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Continuous side reactions between a biomass-derived hard carbon (HC) surface and the electrolyte affect
its cycling stability and fast-charging performance. Therefore, constructing a stable solid electrolyte
interface (SEI) while facilitating easier desolvation of sodium ions in the electrolyte is key to achieving
stable fast charging. Theoretical calculations confirmed that NazP can induce the formation of a Na*
solvation structure with low solvent coordination, thus achieving a lower desolvation energy barrier and
faster Na* diffusion capability through the SEI. We used bamboo powder, partially de-lignified, as
a precursor for hard carbon. After sublimating red phosphorus in a sealed tube with deposition upon
cooling, a phosphide layer was constructed on the hard carbon surface. During charge-discharge
cycling, an SEI enriched with NazP components was formed on the surface. The final full cell assembled
with HC-3 wt% P matched with the cathode exhibited excellent rate performance, with a reversible
discharge capacity of 78 mAh g™t at 10 C, significantly exceeding the performance of recently reported
bamboo powder-based hard carbon. The assembled pouch cell maintained stable cycling for 1000
cycles at 0.5 C. This work provides guidance from the perspective of SEl regulation and design for
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Introduction

As the global energy transition proceeds and the search
continues for greener sources of energy, the renewable energy
generation and electric vehicle industries are experiencing
rapid growth, leading to an increasing demand for large-scale
energy storage technologies.”> Sodium-ion batteries have
emerged as one of the strongest candidates for next-generation
energy storage systems due to the abundant resources for their
production, low cost, and environmental friendliness.**
Nevertheless, the commercialization of sodium-ion batteries is
still fraught with numerous challenges, among which the
performance limitations of the anode materials are particularly
prominent. Hard carbon (HC) materials are advantageous
because of their low cost, high sodium storage capacity, and
satisfactory cycling stability, and a significant amount of
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research has been conducted in the study of anode materials for
sodium-ion batteries.>®

In recent years, there has been immense potential for
biomass-derived hard carbon materials to serve as anode
materials for sodium-ion batteries, primarily because of their
abundant availability, renewability, and tunable structure.”®
Biomass precursors, such as lignin and cellulose, possess rich
natural porous structures and heteroatoms (e.g., oxygen and
nitrogen), which, after carbonization, can form hard carbon
materials with distinctive microstructures and surface chemical
properties.*'® However, for fast-charging applications, a myriad
of challenges remain for biomass-derived hard carbon
materials.

For instance, the diversity of biomass precursors leads to
significant structural variations in the carbonized products, and
thus, it is difficult to precisely control performance.*** Addi-
tionally, because the intrinsic conductivity of hard carbon
materials is low, their electrochemical performance at high
rates is limited.**'* Furthermore, side reactions between the
hard carbon surface and the electrolyte can also compromise
their cycling stability and fast-charging capabilities.">'® There-
fore, enhancement of the fast-charging performance of
biomass-derived hard carbon anodes through rational struc-
tural design and surface modification strategies has become
a critical issue that needs to be addressed in current research.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Recent studies on biomass-derived hard carbon and rapid
charging of graphite anodes have provided valuable insights
that can be leveraged to enhance the fast-charging performance
of biomass-derived hard carbon anodes. Chen et al.” exposed
the free radicals in natural bamboo by appropriate lignin
removal, and the abundant free radicals facilitated the utiliza-
tion of precursor fragments during the carbonization process,
leading to the formation of a developed carbon layer with
a substantial amount of closed pores. This structural charac-
teristic enabled the hard carbon to achieve an optimal revers-
ible capacity of 350 mAh g ' under a current density of
20 mA g~ '. However, its reversible capacity significantly decayed
to only 60 mAh g~ ! when subjected to a high current density of
1000 mA g~ .

Although the removal of lignin alone proved beneficial for
the initial reversible capacity of bamboo-based hard carbon, the
rate capability of this material did not meet the requirements
for fast-charging anodes. Notably, Sun et al.*® proposed that the
solid electrolyte interphase (SEI) components play an important
role in the desolvation of alkali metal ions during fast charging.
Their findings revealed that SEI materials with higher Li"
adsorption energy were capable of achieving faster desolvation
processes. By constructing an ultrathin phosphorous layer on
the graphite surface, they orchestrated an in situ transformation
to a crystalline LizP-based SEI with high ionic conductivity.

