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yme function using an
interpretable optimized ensemble learning
framework

Saikat Dhibar,† Sumon Basak†‡ and Biman Jana *

Accurate prediction of enzyme function, particularly for newly discovered uncharacterized sequences, is

immensely important for modern biological research. Recently, machine learning (ML) based methods

have shown promise. However, such tools often suffer from complexity in feature extraction,

interpretability, and generalization ability. In this study, we construct a dataset for enzyme functions and

present an interpretable ML method, SOLVE (Soft-Voting Optimized Learning for Versatile Enzymes), that

addresses these issues by using only combinations of tokenized subsequences from the protein's

primary sequence for classification. SOLVE utilizes an ensemble learning framework integrating random

forest (RF), light gradient boosting machine (LightGBM) and decision tree (DT) models with an optimized

weighted strategy, which enhances prediction accuracy, distinguishes enzymes from non-enzymes, and

predicts enzyme commission (EC) numbers for mono- and multi-functional enzymes. The focal loss

penalty in SOLVE effectively mitigates class imbalance, refining functional annotation accuracy.

Additionally, SOLVE provides interpretability through Shapley analyses, identifying functional motifs at

catalytic and allosteric sites of enzymes. By leveraging only primary sequence data, SOLVE streamlines

high-throughput enzyme function prediction for functionally uncharacterized sequences and

outperforms existing tools across all evaluation metrics on independent datasets. With its high prediction

accuracy and ability to identify functional regions, SOLVE can become a promising tool in different fields

of biology and therapeutic drug design.
Introduction

Enzymes, as biocatalysts, expedite biochemical reactions within
cellular frameworks. Their functional categorization has
extensive applications in biotechnology,1 healthcare,2 and
metagenomics.3 In pharma companies, enzymes facilitate
processes such as biosynthesis and polymer recycling.4 Many
bacterial enzymes in the human gut microbiota require func-
tional annotation, as alterations in bacterial colonies are asso-
ciated with irritable bowel disease (IBD) and obesity.5

Functional annotations would assist medical science by
underpinning species that produce the requisite enzymes,
thereby aiding disease treatment. To accurately determine an
enzyme's function using biochemical assays, wet labs require
signicant investments in costly reagents, extensive experi-
mental time, and the expertise of skilled researchers.6 As of May
2024, UniProtKB/Swiss-Prot7 contains 283 902 manually anno-
tated enzyme sequences, representing just 0.64% of the total
ciation for the Cultivation of Science,
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18449
43.48 million enzyme sequences in the database. Thus, experi-
mental methods become potentially unsustainable in the omics
era, when large-scale genome projects continuously add new
enzyme sequences to databases. Therefore, computational tools
provide valuable guidance for experiments with models that are
efficient, cost-effective, reproducible, and maintain high
accuracy.

Enzymes are classied using an ontological system known as
the Enzyme Commission (EC) number, which organizes them
based on the types of reactions they catalyze. This system is
structured hierarchically into four levels, which we denote as
L1, L2, L3, and L4. At the rst level (L1), enzymes are divided
into seven major classes: (i) oxidoreductases, (ii) transferases,
(iii) hydrolases, (iv) lyases, (v) isomerases, (vi) ligases, and (vii)
translocases. As the classication becomes more specic, the
second level (L2) designates the subclass, the third level (L3)
identies the sub-subclass, and the fourth level (L4) species
the substrate or substrate group upon which the enzyme acts.
This tiered system ensures detailed and precise categorization
of enzymes, from broad functional roles to specic substrate
interactions. In silico methods can annotate a novel protein
functionally with accurate EC number prediction at any level.
Homology-based,8,9 physicochemical,10,11 structural,12,13 and
sequence-derived14–17 properties have been explored in the last
© 2025 The Author(s). Published by the Royal Society of Chemistry
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few decades—even specic methods have combined multiple
properties for function predictions.14,18,19

