-
to-end prediction of CYP450-mediated drug metabolism. Unlike
prior integrated or end-to-end tools, BioTransformer 3.0 (ref.
15) relies on traditional ML heuristics with limited mechanistic
fidelity and scalability; the commercial platforms StarDrop>*
and ADMET Predictor® employ semi-empirical/force-field
methodologies that are computationally demanding and less
amenable to end-to-end learning; and MetaPredictor*® targets
mixed-enzyme metabolism without recovering pathway infor-
mation. In contrast, DeepMetab's mechanism-informed GNN is
the first deep-learning-based system that prioritizes pathway
inference while localizing SOMs and generating metabolites,
thereby broadening task coverage and mechanistic rigor,
culminating in a comprehensive end-to-end platform for
CYP450-mediated drug metabolism. Notably, its strong gener-
alizability was further validated on 18 recently FDA-approved
drugs, achieving 100% TOP-2 accuracy for SOM prediction and
accurately several confirmed

recovering experimentally
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metabolites absent from the training set. Visual analysis of
model outputs highlights advanced recognition of key elec-
tronic, steric, and regiochemical factors, attesting to its high
interpretability. Altogether, DeepMetab offers a uniquely robust
computational tool for advancing drug metabolism studies.

Methods and materials

Collection and compilation of substrate, SOM dataset, and
metabolic rules

Since data scarcity is one of the biggest challenges in metabo-
lism modeling, we have made extensive efforts to collect and
expand the dataset and metabolic rules to address this limita-
tion. Fig. 1 presents a systematic workflow of curation of
substate, SOM dataset and metabolic reaction rule compilation.
For the substate dataset, we constructed a molecular substrate
dataset comprising over 3800 compounds across 9 CYP450
isoforms. The positive samples were primarily sourced from the
research work of Zaretzki et al.>® and Yang et al.,””*®* encom-
passing experimentally validated molecular substrates metab-
olized by at least one CYP450 isoform. The negative samples
were systematically integrated from the datasets of existing
models including CypReact'” and CYPstrate,’® along with the
DrugBank*® database. More information about the curation of
the substrate dataset is available in the SI (S1.1 Section). During
data processing, the metabolic enzyme information for each
molecule was encoded into a binary vector (consisting of zeros
and ones), where each of the nine elements corresponds to the
metabolic status of a specific CYP450 isoform, as illustrated in
Fig. 1.

The SOM data in our study were compiled from multiple
sources, including the research work of Zaretzki et al.
modeling data from CyProduct,”* established databases such as
DrugBank® and BRENDA,** and relevant literature.** Compared
to the existing comprehensive EBoMD dataset,* our expanded
SOM dataset includes approximately one-third more
compounds, reaching over 900 molecular substrates. This
expansion substantially enhances both the richness and diver-
sity of the available SOM data. Considering the current chal-
lenges of ambiguous matching and incomplete summarization
of metabolic rules, we developed an innovative and efficient
site-labeling methodology that integrates the advantages of
both atom of metabolism (AOM) and bond of metabolism
(BOM) to ensure accuracy and uniqueness in metabolite
generation through reaction rules. This methodology encom-
passes two key aspects: first, we implemented a combined SOM
labeling approach utilizing both AOM and BOM to prevent
reaction type misclassification. In curation of the SOM dataset,
reactions occurring at single atomic site (such as hydroxylation
and heteroatom oxidation) are labeled using AOM, while reac-
tions involving atomic pairs (chemical bonds), including deal-
kylation, hydrolysis, and epoxidation, are labeled using BOMs.
This approach significantly reduces misclassification of
multiple reactions at the same site. As illustrated in the right
panel of Fig. 1 Rules, the parent molecule undergoes an N-
dealkylation reaction, leading to the formation of an exposed
amino group while the cleaved methyl group is converted to
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formaldehyde as a byproduct. Due to the AOM labeling at the C
adjacent to the N in amino nitrogen, conventional AOM anno-
tation methodology could lead to ambiguity with C-hydroxyl-
ation reactions — a common error in GLORYx.* To address this,
our refined annotation strategy effectively differentiates
between these reaction types by implementing N-dealkylation
as BOM and C-hydroxylation as AOM.

Second, we introduced the principles of minimal and
optimal labeling to address multi-site reactions. This approach
minimizes reaction site labeling when multiple sites are
involved, thereby reducing misclassification risks. The left
panel of Fig. 1 Rules demonstrates this principle with the
reduction of an a,B-unsaturated ketone carbonyl. Simultaneous
labeling of all changing chemical bonds could lead to
misidentification of the carbon-carbon double bond as an
epoxidation site—a limitation of BioTransformer rules.*® Our
minimal labeling approach effectively resolves such multi-site
reaction ambiguities. Finally, as shown in the SOM part of
Fig. 1, we encoded both AOMs and BOMs labeling as binary
vectors (consisting of zeros and ones), where element positions
correspond to the indices of respective atoms or bonds within
the molecule.

The metabolic reaction rules in this study were systemati-
cally compiled and summarized through extensive literature
review.*” Building upon existing rules from BioTransformer®
and SyGMa,* combined with our innovative metabolic site
labeling approach mentioned above, we developed a more
comprehensive set of metabolic rules through extensive litera-
ture collection and analysis. To achieve systematic and
comprehensive categorization, metabolic reactions were hier-
archically classified into four primary categories: oxidation,
hydrolysis, reduction, and dehalogenation. These were further
refined into 15 secondary subcategories and several tertiary
subcategories, exceeding the number of BioTransformer rules
by about 25% and demonstrating an improvement of over 10%
in comparative analyses with similar models, as illustrated by
the pie chart in the Rules section of Fig. 1. The implementation
of these rules was accomplished using the RDKit** package in
Python.