Drawing inspiration from research on interfacial construc-
tion for fast-charging anodes, we designed the ideal SEI for fast-
charging anodes to be thin with high Na* conductivity, which
supports the rapid transport of Na" at the electrode surface.
Herein, following the sublimation of red phosphorus and
subsequent deposition upon cooling, a phosphide layer was
constructed on the surface of the hard carbon derived from de-
lignified bamboo powder as a precursor. During charge-
discharge cycling, an SEI rich in NazP components was formed
on the surface, while a solvation sheath with a low solvent
coordination number formed near the inner Helmholtz plane
(IHP) at the NasP interface, thereby supporting rapid Na*
desolvation.

By inhibiting the continuous reduction of the electrolyte at
the anode surface, a thinner and more homogeneous SEI layer
was generated, resulting in a full cell composed of an O3-NaNiy,
sFe;3Mn; 30, cathode. Consequently, this O3-NaNi,;Fe;,3Mn;,
30,//3 wt% P HC full cell exhibited excellent rate performance,
with a reversible discharge capacity of 78 mAh g~* at 10 C,
significantly outperforming recently reported bamboo powder-
based hard carbon. Moreover, the assembled pouch cell main-
tained stable cycling for 1000 cycles at 0.5 C, demonstrating the
feasibility of this method for the commercial application of
hard carbon anodes.

Results and discussion

The phosphide layer of bamboo powder-based hard carbon is
formed through the sublimation deposition of red phosphorus,
as illustrated in Fig. 1a. During the charge-discharge process,
an SEI enriched with NazP components is generated, which
contributes to the hard carbon anode's superior

© 2025 The Author(s). Published by the Royal Society of Chemistry
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electrochemical performance.” Fig. 1b compares the X-ray
diffraction (XRD) results of the original bamboo powder-based
hard carbon and hard carbon composites with varying mass
percentages of red phosphorus. All samples exhibit two broad
peaks at approximately 23° and 44°, corresponding to the 002
and 100 crystal planes of graphite, respectively, indicating that
the samples retained the typical amorphous structure of hard
carbon.?® Moreover, the (002) peak shifts to a lower angle with
increasing red phosphorus content, indicating that phosphi-
dation enlarges the interlayer spacing of the graphite domains
within the hard carbon.

Furthermore, the N, adsorption-desorption isotherms
(Fig. 1c and S1, SI) show that the specific surface area of the red
P/hard carbon composites is significantly smaller than that of
the original hard carbon (original hard carbon: 23.2 m* g %;
1 wt% P, 3 wt% P, and 5 wt% P phosphated hard carbon: 6.73,
4.46, and 2.53 m*> g, respectively). Pore size analysis of the
samples, conducted using the Barrett-Joyner-Halenda (BJH)
method as shown in Table S1, indicates that the average pore
size of the phosphated hard carbon is approximately 1.5 nm,
which is smaller than that of the original hard carbon (3.7
nm).>**? The reduction in specific surface area and average pore
size indicates that red phosphorus was successfully deposited
on the surface of hard carbon, partially occluding its pores.

According to the X-ray photoelectron spectroscopy (XPS)
shown in Fig. S4 (SI), the phosphated hard carbon exhibits
a characteristic peak of P at approximately 130 eV compared to
the original hard carbon. A detailed analysis of the high-
resolution P 2p spectrum reveals peaks centered at 130 and
130.7 eV, corresponding to P 2p;, and P 2p,,,, respectively.
Additionally, peaks at 131.6 and 134.3 eV were attributed to P-C
and P-O-C bonds, respectively. These findings suggest that red
phosphorus successfully forms a composite with hard carbon
through robust chemical interactions.”

Small-angle X-ray scattering (SAXS) was further employed to
analyze the closed pore characteristics that were not detectable
by N, adsorption, as shown in Fig. S2 (SI). A plateau in the
intensity variation was observed at 0.1 A™*, which was attributed
to the presence of closed pores within the carbon structure.”**
In this region, the scattering intensity of the original hard
carbon is notably higher than that of the 3 wt% P-HC, indicating
that the original hard carbon contains additional closed pores.
These closed pores facilitate the intercalation and insertion of
sodium ions, contributing to sodium storage within the plateau
region of the electrochemical profile. However, this structural
feature is disadvantageous for rapid sodium storage kinetics,**
while partial embedding of phosphorus into the carbon
framework enlarges the interlayer spacing and decreases the
number of stacked closed pores, thereby increasing rapid
sodium storage.*”