Nonetheless, each of these methods exhibits distinct disad-
vantages alongside their advantages. For instance, BLAST
identied adenylosuccinate lyase (involved in nucleotide
biosynthesis), fumarase (involved in the citric acid cycle), and
aspartate ammonia lyase (involved in amino acid metabolism)
as homologs, albeit they perform dissimilar functions.20 As of
March 2024, the Protein Data Bank (PDB) contains 103 972
experimentally determined enzyme structures, representing
only a tiny fraction of enzymes catalogued in UniProtKB.
Although AlphaFold21 has enabled high-throughput structure
prediction of proteins, classifying millions of them with struc-
tural information is still a computationally intense task.
Fig. 1 Overview of the model SOLVE. (A) Dataset curation process, (B) f
process and (D) Shapley analysis for feature interpretability.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Sequence-based models primarily depend on manually selected
intuitive descriptors, oen sequence-length dependent. Several
methods, such as pse-AAC, have been proposed to derive
sequence-length-independent descriptors from sequence-
length-dependent ones.11 Nevertheless, these methods usually
necessitate manual intervention and may introduce errors
through the standardization of dimensionality.

Computational approaches have demonstrated signicant
potential in elucidating both protein functions and their asso-
ciated functional landscape.22–26 The rst known use of machine
learning (ML) for enzyme annotation dates back to 1997.27 Since
then, numerous tools have been developed with improving
accuracy.10,18,28–32 Several methods have been employed in
enzyme function prediction models, including explainable
eature extraction process, (C) model training and prediction recording
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articial intelligence (XAI) tools such as k-Nearest Neighbor
(kNN),31,33 Support Vector Machine (SVM),17,28,34 and more
recently, neural networks such as N-to-1 neural networks,16

Articial Neural Networks (ANNs),35 Convolutional Neural
Networks (CNNs)36,37 and Recurrent Neural Networks (RNNs).19

These models were trained using six primary enzyme classes
(L1), and while effective, many were developed prior to the
inclusion of translocases as the 7th enzyme class in 2018,38

making them a bit outdated. Models developed aer that, such
as ECPred,39 ProteInfer,40 CLEAN,41 DeepEC,42 DeepECTrans-
former43 and ECPICK,36 were trained on seven primary classes.
Despite the remarkable capabilities exhibited by these tools, the
scope of improvement persists in feature extraction, model
interpretability, and the adaptation of these methodologies to
novel sequence datasets, particularly training ML models with
minimal and low sequence similarity threshold datasets.
Furthermore, a major limitation is their inability to reliably
differentiate between enzyme and non-enzyme sequences,
leading to the potential misassignment of an EC number to
non-enzyme proteins when presented with novel sequences. A
large-scale community-based Critical Assessment of protein
Function Annotation (CAFA)44 revealed that nearly 40% of
computational enzyme annotation is erroneous. Henceforth,
the community requires novel tools capable of automating
feature extraction, employing memory-efficient algorithms, and
achieving highly accurate enzyme function predictions to
accelerate biomedical research and drug development.

In this study, we have developed an XAI model, SOLVE (So-
Voting Optimized Learning for Versatile Enzymes), designed to
classify novel sequences as enzymes or non-enzymes and
further determine whether they are mono- or multifunctional.
The overview of the SOLVE method is demonstrated in Fig. 1.
SOLVE identies the L1 to L4 levels for both mono-functional
and multi-functional enzymes. SOLVE operates on features
extracted directly from the raw primary sequences of proteins.
Unlike traditional approaches that depend on predened
biochemical features of protein sequences, our method
captures the full spectrum of sequence variations, allowing the
model to learn intricate patterns inherent in the protein
sequences. Numerical tokenization enhances computational
efficiency by reducing the dimensionality of the input space
while preserving critical contextual sequence information. To
our knowledge, no other contemporary study has successfully
extended from enzyme–non-enzyme binary classication to L4
substrate binding multilabel multiclass prediction with such
excellent to moderate accuracy. This method surpasses most
existing algorithms in classication accuracy and offers a more
interpretable model by directly linking specic subsequence
patterns to enzyme activity, thereby providing novel insights
into enzyme structure–function relationships.