The GNN algorithm used in DeepMetab

Our model architecture consists of two main components: the
substrate prediction module, which determines the enzyme or
enzymes for which a given molecule can serve as a substrate,
and the SOM prediction module, which predicts the metabolic
sites of the molecule for these enzymes. Both modules are based
on a Graph Neural Network (GNN), a neural network tailored to
learning representations from graph-structured data, which is
particularly suitable for cheminformatics tasks due to its ability
to capture molecular structures and relationships.

Specifically, the workflow of GNN architecture consists of
three steps: initialization, message passing and updating, and
final embedding generation. During initialization, edge
features are derived from their individual properties (e.g., bond
type) and the features of connected nodes (e.g., atom types),
ensuring that the directed nature of the graph is respected as

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 The workflow of curation of substate and SOM dataset, and compilation of metabolic reaction rules. The diagram illustrates how various
substrates are processed by different CYP450 enzymes, leading to distinct SOM. It also showcases the hierarchical classification of metabolic
reaction rules, including key categories such as oxidation, reduction, hydrolysis, and dehalogenation, represented in the central pie chart.

initial messages do not rely on reverse messages. That message
mb, does not depend on its reverse message mb, from the
previous iteration. Eqn (1) shows how to initialize the edge
hidden states before the first step of message passing:

hgw = T( I/Vicat(xv,evw)) (1)

where W; € R is a learned matrix, cat(x,,e.,) is the concate-
nation of the atom features x, for atom v and the bond features

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci,, 2025, 16, 18884-18902 | 18887
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e.w for bond vw, and 7 is the ReLU activation function. In the
message-passing phase, edge features are updated by aggre-
gating information from neighboring nodes and edges,
enabling the model to capture higher-order interactions. Rather
than performing message passing based on the node hidden
states k. and messages m., our study operates on the edge
hidden states %, and messages m.,, during directed message
passing:

Wl =ty + Wl (@)

myl=Y_ h, (3)

ke (N(v)/w)

where W,,, € R is a learned matrix with hidden size 4. For t €
{1,...,T}, the hidden states of atoms can be derived after the
message passing phase. Similarly, the hidden states of bonds
can be obtained using the same method.

m, = Z hr (4)

we N(v)

hv = T( Wacat(xvamv)) (5)

After several iterations, the final embeddings for nodes and
edges are obtained. In the substrate prediction module, atom
states are derived by aggregating the features of connected
edges, while bond states are directly computed from the
updated edge representations, resulting in comprehensive and
informative molecular graph embeddings. In contrast, the SOM
prediction module does not aggregate atom and bond embed-
dings into a full molecular graph representation. Instead,
individual bond or atom embeddings are utilized directly for
predictive tasks.

These embeddings (%,) are then processed by task-specific
feed-forward neural networks (FFNN), which produce outputs
for each prediction.

y = flh) (6)

In this study, the model predicts the metabolism for nine
CYP enzymes, with predictions represented as FFNN outputs.
Specifically, the substrate prediction module generates predic-
tions at the molecular level, indicating whether the entire
molecule serves as a metabolic substrate. In contrast, the SOM
prediction module performs predictions at the atomic (node) or
bond (edge) level, identifying specific metabolic sites within the
molecule.

Multi-scale features used in the SOM prediction module

It has been well established that computational chemistry
methods offer unique advantages in metabolic site prediction,
where they can extract richer details of reaction processes and
demonstrate superior generalization performance for structur-
ally novel molecules despite their computational intensity.
Recent research by William et al. (2024)* further confirms that
the incorporation of quantum chemistry (QM) descriptors
significantly enhances model performance in molecular

18888 | Chem. Sci,, 2025, 16, 18884-18902
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property prediction, exhibiting exceptional accuracy and
generalization capability, particularly in small-dataset
scenarios. Based on those observations, this study leverages the
complementary strengths of deep graph learning and compu-
tational chemistry methods by incorporating additional multi-
scale quantum mechanical characterization into the GNN
framework.

We implemented differentiated feature construction strat-
egies for the two core modules: substrate prediction and SOM
prediction. The substrate prediction module primarily utilizes
basic topological information from molecular graphs given
that the distinction between substrates and non-substrates for
CYP enzymes depends largely on global molecular features
such as overall shape, size, and structural connectivity, which
can be effectively captured by simple graph representations,
while the SOM module employs a multi-scale feature repre-
sentation that systematically integrates molecular graph
structural information, atom-level reactivity descriptors, and
global molecular descriptors. Notably, the global molecular
descriptors derived from the molecule are directly stacked
onto each individual atomic feature within the molecular
graph, enabling comprehensive incorporation of both local
and global molecular properties. Further details are provided
in the SI (Section S2.3).