Compared to the original hard carbon (Fig. S5a, SI), the
transmission electron microscopy (TEM) images and corre-
sponding elemental mapping (Fig. 1e) of the 3 wt% P-HC
further corroborate the uniform distribution of phosphorus
on the surface of the hard carbon. Scanning electron micros-
copy (SEM) images (Fig. S6, SI) reveal that irregular block-like
shapes were observed for all the hard carbon morphologies,
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Fig. 1 Synthesis and structural features. (a) Schematic diagram showing the preparation of a phosphorated hard carbon anode and working
mechanism of the phosphating layer design. (b) XRD patterns of all as-prepared samples. (c) N, adsorption—desorption isotherms. (d) Raman
spectra. (e) HAADF-TEM images and element mapping of C, O, and P of HC-3 wt% P. (f) HRTEM images of HC-3 wt% P.

with the distribution of red phosphorus in the 5 wt% P-HC
showing some degree of aggregation and unevenness. Further
analysis of the graphite crystallite structure before and after
phosphidation using high-resolution transmission electron
microscopy (HRTEM) illustrates that the interlayer spacing of
graphite crystallites in 3 wt% P-HC (0.375-0.392 nm) is larger
than that of the original hard carbon (0.356-0.378 nm) (Fig. 1f
and S5b, SI). This indicates that the bonding of red phosphorus
with hard carbon has expanded the interlayer spacing of
graphite crystallites, which is beneficial for the rapid insertion
and extraction of Na' in phosphated hard carbon.?*?°

Fig. 1d depicts the Raman spectra of several hard carbon
samples, and Fig. S3 (SI) illustrates the peak-fitting results. By
calculating the peak area ratio of the D band at 1350 cm™ " and
the G band at 1570 cm™"' in the Raman spectra of the HC
samples (Fig. 1d and S3, SI), it is evident that the AD/AG ratio
increases in the phosphated anodes compared to the original

16680 | Chem. Sci, 2025, 16, 16678-16689

hard carbon. This observation indicates that red phosphorus
penetrates the carbon framework, thereby enhancing the degree
of amorphization and introducing point defects within the
structure.®

By integrating molecular dynamics (MD) simulations with
density functional theory (DFT), we investigated the effects of
conventional SEI components (including organic constituents,
Na,O, Na,CO; and NaF) as well as NazP on the Na* solvation
structure at the electrode-electrolyte interface. The findings
further unveil the primary reasons for the enhanced Na'
transport kinetics observed in biomass-derived hard carbon
featuring a phosphated layer. Fig. 2a and S8 depict the utiliza-
tion of MD simulations to compare Na;P with conventional SEI
components, including organic components (sodium ethylene
monocarbonate (NEMC)) and inorganic components (Na,O,
Na,CO; and NaF), in terms of their influence on the Na'
solvation structure at the anode interface.’'-*?

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The theoretical investigation of the desolvation process of Na* within (a) NEMC, Na,O, Na,CQOs, NaF and NazP based SEls. (b) Coordi-
nation number of the solvation structure near the IHP on various SEl species based on the MD simulation results. (c) The adsorption energy of
various SEI components for Na*. (d) The Na* transfer energy barrier on the NEMC (100), Na,O (111), Na,COs (101), NaF (111), and NazP (101)
surfaces. (e) Schematic diagram of Na* across through different anodes SEI.

Based on the computed radial distribution function, the Na*
solvation structures near the IHP were analyzed (as shown in
Fig. 2b and S9, SI).*** For the Na'-O (ethylene carbonate (EC)/
diethyl carbonate (DEC)) and Na‘'-P (PF,~) pairs, the primary
peaks of g(r) appear at 2.4 A and 3.2 A, respectively. Among all
SEI components, EC exhibits a significantly higher coordination
number than that of DEC and PFs . Among all these solvated
interfacial systems, Na' undergoes partial desolvation on the
Na;P surface, exhibiting the lowest coordination number of 3.79
Na', with lower solvent coordination being more prone to des-
olvation before diffusing through the SEI.***” On the interface of
organic component NEMC, Na' is almost entirely solvated by
approximately 3.13 EC molecules and 0.9 DEC molecules, with
the lowest number of PFs~ ions (0.76) in the solvation shell.
Furthermore, compared to NEMC, Na' exhibits an even lower
coordination number on the surfaces of Na,O, Na,CO;, and
NaF.