Results and discussion
Prediction performance in different levels of enzyme
hierarchy: enzyme vs. non-enzyme

To optimize the performance of our model, we experimented
with k-mer values ranging from 2 to 6 and evaluated the model's
18440 | Chem. Sci., 2025, 16, 18438–18449
accuracy at each level of the hierarchy. Through systematic
analysis, we found that 6-mers consistently yielded the best
results across all levels. The box plot of accuracy scores pre-
sented in Fig. 2(A) shows that K-mer = 6 provides the best
median accuracy scores consistently for enzyme versus non-
enzyme prediction among all the other K-mer values. This
result is consistent with some of the previous studies, where it is
shown that a 6-mer provides the most optimal results in
different bioinformatics classication problems.45 To further
investigate why the 6-mer feature descriptors perform better
compared with the 5-mer, we rst extracted the feature vector
embeddings from the 6-mer and 5-mer. Then, we reduced the
feature vector dimension to 2-D using t-SNE, which is
commonly used in different bioinformatics problems.41,46,47

Interestingly, we observed that when we projected the 6-mer
feature vector in the t-SNE 2-D space, different enzyme func-
tional classes were much more separated, and there was little
overlap between them. However, using the 5-mer feature vector,
different enzyme functional classes overlapped with each other.
This essentially means the 5-mer feature descriptor can't
differentiate different enzyme functional classes and therefore
it fails to provide strong predictive performance for enzyme
classication. However, 6-mer feature vectors capture some
crucial functional patterns in enzyme sequences that enhance
the predictive performance of ML models. The result is shown
in Fig. S1. Furthermore, using 7-mers overloaded the memory,
making it impossible to test beyond this value with our available
resources. In our previous study, we tested beyond 6-mers and
found that it provides worse performance on the independent
dataset.48 These results indicate that local sequence patterns
can be optimally captured using 6-mers, balancing computa-
tional efficiency and predictive performance. Throughout the
manuscript, we have shown the performance of different ML
models in all the enzyme hierarchy levels using these 6-mer
feature descriptors.

To check the performance of our method, we rst took the
EnzClass50 dataset of enzymes and non-enzymes, where each
sample shares less than 50% sequence similarity among
themselves. To check different model's performance in
different enzyme hierarchy levels, we have used a stratied
cross-validation method. This method provides a more reliable
estimation of model's performance while reducing the risk of
overtting. Specically, we have used 5-fold stratied cross-
validation and presented the average performance metrics
along with the variance across different test folds. Multiple ML
models, as detailed in the Materials and methods section, were
employed to determine the model that exhibits superior
performance in distinguishing enzymes from non-enzymes.
The performance of these models is presented in Fig. 2(B).
The gure illustrates that the RF and LightGBM models
demonstrated superior performance compared to the DT and
KNN models used in this study. Notably, the prediction
performance further improved when we employed SOLVE,
which combines the predictions of both RF and LightGBM
models. This ensemble classier reached the highest perfor-
mance in predicting enzymes, with precision, recall, and F1-
scores of 0.97, 0.95, and 0.96, respectively. Additionally, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Performance of different ML models used in this study from stratified 5-fold cross-validation. Error bars indicate variance in performance
across multiple runs. (A) The accuracy score of different K-mer feature descriptors is presented as a box plot, where the orange-colored
horizontal line represents the median accuracy score. (B) Prediction performance of different ML models in predicting enzymes versus non-
enzymes. (C) Performance of five ML models to predict mono and multi-functional enzymes. (D) Prediction performance of five ML models in
predicting the main enzyme class. (E) Performance of different ML models in EC number level L2 prediction. (F) Performance of different ML
models in EC number level L3 prediction. (G) Precision scores of five ML models in predicting enzyme substrate classes with 15 representative
samples per class and in the unfiltered dataset, where even less than five samples for some classes are present. (H) Performance of five different
ML models used in this study in multi-label multi-functional activity prediction.
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ROC curve is shown, which coherently demonstrates that
SOLVE provides the highest accuracy compared to the other
models. (see Fig. S2). It attained 0.98 accuracy in predicting
enzymes and non-enzymes, surpassing its closest competitor,
the RF model, which achieved 0.97 accuracy.