The evaluation of DeepMetab

In the model evaluation section of DeepMetab, we employed
distinct evaluation metrics for the Substrate, SOM, and Rules
modules, considering the unique characteristics of each, to
ensure a comprehensive and accurate assessment. For the
Substrates module, we utilized multiple metrics to evaluate
the model's discriminative capability between substrate and
non-substrate molecules. Specifically, we employed Area
Under the Receiver Operating Characteristic Curve (AUC) for
overall discrimination ability, Accuracy (ACC) for prediction
accuracy, along with additional metrics (Area Under the
Precision-Recall Curve (PRC), Recall, Precision (PRE), Sensi-
tivity (SEN), and Specificity (SPEC)) to assess performance on
imbalanced data. In terms of the SOM module, considering
the importance of holistic metabolic site prediction within
molecules, we implemented two distinct calculation
approaches: (1) computing SOM metrics across all molecules
collectively (denoted as A), and (2) calculating average SOM
metrics per molecule (denoted as R). While the former repre-
sents traditional evaluation methodology, the latter better
reflects the practical significance of SOM prediction by
accounting for individual molecular results. To comprehen-
sively evaluate this module, we employed AUC, PRC, AUC,
ACC, and Jaccard indices to assess the model's ability to
distinguish between metabolic and non-metabolic sites.
Additionally, TOP-N metrics were also introduced to evaluate
the ranking accuracy of predicted metabolic sites. Finally, for
the Rules module, we incorporated Jaccard and TOP-N metrics
to thoroughly evaluate both the accuracy of metabolite
generation and the reliability of top-ranked predictions.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Curated training and test datasets for the substrate module of nine cytochrome P450 enzymes

Enzyme CYP1A2 CYP2A6 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4
Training Substrate 416 102 154 157 369 314 396 148 1081

Non-substrate 1719 1736 1684 1681 1779 1776 1694 1690 1910
Test Substrate 40 14 12 12 33 29 27 8 63

Non-substrate 115 120 123 120 114 120 117 122 113

Results and discussion

Overview of dataset and metabolic rules

The substrate training dataset comprises over 3500 molecules
(Table 1), with approximately 1500 being metabolized by one or

more metabolic enzymes. Fig. 2B shows a comparison of
substrate and non-substrate molecule counts for each of the
nine CYP isoforms, revealing a significant class imbalance. This
imbalance is particularly pronounced in ‘niche’ isoforms such
as CYP2A6 and CYP2E1, where the ratio of positive to negative
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Fig. 2 Comprehensive analysis of substrate distribution and SOM dataset characteristics. (A) SOM training dataset analysis. (al) The overall
composition of reaction types highlights the proportion of metabolic reactions mediated by CYP450 enzymes. (a2) Differential proportions of
CYP450 isoforms to metabolic processes, illustrating their relative importance. (a3) Detailed classification of reaction types and their respective
proportions to the overall metabolism. (B) Substrate training dataset analysis. (b1) The analysis of the substrate dataset presents the class
distribution of substrates and non-substrates among CYP450 isoforms. (b2) Distribution of substrate compounds categorized by specific
CYP450 isoforms.
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Table 2 Curated training and test datasets for the SOM module of nine cytochrome P450 enzymes
Enzyme CYP1A2 CYP2A6 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4
Training Substrates 313 104 152 150 251 238 297 129 550
AOM 276 80 125 115 224 210 209 98 420
Non-AOM 2515 718 1135 1374 2502 2201 2694 724 6105
BOM 214 72 108 105 152 142 217 90 361
Non-BOM 3272 890 1609 1850 2371 2441 3854 923 7561
Test Substrates 17 9 13 14 17 16 27 10 40
AOM 293 86 123 112 220 197 213 107 390
Non-AOM 2649 793 1136 1310 2532 2145 2671 798 5713
BOM 230 83 113 108 157 153 225 115 348
Non-BOM 3438 1083 1657 1884 2627 2578 3949 1169 7182

cases is less than 1:10. In contrast, more common isoforms
display a relatively better balance. For example, CYP3A4 has
a positive-to-negative ratio of approximately 1:2. This ratio
reflects not only its metabolic activity but also the greater
availability of data for these more prevalent enzymes. The pie
chart in Fig. 2B highlights the distribution of substrate counts
among the different CYP isoforms, with CYP3A4 accounting for
34% of the total substrates, underscoring its prevalence and
significance in metabolism compared to the other isoforms.
The further UpSet plot (Fig. S1.1A) reveals that over half of the
molecules are metabolized by multiple enzymes, with 16
molecules being substrates for all enzymes. These findings
demonstrate strong correlations among the metabolic tasks of
different isoforms, suggesting that a multi-task modeling
approach would be beneficial.

SOM training dataset contains nearly 1500 reactions from
874 substrate molecules (Table 2). We performed a compre-
hensive statistical analysis of the nine CYP enzymes, focusing
on the number of substrates classified as AOM and non-AOM,
as well as BOM and non-BOM. The results reveal that the largest
number of substrates are metabolized by CYP3A4, CYP1A2, and
CYP2D6, with CYP3A4 accounting for more than half of the
total, reflecting its association in the SOM training dataset with
420 AOMs and 361 BOMs, while CYP1A2 follows with 276 AOMs
and 214 BOMs, and CYP2D6 shows 724 AOMs and 90 BOMs.
This highlights the metabolic significance of these enzymes,
which facilitates the development of models based on this
dataset to achieve more effective applications.