Fig. 2c presents the density functional theory (DFT) calcu-
lations of Na* adsorption behavior on different SEI components
(Fig. S7, SI). NasP exhibits the strongest adsorption energy for
Na', resulting in distinct Na' solvation structures near the THP
at the anode interface. The calculations reveal that Na® can
easily undergo desolvation on the NazP surface.***

© 2025 The Author(s). Published by the Royal Society of Chemistry

Furthermore, as shown in Fig. 2d and S10 (SI), the diffusion
energy barriers of Na" on different SEI component crystal facets
were computed and analyzed.

An exceptionally low Na" diffusion energy barrier of only
0.59 eV was observed on the Na,P (101) surface. In contrast, Na*
diffusion on the NEMC (100) surface requires a significantly
higher energy barrier of 3.91 eV (Fig. 2d). To more clearly
understand the effects of different SEI components on the
solvation structure and sodium ion transport kinetics, the
summary data are shown in Table S2. Combining the above MD
and DFT calculation results, the construction of a phosphide
layer, as illustrated in Fig. 2e, facilitates Na® desolvation,
reduces continuous electrolyte consumption, and leads to the
formation of a thinner SEI enriched with inorganic
components.***

To elucidate the practical role of phosphorization treatment
in enhancing the electrochemical performance of bamboo
powder-derived hard carbon anodes, half-cells using different
hard carbon materials as the working electrode and sodium
metal as the counter and reference electrodes were employed
for electrochemical characterizations. First, the HC-3 wt% P
anode exhibited a contact angle of 11.3° with the electrolyte
(commercial 1 M NaPFg in EC/DEC (v/v = 1:1)) (Fig. 3a), which

Chem. Sci., 2025, 16, 16678-16689 | 16681
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Fig.3 Electrochemical performance of the phosphatized HC anodes. (a) Apparent contact angle between the electrode material and electrolyte. (b)
Comparison between the sloping capacity and plateau capacity of samples based on the second charge curves at 30 mA gfl. (c) The GCD curves of
samples at current densities of 30-1200 mA g~*. (d) Rate performance. (e) The charge curves for each sample at 4 C (1 C = 300 mA g™3). (f) Long-
term cycling stabilities at 600 mA g™, (g) Radar plot evaluating the electrochemical properties of the pristine-HC and 3 wt% P HC electrodes.

was significantly lower than that of pristine-HC (26.6°), sug-
gesting enhanced wettability, which expands the electrode/
electrolyte contact area and reduces the interfacial charge
transfer impedance. In addition, more uniform electrolyte
infiltration promotes the growth of a dense SEI in the first cycle,
effectively inhibiting side reactions and interface instability.
Moreover, the initial charge-discharge curves at 0.1 C (Fig. 511,
SI) indicate that with increasing phosphorization content, the
initial discharge capacity increases, which should be attributed
to the reaction between sodium metal and the phosphide layer,
forming NazP components in the SEI. Despite a marginal
reduction in the initial coulombic efficiency (ICE), the HC-
3 wt% P anode (ICE = 82%, 293 mAh g~ ') retained a reversible
capacity nearly comparable to that of the pristine-HC anode
(ICE = 88%, 291 mAh g™ ).

Further analysis of the second-cycle charging process
(Fig. 3b) revealed that with an escalating phosphorization

16682 | Chem. Sci., 2025, 16, 16678-16689

content, the contribution of reversible capacity in the high-
voltage sloping region (relative to Na'/Na > 0.1 V)
increases.**** The HC-3 wt% P anode exhibited the highest
sloping-region capacity contribution at 52.2%, compared to
48.5% for the pristine-HC anode. Because the enhancement of
capacity in the sloping region facilitated rapid sodium storage,
the phosphorized hard carbon exhibited a superior rate
performance (Fig. 3c and d) in comparison to pristine-HC. At
current densities of 30, 60, 150, 300, 600, and 1200 mA g, the
HC-3 wt% P anode maintained relatively high capacities of 286,
270, 256, 242, 228, and 206 mAh g ', respectively, with the
capacity retention from 0.1 C to 4 C rate testing also increasing
from 54.9% for pristine-HC to 72.7% (Fig. S12a, SI).