Further analysis is performed on the datasets. It is evident
that hydroxylation reactions (Fig. 2a3) are the most prevalent,
constituting nearly half of the reactions. The next most
common type is cleavage reactions, which include O-deal-
kylation, N-dealkylation and ester hydrolysis and account for
about one-third of the reactions. Fig. 2a1 shows the distribution
of the proportions of each reaction type in each enzyme, with
certain reaction types showing significantly elevated frequen-
cies in specific enzymes. For instance, SNP-oxidation reactions
occur at approximately twice the average frequency in CYP2A6
compared to other isoforms, while epoxidation reactions
demonstrate notably higher prevalence in CYP2E1 than in other
variants. In contrast, hydroxylation and cleavage reactions
maintain consistently high proportions across all isoforms,

whereas rearrangement reactions exhibit uniformly low

18890 | Chem. Sci., 2025, 16, 18884-18902

frequencies across all variants. These findings highlight that
modeling each enzymatic isoform respectively is crucial for
accurately predicting metabolic outcomes and understanding
drug interactions, efficacy, and toxicity. To display the shared
and unique substrate molecules of the SOM dataset more
intuitively among different metabolic enzymes, an UpSet plot
was constructed as shown in Fig. S1.1B. It can be observed that
the metabolic enzyme with the highest number of unique
substrate molecules is CYP3A4, with 193 unique substrates.
However, these unique molecules account for only about 1/3 of
all CYP3A4-metabolized molecules. Additionally, in the entire
dataset, the sum of shared substrates metabolized by more than
one enzyme molecule amounts to 473, which exceeds the
number of unique substrate molecules, totaling 401. These
observations suggest a high degree of interconnectivity among
the metabolism of these enzymes.

To elucidate the reaction rules we formulated, and the SOM
annotation methodologies employed for various metabolic
processes, Table 3 delineates the principal categories along with
illustrative examples of metabolic reactions mediated by
CYP450 enzymes. The dataset comprises a total of 6 AOMs and
14 BOMs as examples, meticulously classified according to their
labeling types, which reflect the specific enzymatic activities
involved. In our classification of reaction types, we adopted
a streamlined approach to enhance clarity and comprehen-
siveness. For instance, within the category of dealkylation
reactions, we have effectively consolidated N-dealkylation, O-
dealkylation, and S-dealkylation into a unified category termed
X-dealkylation (shown in No. 12 of Table 3). This category
captures the broader concept of heteroatom dealkylation,
facilitating a clearer understanding of the underlying mecha-
nisms. Conversely, when examining ester hydrolysis reactions,
we have distinguished among assorted groups, such as thio-
esters and nitrate esters, differentiating them from general
carbon esters due to their significant biochemical variances
(shown in No. 13 and No. 14 of Table 3). This distinction
underscores the need for precise labeling in the study of
metabolic pathways. To further exemplify these classifications,
the “SOM annotation method” column provides representative
instances of specific reaction types, illuminating the signaling
pathways involved. Notably, the red markings indicate the
labeled sites on the molecular structures, drawing attention to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 A systematic compilation of metabolic reaction rules governing cytochrome P450 enzymes
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critical functional groups affected during the metabolic
transformations.

Overview of DeepMetab workflow

As illustrated in Fig. 3, DeepMetab consists of five distinct
modules, including the input module, responsible for pro-
cessing initial molecular features; the substrate module, which
predicts the metabolic enzymes for a given molecule; the SOM
module, dedicated to identifying the metabolic sites based on
the predicted metabolic enzymes for a given molecule; the rules
module, which defines metabolic transformation rules; and the
output module, which seamlessly integrates these components
to generate comprehensive metabolic pathways and products.
The input module was used to convert molecular SMILES
into molecular graphs with multi-scaled features. For both
substrate and SOM components, we implemented multi-task
GNN?*® architecture to construct models for metabolic substrate
prediction and metabolic site prediction. This multi-task
approach shares underlying feature representations and
learning parameters across different CYP isoform prediction
tasks, enabling the model to capture common characteristics
among isoforms while preserving their unique features. In the
training of multi-task models, loss weighting strategies®” have
been introduced to address the imbalance between positive and
negative samples in the dataset, enabling the model to pay more
attention to underrepresented classes during training. In our
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pipeline, the substrate module initially analyzes compounds to
predict which metabolic enzymes will process them. Once these
enzyme predictions are established, the SOM module leverages
this information to determine which enzyme-specific model
should be applied, enabling accurate prediction of sites of
metabolism. What's more, to achieve precise metabolic site
prediction, we developed another two complementary multi-
task models within the SOM module: one dedicated to identi-
fying AOM and another focused on predicting BOM. This dual-
model architecture enables comprehensive characterization of
metabolic sites from both atomic and chemical bond
perspectives.

Next, in the rules module, we established a systematic
metabolite generation framework that precisely matches pre-
dicted metabolic sites from the SOM module with a pre-con-
structed metabolic reaction rule database to generate
corresponding metabolite structures. To enhance prediction
efficiency and accuracy, we implemented a differentiated
matching mechanism based on site types, employing distinct
reaction matching strategies for AOM and BOM respectively.
Finally, in the last output module, we developed a systematic
integration to provide comprehensive and structured prediction
results. The system provides structured data output systemati-
cally documenting all predicted metabolizing enzymes, meta-
bolic sites, metabolites, and scoring metrics. This

comprehensive output format ensures thorough
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Fig. 3 The workflow of DeepMetab. The input module begins by converting molecules into molecular graphs or graph structures seamlessly
integrating multi-scale descriptors into the atomic feature representations. From there, the substrate module analyzes graph representations to
predict which CYP450 isoforms will participate in metabolism. The SOM module then builds upon this analysis to precisely identify specific sites
of metabolism within the molecule. Once these sites are determined, the rules module applies established reaction mechanisms to generate
potential metabolites. The process culminates in the output module, which presents a comprehensive integration of the results, clearly di-
splaying the predicted substrates, metabolic pathways, and resulting metabolites in a cohesive manner.

documentation and facilitates subsequent analysis and inter-
pretation of the prediction results.

The performance of DeepMetab for substrates and SOM
prediction

In the substrate prediction module, we conducted a compre-
hensive comparison between single-task and multi-task GNN
models through five-fold cross-validation of the training data-
set, with results presented in Fig. 4. The optimal parameters
and models were determined through five-fold cross-validation
and grid search, with detailed hyperparameter specifications
provided in the SI (Section S2.1). Fig. 4D illustrates the
comparative analysis of performance metrics between multi-
task and single-task approaches, with more detailed enzyme-
specific results provided in Table S3.1. In Fig. 4D, bar plots
represent the weighted average values across tasks for each

18892 | Chem. Sci,, 2025, 16, 18884-18902

metric, calculated according to the number of substrates for
each task, and line plots indicate the variance in five-fold cross-
validation. The analysis reveals that the multi-task model
outperforms its single-task counterpart in AUC, ACC, PRE,
Jaccard and SPEC metrics. A particularly noteworthy observa-
tion emerges from the variance analysis: across all evaluation
metrics, the multi-task model exhibits remarkably lower vari-
ance in five-fold cross-validation, approximately an order of
magnitude smaller than the single-task model. This substantial
reduction in variance strongly indicates that multi-task learning
significantly enhances model stability and robustness. Fig. 4E
presents the detailed ROC and PRC curves for individual tasks,
demonstrating excellent performance characteristics for multi-
task strategy.

In the SOM prediction module, both single-task and multi-
task models employ the GNN algorithm framework across nine

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Performance evaluation of DeepMetab. (A) Five-fold cross-validation results of SOM prediction showing average performance metrics as
bars and variance as lines; orange and green represent multi-task and single-task results respectively, with the darker color indicating optimized
dataset split. (B) Five-fold cross-validation results with progressive descriptor integration from light to dark blue (all are based on an optimized
multi-task method). (C) ROC and PRC curves comparing single task versus multi-task performance for SOM models. (D) Five-fold cross-vali-
dation results of substrate model showing performance metrics as bars and variance as lines; orange and green represent multi-task and single-
task results respectively. (E) ROC and PRC curves comparing single task versus multi-task approaches for the substrate model.

CYP enzyme isoforms. For predicting the SOM of each enzyme
isoform, our approach inherently encompasses predictions for
both AOM and BOM. Fig. 4A reveals that the multi-task model
consistently outperforms its single-task counterpart across all
evaluation metrics, demonstrating an average improvement of
2-3%. Notably, the most substantial improvement is observed
in the PRC-A metric, reaching approximately 5%. Furthermore,

© 2025 The Author(s). Published by the Royal Society of Chemistry

the multi-task approach exhibits superior performance in terms
of variance, achieving lower values across all evaluation metrics.
As illustrated in Fig. 4C, the performance analysis across
different CYP isoforms reveals distinct patterns for SOM
prediction. The major CYP enzymes including CYP1A2,
CYP2D6, and CYP3A4-demonstrate remarkable performance in
terms of AUC and PRC metrics, achieving AUC scores of 0.92,
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0.93, and 0.94 respectively in the single-task framework.
However, enzymes with limited substrate data, such as CYP2E1,
failed to achieve an AUC score exceeding 0.9, presumably due to
data scarcity constraints affecting model performance. Notably,
the implementation of multi-task learning substantially
improved the performance on these data-limited tasks, with
CYP2E1 showing a significant enhancement of 4% in AUC
score. Similar performance improvements were consistently
observed in the PRC curves across these isoforms. This
consistent reduction in variance, coupled with improved
performance metrics, strongly indicates that the multi-task
learning strategy not only significantly enhances various aspects
of model performance in SOM prediction but also substantially
improves the stability of models.

To further enhance the reliability of models, we imple-
mented an optimized data split strategy for the SOM dataset.
While the initial approach solely considered substrate propor-
tions, our refined methodology ensures proportional represen-
tation of various reaction types across all folds (detailed
optimization procedures are documented in the SI (Section
S2.2)). This optimization strategy resulted in a more balanced
dataset distribution. As demonstrated in Fig. 4A, this refined
methodology yielded improvements across all weighted average
evaluation metrics. Notably, the PRC-R metric showed the most
substantial enhancement, with an improvement of approxi-
mately 1%. The multi-task model incorporating optimized data
partitioning demonstrated superior performance, achieving
significant improvements across all evaluation metrics. This
comprehensive enhancement suggests that the combination of
multi-task learning and optimized data partitioning creates
a synergistic effect, leading to more robust and reliable model
performance for SOM prediction.

Furthermore, we conducted comprehensive ablation
studies to investigate the impact of multi-scale information
integration on the performance of SOM prediction. Based on
the multi-task framework, we designed three experimental
groups categorized by information source: (1) DeepMetab
without atom-level reactivity descriptors and global molecular
descriptors (DeepMetab (w/o atom, mol)), (2) DeepMetab
without global molecular descriptors (DeepMetab (w/o mol)),
(3) DeepMetab without atom-level reactivity descriptors
(DeepMetab (w/o atom)), (4) full integration of baseline,
atomic, and molecular descriptors, DeepMetab. Fig. 4B
demonstrates that both the incorporation of atom-level reac-
tivity descriptors and molecular descriptors outperforms the
DeepMetab (w/o atom, mol) across all evaluation metrics.
Furthermore, DeepMetab achieves the best performance on all
metrics except for Jaccard, where it trails behind DeepMetab
(w/o mol) by only 0.4%, which highlights that the integration
of the multi-scale information into the GNN framework is
important for reliable prediction of SOM.