The poor reversibility of pristine-HC during rate cycling tests
may be attributed to continuous electrolyte decomposition
caused by an unstable SEI. The galvanostatic charge-discharge
(GCD) curves at a high rate (4 C) further indicate that the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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phosphorized anode delivered a higher reversible capacity
(Fig. 3e), particularly in the high-voltage region (relative to Na'/
Na > 0.1 V), where the capacity increased from 105 mAh g~*
(pristine-HC) to 121 mAh g~ ' (HC-3 wt% P). This suggests that
phosphorization enhances the high-voltage reversible adsorp-
tion of bamboo powder-derived hard carbon, thereby facili-
tating rapid Na' transport kinetics.

As for the cyclability shown in Fig. S12b (SI), the HC-3 wt% P
anode maintained the highest charge-specific capacity of 223
mAh g~ and a high capacity retention of 87.9% after 450 cycles
at a current density of 300 mA g '. At an elevated current
density of 600 mA g, the charge-discharge cycling stability
exhibited progressive enhancement with an increase in the red
phosphorus content, as illustrated in Fig. 3f. After undergoing
1000 cycles, the HC-3 wt% P anode demonstrated the highest
specific capacity of 178 mAh g, accompanied by a retention
rate of 73.3%. This represents a notable improvement when
compared to the pristine-HC anode, which exhibited a specific
capacity of 100 mAh g~ " and a retention rate of 58.9%.

Even when subjected to an ultra-high current density of
3 Ag ', the HC-3 wt% P anode displayed superior stability and
specific capacity over the course of 450 cycles, significantly
surpassing the performance of the pristine-HC anode (refer to
Fig. S12c in the SI). Furthermore, when evaluated at high
current rates, the charge-discharge performance of the HC-
3 wt% P anode displayed exceptional cycling stability in
comparison to recently reported HC anodes (refer to Fig. S13
and Table S3 in the SI). The notable enhancement in cycling
stability at high current rates is likely attributable to the initial
formation of a more stable interface within the phosphorized
hard-carbon anode (a detailed exploration of this phenomenon
is provided in the subsequent sections), which was further
coupled with a decrease in irreversible side reactions with the
electrolyte.

The surface morphology of the hard carbon anode after 10
cycles was scrutinized using SEM and atomic force microscopy
(AFM). Fig. 4a and c present a pristine-HC anode that exhibits
significant agglomeration and pronounced surface roughness
before and after cycling, whereas the HC-3 wt% P anode largely
retained its original morphology after cycling. The magnified
SEM images (Fig. S14, SI) further reveal fewer surface deposits
and a smoother surface for the HC-3 wt% P anode. More
localized and precise AFM images, as depicted in Fig. 4b and
d reveal that, in contrast to the rough and uneven surface of the
pristine-HC anode, the HC-3 wt% P anode developed a much
smoother surface after cycling, which is consistent with the
aforementioned observations.

Based on the observed differences in surface morphology, it
can be speculated that compared to pristine hard carbon, the
phosphorized hard carbon anode can mitigate side reactions of
the electrolyte and suppress its continuous degradation, thereby
forming a thinner SEI. The microstructure of the SEI was further
observed through TEM. As shown in Fig. 5a, compared to the SEI
on the pristine-HC electrode, which exhibited an uneven thick-
ness (28-50 nm), the SEI observed on the HC-3 wt% P electrode
was thinner and more uniform (15-22 nm).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Further XPS with varying etching depths was conducted to
investigate the structure and composition of the SEI on the HC
anode after 10 cycles. By fitting detailed XPS peaks and binding
energies, it was determined that while the SEI composition was
similar across the samples, the content of its various compo-
nents varied (Table S4, SI). Fig. 4e and f (Fig. S16, SI) present the
high-resolution spectra of C 1s, O 1s, F 1s, P 2p, and Na 1s for
the pristine-HC and HC-3 wt% P anodes after cycling. In the C
1s spectrum, peaks appeared at 284.7 eV (C-C), 286.1 eV (C-O),
and 286.7 eV (COO), while the O 1s peak at 533.8 eV (C-O/O-H)
corresponded to organic components such as ROCO,Na and
(CH,0CO,Na),, which are generated from solvent decomposi-
tion. The C 1s peak at 289.7 eV (CO3), the O 1s peak at 531.5 eV
(Na-0), and the F 1s peak at 685.5 eV (Na-F) were attributed to
the inorganic components Na,CO;, Na,O, and NaF,
respectively.*>**

As the sputtering depth increased, the proportion of inor-
ganic components in the SEI on the HC-3 wt% P anode was
generally higher than that in the SEI on the pristine-HC anode
(Fig. 4g), indicating that the presence of the phosphorization
layer facilitated the formation of an SEI rich in inorganic
components on the anode surface. Such a structure not only
exhibited greater stability, but also assisted in reducing the
continuous consumption of the electrolyte.”®*® Furthermore,
a higher proportion of inorganic components in the SEI
enhanced the conductivity of Na', which is crucial for the
significantly enhanced rate performance of the HC-3 wt% P
anode.

Time-of-flight secondary ion mass spectrometry (TOF-SIMS)
was utilized to more qualitatively analyze the compositional
distribution within the SEI. As shown in Fig. 4h, i, S17, and S18
(SI), ion fragments corresponding to relevant inorganic
components, including NaF, NaP~, NaCO; , and NaO~ were
detected. Additionally, the C,H,O™ fragment was attributed to
organic compounds.*® The NaP~ fragment content was consis-
tently higher across the surface of the HC-3 wt% P anode
compared to the pristine-HC anode (Fig. 4j). This was associ-
ated with the preferential formation of NasP during the initial
discharge stage due to the interaction between the phosphori-
zation layer and sodium metal. Additionally, the NaF ™ fragment
also exhibited a higher concentration on the surface of the HC-
3 wt% P anode. In contrast, the C,H,O™ fragment was primarily
concentrated on the surface of the HC-3 wt% P anode, with
a significantly reduced presence at greater depths.

The quantitative statistical results from the 3D visual maps
indicated that for the cycled phosphorized anode, inorganic
components were abundant and dominated the entire SEI, while
organic components were present in lower amounts and were
mainly distributed on the outer surface of the SEI. The combi-
nation of a thinner, inorganic-rich, and chemically uniform SEI
facilitated the formation of a homogeneous Na' diffusion
channel on the HC anode surface.**** EDS mapping further
confirmed that there was greater uniformity in the distribution of
Na in the cycled phosphorized anode (Fig. S19, SI).

The inorganic-rich and thinner SEI structure impacted the
kinetics of sodium ion transport and storage. Based on
electrochemical impedance spectroscopy (EIS) measurements

Chem. Sci., 2025, 16, 16678-16689 | 16683
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Fig. 4 Characterization of SEl properties of the phosphatized HC and pristine-HC anodes. (a and b) SEM and 3D topographical AFM images of
fresh and cycled pristine-HC anodes. (c and d) SEM and 3D topographical AFM images of fresh and cycled 3 wt% P HC anodes. (e and f) Depth-
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components calculated from the C 1s, O 1s, and F 1s spectra. (h and i) 3D distributions of secondary ion fragments from various species obtained
by sputtering and TOF-SIMS analysis of the pristine-HC and phosphatized HC anodes, respectively. (j) The corresponding ionic distributions

along the depth profiles.

(Fig. 5b and S20, SI), the HC-3 wt% P anode exhibited the
smallest charge transfer resistance (R.). The as-calculated
Warburg factor (g) value for HC-3 wt% P (32.9) was signifi-
cantly lower than that for pristine-HC (69.3), indicating superior
electrochemical kinetics.*

Temperature-dependent EIS measurements were conducted
to obtain the Na' transport and charge transfer resistances
across the SEI, and the apparent activation energy for Na*
transport was calculated using the Arrhenius law (eqn (1)):*®

16684 | Chem. Sci, 2025, 16, 16678-16689

T = A exp(—E,lkpT) (1)

where k denotes the reaction rate constant, A denotes the pre-
exponential factor, R represents the molar gas constant, and T
denotes the absolute temperature. The activation energy for Na*
transport across the SEI and charge transfer at the HC-3 wt% P
anode (Fig. 5c) is 47.31 k] mol ', which was lower than that for
the pristine-HC anode (59.94 kJ mol "), indicating that the Na*
diffusion kinetics at the interface and within the SEI were
improved on the phosphated anode surface.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Furthermore, according to the galvanostatic intermittent
titration technique (GITT) tests (Fig. 5d, e and S21, SI), the Na*
diffusion coefficient for the HC-3 wt% P anode was higher
compared to the pristine-HC anode (Fig. 5f), which was attrib-
uted to the enhanced electrode-electrolyte affinity as well as the
as-formed inorganic-rich SEI originated from the well-designed
phosphating layer.