DeepMetab outperforms other prediction tools for
comprehensive drug metabolism prediction

We first compared the substrate prediction performance of
DeepMetab with existing models (CYPstrate and CypReact)

18894 | Chem. Sci,, 2025, 16, 18884-18902
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using the testing dataset. The evaluation employed two metrics:
ACC and Jaccard index, with results presented in Fig. 5A.
Fig. 5a1 shows the average performance across all CYP450 iso-
forms, where DeepMetab demonstrated modest improvements
over both CYPstrate and CypReact. Radar plots in Fig. 5a2-3
detail the isoform-specific comparisons, revealing consistent
superiority of DeepMetab in ACC metrics across almost all
isoforms and overall better performance in Jaccard indices.

Then, we conducted comprehensive external validation of
the SOM module by comparing DeepMetab's predictive capa-
bilities with established models in the field, including FAME3,
SMARTCyp3.0, and the CYP450 component (CyProduct) of Bi-
otransformer3.0. Since FAME3 does not differentiate between
CYP450 isoforms, the comparison focuses on overall CYP450
metabolic site prediction capability (Fig. 5b1). DeepMetab
consistently outperformed FAME3 across all metrics, with
particularly notable improvements of approximately 10% in
TOP-1 and TOP-2 metrics (Fig. 5b1). Fig. 5b2 presents
a weighted average comparison with CyProduct, where weights
were assigned based on substrate quantities for each enzyme
isoform. DeepMetab demonstrated superior performance
across all metrics, with a particularly significant advantage
exceeding 10% in the TOP-1 and TOP-2 metrics. The compar-
ison with SMARTCyp3.0, shown in Fig. 5b3, focuses on the three
CYP450 isoforms (CYP2C9, CYP2D6, and CYP3A4) that
SMARTCyp3.0 can predict. The weighted average results across
these three enzymes demonstrate DeepMetab's substantial
advantages, with performance improvements exceeding 10% in
multiple metrics (Jaccard, TOP-1 and TOP-2). To provide
detailed insights into isoform-specific performance, Fig. 5b4-8
presents radar plots comparing performances across different
CYP450 isoforms. DeepMetab exhibited superior performance
across most isoforms, with particularly notable improvements
in low-data isoforms such as CYP2A6, CYP2B6, and CYP2CS.
Substantial improvements were also observed across other
isoform-specific tasks.

To further evaluate DeepMetab's rule coverage and metabo-
lite prediction accuracy, we conducted a comparative analysis
with two other rule-based metabolite prediction platforms, with
detailed comparison methodology and specific results pre-
sented in the SI (Section S3.3). The results are presented in
Fig. 5c, where performance was assessed using Jaccard, TOP-1,
and TOP-2 metrics for the final metabolite predictions. Fig. 5c1
illustrates the overall comparison of CYP450 metabolite
predictions without isoform differentiation, while Fig. 5c2-4
present isoform-specific comparisons across different CYP450
isoforms. The analysis demonstrates DeepMetab's overall
superior overall performance, with only a relatively notable
exception in the Jaccard metric for CYP2D6. In all other cases,
DeepMetab either significantly outperformed or matched the
competing platforms, with particularly impressive advantages
in TOP-1 and TOP-2 metrics, where improvements exceeded
10%. These results not only validate DeepMetab's excellence in
metabolic site prediction but also demonstrate the robustness
of our metabolic rule system. The consistent superior perfor-
mance across multiple metrics and isoforms underscores the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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comprehensive nature of our

prediction.

approach to metabolite

DeepMetab reveals complex chemical environment learning
of metabolic sites

Chemical environments, determined by electronic, steric, and
stereo electronic characteristics, are crucial for predicting
metabolic sites. Our graph-based message-passing neural
network effectively learns these features for accurate predic-
tions. To further analyze DeepMetab's learning and uncover
patterns of metabolic sites, we visualized the hidden represen-
tations of the SOM module, as shown in Fig. 6. Fig. 6A illustrates
the ¢-SNE clustering results of hidden layer representations for
atoms in various metabolic site environments from a random
selection of over 300 molecules in the SOM training set. The

© 2025 The Author(s). Published by the Royal Society of Chemistry

color scheme represents the cosine similarity between atoms in
specific environments and actual metabolic atoms (shown in
the SI (Section S3.4)), with deeper blue indicating a higher
likelihood of being a metabolic atom. The visualization analysis
reveals several significant patterns: aromatic carbon atoms,
particularly in ortho- and para-positions, predominantly display
blue coloration, aligning with empirical knowledge and expert
rules regarding phenolic hydroxylation reactions. o-Carbon
positions exhibit a distinctive bimodal distribution, with
detailed case analysis (Fig. 6C) revealing that red-colored sites
adjacent to the —-SO,- group may be metabolically inhibited due
to high polarity (Case 1 and 2). Sulfur and phosphorus atoms
show approximately equal distribution between metabolic and
non-metabolic tendencies, with Case 5 and Case 6 indicating
that red-colored phosphorus sites typically represent atoms at
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with actual metabolic sites. (C) Representative case studies of atoms in their corresponding chemical environments. (D) Representative case

studies of bonds in their corresponding chemical environments.

their highest oxidation state, making further metabolic reac-
tions thermodynamically unfavorable. Additionally, large
regions of quaternary nitrogen (T3N) sites display red colora-
tion, correlating with the empirical observation that quaternary
nitrogen atoms, lacking hydrogen atoms, are generally less
susceptible to oxidation.