A kinetic analysis of the fast-charging performance
improvement in the half-cell was conducted through varying
scan rate cyclic voltammetry (CV) tests. Analysis of the CV curves
for the first three cycles at a scan rate of 0.1 mV s~ * (Fig. $22, SI)
revealed that the area enclosed by the phosphated anode's
curves was generally larger, indicating that additional Na*
undergoes reversible migration during the charge-discharge
process. This further supports the higher reversible capacity
observed in the previous GCD tests.

Pseudocapacitive current contributions were fitted using
surface-controlled and diffusion-controlled formulas (Fig. S23,
SI) based on CV curves obtained at scan rates of 0.1, 0.2, 0.5, 1,
2, and 5 mV s~ ".* As shown in Fig. 5¢ and h, the capacitive
contribution significantly increased with the scan rate. At a scan

© 2025 The Author(s). Published by the Royal Society of Chemistry

rate of 5 mV s, the capacitive current contribution of the HC-
3 wt% P anode was 78%, which was higher than that of the
pristine-HC anode at 74% (Fig. 5i). These results confirmed that
during high-rate charge/discharge processes, the HC-3 wt% P
anode exhibited superior fast sodium storage kinetics.

To assess the commercialization prospects of the phosph-
ated bamboo powder-based hard carbon anode, sodium-ion full
cells were assembled with pristine-HC and HC-3 wt% P as
anodes and O3-NaNi, 3Fe;,3Mn, 30, (NNFM) as the cathode for
electrochemical testing. As shown in Fig. S24 (SI), the full cell
provided a high reversible capacity of 125 mAh g~' within
a current rate of 0.1 C and a voltage window of 1.5-3.9V (1 C =
150 mA g~ 1).%°

Fig. 6a shows that the assembled full cell achieved a highly
reversible rate performance (0.1 C-10 C-0.1 C). The HC-3 wt%
P//NNFM full cell provided a reversible capacity of 78 mAh g ' at
a high rate of 10 C, which was significantly better than the 10 C
performance (45 mAh g™ ') of the pristine-HC//NNFM full cell.
Fig. 6b and c reveal that during high current charge/discharge,
the pristine-HC//NNFM full cell experienced significant
electrochemical polarization, leading to a substantial capacity

Chem. Sci., 2025, 16, 16678-16689 | 16685
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a practical scene of lighting LED lamps with the pouch cell).

decay. After 100 cycles at 2 C, the HC-3 wt% P-assembled full cell
maintained more stable charge/discharge behavior, with
a capacity retention rate of 81.8% (Fig. S25a-c, SI).

Furthermore, pouch cells featured a high-loading cathode
(approximately 12 mg cm ?). Rate tests at 0.1 C-2 C also
confirmed that the phosphated anode indeed improves the fast-
charging performance of the pouch cell (Fig. S25d-f, SI). Long-
cycle testing performed at a 0.5 C rate verified that the pouch
cell incorporating the phosphated anode demonstrated more
stable cycling behavior, and delivered a higher discharge
capacity. The inset in Fig. 6d and e illustrates the pouch cell
illuminating the XJTU logo. This demonstrates its potential for
practical applications.

Conclusions

A strategy is proposed herein to enhance the fast-charging
performance of bamboo-derived hard carbon by constructing
a phosphating layer. The phosphating layer on the surface of
bamboo-derived hard carbon can induce the formation of an
SEI enriched in inorganic components such as NazP and NaF,
which can effectively suppress continuous side reactions
between the electrode and the electrolyte and reduce the
impedance during charging and discharging to improve the
efficiency of the battery. Moreover, Na;P near the inner Helm-
holtz plane (IHP) can promote the formation of a solvation shell
with a low solvent coordination number, and thus, the Na*
desolvation capability as well as the conductivity can be
strengthened accordingly. This facilitates the rapid storage
capacity of sodium ions in high voltage regions (>0.1 V) to
improve the rate performance.

16686 | Chem. Sci, 2025, 16, 16678-16689

Among the designed gradient-phosphated hard carbon
anodes, the HC-3 wt% P anode exhibited the best Na" storage
performance and excellent rate capability in half-cell perfor-
mance tests. Furthermore, a pouch cell assembled with the
corresponding cathode demonstrated stable cycling for 1000
cycles at 0.5 C. The construction of a phosphating layer on
bamboo powder-based hard carbon proposed in this study
provides meaningful guidance for rationally improving the SEI
on the anode side to bridge the gap between interfacial chem-
istry and fast-charging performance.
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