Fig. 6B presents the visualization analysis of chemical bonds
across various environmental contexts, employing the same
methodology. The analysis reveals that C-N bonds and aromatic
bonds predominantly exhibit blue coloration, indicating higher

18896 | Chem. Sci., 2025, 16, 18884-18902

predicted reactivity. Similarly, certain C-O, C-X, and aromatic
bonds demonstrate elevated reactivity potential. Specific
examples illustrated in Fig. 6D provide deeper insights into
these patterns. For instance, the red coloration of certain C-O
bonds can be attributed to the absence of available hydrogen
atoms on the carbon center (Case 2), which precludes the
empirically common dealkylation reactions at these sites.
Conversely, other examples highlighted in the figure represent
sites with historically documented high metabolic reactivity
(Case 1, 3, 4). In addition, Case 5 and Case 6 are examples of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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aromatic carbon-carbon bonds with high similarity scores.
Based on empirical knowledge, epoxidation typically occurs at
this site. The slightly lower similarity in Case 5 compared to
Case 6 may be due to the influence of the electron-withdrawing
chlorine substituent on the benzene ring.

Through this comprehensive hidden layer visualization
analysis, we discovered that the model can deeply learn and
understand the complex chemical environments of metabolic
sites, thereby developing expert-like “insight” for accurately
predicting metabolic sites. This visualization not only uncovers
multiple potential patterns in CYP450-catalyzed metabolism
but also significantly enhances the interpretability of the model.

Case studies of clinically approved drugs

To demonstrate the practical utility of DeepMetab, we investi-
gated its application in several clinically relevant scenarios. To
further highlight the significance of predicting functional drug
metabolites, we carefully selected a range of classic cases

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.7 Comprehensive visualization of DeepMetab’s metabolic pathway predictions for three drug cases. The diagram illustrates predicted drug
metabolism patterns categorized by functional outcomes. (A) Toxicity pathway of amiodarone leading to desethylamiodarone (DEA), (B) inac-
tivation pathway of codeine metabolizing to norcodeine, and (C) activation pathway of flecainide transforming into hydroxy-flecainide. Key
SOMs are highlighted within each molecular structure, with prediction scores displayed adjacent to each metabolic transformation. The
involvement of specific CYP450 isoforms is mapped to each reaction pathway, demonstrating the model's ability to predict both the metabolites
and the responsible enzymes in drug metabolism.

encompassing key scenarios such as metabolic toxicity, meta-
bolic inactivation, and metabolic activation. Notably, these
compounds possess novel structures that were not included in
the training dataset, underscoring the model's robust general-
ization ability and its capacity to address critical challenges in
drug metabolism prediction.

First, we examined amiodarone (AMD), an FDA-approved
antiarrhythmic drug (1985) known for its potential hepatotoxicity
risk,* where CYP450-mediated metabolites are suspected to be
significant contributors to liver injury. DeepMetab identified
CYP2C8 and CYP3A4 as the responsible enzymes (with scores of
0.86 and 0.93), predicted the metabolic site with a probability of
0.98, and - by applying the corresponding N-dealkylation
biotransformation rule - accurately anticipated the formation of
desethylamiodarone (DEA). This metabolite has been experi-
mentally validated by Shohei et al* to induce hepatotoxicity
through oxidative stress mechanisms. To further evaluate Deep-
Metab's capability in predicting functionally significant metabo-
lites, we analyzed codeine metabolism (Fig. 7B). Codeine, one of
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Fig.8 The prediction for orally administered FDA-approved drugs (2020-2024). The figure presents the entire DeepMetab prediction workflow,
where predicted metabolic enzymes and their associated scores are annotated in text, while predicted metabolic sites are distinctly highlighted
using a light color. The figure also specifies the prediction probabilities and the categories of applied metabolic transformation rules. Specifically,
TOP-1indicates that the true metabolite ranks first among the predictions, while TOP-2 denotes that it appears within the top two predictions.

the earliest opioid medications, undergoes metabolic trans-
formations that are critical for its therapeutic effects.* Specifi-
cally, DeepMetab accurately predicted the formation of morphine,
the CYP2D6-mediated active metabolite included in the training
dataset. Moreover, DeepMetab successfully predicted norcodeine,
the inactive metabolite primarily formed via CYP3A4 - with
enzyme and metabolic site prediction scores both at 0.99 - by
applying the corresponding dealkylation biotransformation rule,
despite this metabolite being absent from the training data.
Additionally, we investigated flecainide, a classical sodium
channel blocker first marketed in Europe in 1982. Its metabolism
involves CYP450-mediated pathways, with CYP3A4 being the

18898 | Chem. Sci., 2025, 16, 18884-18902

primary enzyme responsible for the formation of hydroxy-flecai-
nide. This metabolite retains similar electrophysiological prop-
erties to those of the parent drug, as demonstrated in previous
studies.”* DeepMetab accurately predicted the formation of
hydroxy-flecainide, identifying CYP3A4 as the responsible enzyme
with a score of 0.77 and the metabolic site with a score of 0.98,
before successfully applying the dealkylation biotransformation
rule-highlighting CYP3A4's role in the dealkylation process
(Fig. 7C). These applications demonstrate DeepMetab's reliability
and practical value in predicting bioactive metabolites beyond the
training dataset and show excellent generalization ability across
diverse chemical structures and metabolic pathways.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Retrospective validation of DeepMetab based on the latest
approved drugs by FDA

To further assess the predictive capability of DeepMetab for the
metabolites of previously uncharacterized drug molecules, we
conducted a validation study using oral drugs approved by the
FDA within the past four years. Importantly, these drugs were not
part of the training data used to develop the DeepMetab model,
ensuring an independent evaluation of its performance. For this
step, we utilized DeepMetab to predict the CYP-mediated metab-
olism of these novel drugs. A significant challenge in this task is
that the metabolic product information for most newly approved
drugs remains undisclosed, and even when available, it typically
includes only the most critical 1-2 metabolites rather than offering
a comprehensive profile. To address this constraint, we identified
18 drugs from the literature that have clearly documented meta-
bolic pathways and associated metabolites.”*™ Using these as
benchmarks, we systematically evaluated the predictions made by
DeepMetab, with the results presented in Fig. 8.

DeepMetab accurately predicted the primary CYP-mediated
metabolite (TOP-1) for 14 out of 18 drugs, achieving approximately
78% accuracy, while for the remaining four drugs (Mobocertinib,
Ritlecitinib, Quizartinib, and Palovarotene), the correct metabolite
appeared as the second-best prediction (TOP-2), yielding an overall
TOP-2 accuracy of 100%. This performance reflects the model's
effective end-to-end prediction capability: it successfully identified
several major metabolizing CYP enzymes, such as CYP3A4 and
CYP2D6, with scores ranging from 0.81 to 1.00. It also predicted
fewer common enzymes, for example, the metabolism of Infi-
gratinib by CYP2C8 with a score of 0.74. Concurrently, DeepMetab
precisely localized the metabolic sites, often scoring above 0.9,
exemplified by the dealkylation site on avacopan (0.97) and
hydroxylation on daprodustat (0.92). Finally, the model applied
specific metabolic transformation rules - such as dealkylation,
hydroxylation, epoxidation, S/P-oxidation, and hydrolysis - to
generate detailed metabolite structures consistent with enzyme
and site predictions, resulting in accurate and comprehensive
metabolic predictions. This high performance highlights not only
the reliability and accuracy of DeepMetab but also its ability to
prioritize the most relevant metabolites of a drug. Specifically,
DeepMetab excelled at ranking the most important metabolites at
the top of its predictions, demonstrating their practical value in
drug metabolism research. Furthermore, DeepMetab demon-
strated the ability to identify and prioritize the most significant
metabolites with high accuracy, even in cases where detailed
metabolic pathway information was limited. These findings
underscore the potential of DeepMetab to significantly advance
the study of drug metabolism, particularly for new and unexplored
molecules, by providing accurate and actionable predictions that
can guide further experimental investigations.

Conclusions

In this study, we introduced DeepMetab, a novel end-to-end
deep learning framework specifically designed to improve the
prediction of CYP-mediated drug metabolism. DeepMetab
tackles critical limitations of prevailing approaches—including

© 2025 The Author(s). Published by the Royal Society of Chemistry
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confinement to isolated tasks, insufficient mechanistic fidelity,
lack of holistic integration, and limited chemical interpret-
ability—as well as challenges arising from inadequate datasets
and the absence of comprehensive predictive frameworks.
DeepMetab significantly advances the state-of-the-art in meta-
bolic predictions and integrates substrate profiling, SOM
localization, and metabolite generation through advanced data
representation techniques, achieving substantial performance
improvements over existing methods while providing valuable
mechanistic insights.

Despite these notable advancements, several methodological
and practical limitations remain to be addressed in subsequent
research. The expansion of training datasets to encompass
a more diverse chemical space and rare metabolic trans-
formation patterns would significantly enhance the model's
generalizability across the pharmaceutical chemical space.
Furthermore, the incorporation of more sophisticated enzy-
matic interaction mechanisms and phase II conjugation path-
ways would yield a more comprehensive metabolic prediction
system that better reflects the complexity of in vivo drug
biotransformation.

Future methodological enhancements will concentrate on
integrating additional cytochrome P450 isoforms and non-CYP
metabolic enzyme systems to facilitate comprehensive metabo-
lite prediction and construction of more holistic drug metabo-
lism networks. We intend to extend DeepMetab's predictive
domain to encompass a broader spectrum of metabolic enzyme
systems, thereby providing more exhaustive metabolic prediction
capabilities across multiple biotransformation pathways.
Concurrently, we will develop an intuitive web-based interface to
facilitate accessibility for researchers and pharmaceutical scien-
tists, enabling seamless integration of these computational
predictions into established drug discovery and development
workflows. Collectively, these advances position DeepMetab to
compress preclinical timelines by rapidly surfacing metabolic
hotspots and high-risk metabolites, thereby guiding targeted in
vitro follow-ups (e.g., isoform panels, TDI/reactivity screens) and
rational prioritization of metabolically favorable scaffolds; in
turn, earlier identification of CYP-mediated bioactivation and
reactive species is expected to curtail late-stage attrition, while
mechanism-aware, end-to-end predictions—informing SOM-
blocking substitutions, soft-spot hopping, and isoform-selective
optimization—enable safer compound design and tighter inte-
gration into DMTA workflows, ultimately improving decision
quality across discovery and development.
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