Prediction performance in multi-functional enzymes vs.
mono-functional enzymes

Next, we advanced to the subsequent level of analysis to deter-
mine whether a particular enzyme sequence exhibits mono-
functional or multi-functional enzyme activity. Protein
sequences with a single EC number were classied as mono-
functional enzymes, while those with multiple EC numbers
were designated as promiscuous enzymes within the overall
enzyme dataset. We evaluated the performance of various ML
models on the test dataset using the same approach as previ-
ously described. The performance of these models in predicting
mono-functional and multi-functional enzymes is presented in
Fig. 2(C). As the gure indicates, SOLVE again outperformed the
other ML models in predicting mono-functional and multi-
functional enzymes. It reached precision, recall and F1-scores
of 0.98, 0.98, and 0.99, respectively, notably superior to the
other ML models used in this study. The confusion matrix that
is shown reveals that the model correctly predicted 13 958
mono-functional enzymes and 997 multi-functional enzymes
(see Fig. S3(A)). The model misclassied only 1 sample as
a multi-functional enzyme and four samples as mono-
functional enzymes. This result further underscores the
model's efficacy in predicting mono-functional and multi-
functional enzymes.

Annotation of mono-functional enzymes

We then moved forward with predicting L1, the primary
enzyme class, for mono-functional enzymes. To achieve this,
we excluded all multi-functional proteins from the enzyme
dataset and removed enzyme sequences with incomplete EC
numbers at L4. This process resulted in 54 232 samples
belonging to one of the seven different enzyme classes. At this
level, we found weights of 2 : 1.5 : 0.2 for the RF, LightGBM,
and DT models in the ensemble learning framework, demon-
strating the best performance. The performance of other
weight ratios is systematically presented in Table S5. As shown
in Fig. 2(D), SOLVE delivered the best performance in pre-
dicting the main enzyme class, achieving a precision, F1-score,
and recall of 0.98, 0.97, and 0.97, respectively. The RF and
LightGBM models also performed very well, although their
performance was slightly inferior to SOLVE's. The confusion
matrix for this hierarchy level illustrates that the true positive
predictions for each enzyme class are signicantly higher with
SOLVE, further validating the superiority of this model for
enzyme function prediction (Fig. S3(B)). We have also evalu-
ated performance of different ML models in EC number level
L2 and L3 predictions. The results shown in Fig. 2(E and F),
demonstrate that SOLVE also provides highest performance in
these levels compared with other ML models. In level 2
prediction, SOLVE delivers precision and F1-score of 0.91 and
18442 | Chem. Sci., 2025, 16, 18438–18449
0.90, respectively. It also attains precision and F1-score of 0.88
and 0.86, respectively, which is almost 3% better compared
with the RF model.

The results of predicting enzyme substrate classes, i.e., the
L4 level, are presented in Fig. 2(G). It is important to note that
predicting enzyme function at L4 is particularly challenging
due to the extreme sparsity of representative samples for each
substrate class. This L4 level provides information about the
particular substrate the enzyme acts or the precise chemical
reaction it catalyzes. In some cases, only one or two samples
are available for a given substrate class in the entire dataset.
We rst ltered the dataset to include only those substrate
classes with at least 15 samples, removing other classes. We
also evaluated our method's performance on the unltered
dataset. As depicted in Fig. 2(G), even in the unltered data-
set—where many substrate classes have very few samples—
SOLVE achieves performance with a precision of 0.77. To
address the issue of overtting, we have presented the accu-
racy scores different folds from cross validation in Table S1,
which depicts that model's performance is consistent across
different folds. Additionally, we have conducted another
analysis to observe how the performance at the L4 level
increases and reaches a plateau when we take top K accuracy
predictions other than a single prediction. The result shows
that, given a considerable number of enzyme classes at L4, if
one considers only the top 12 predictions, the accuracy goes
above 90% (Fig. S4). This suggests that the prediction results
presented in this study are not arbitrary, showing a strong
correlation between the enzyme function and protein subse-
quence patterns. Experimentally, it is also helpful to identify
the likely function of an uncharacterized enzyme within the
top 10 or 20 predictions, helping to narrow down the vast
range of possible enzyme functions. Hereby, we emphasize
that there is room for signicant improvement in substrate
class prediction, and increasing the number of samples for
rare substrate classes is crucial for training more effective ML
models. Moreover, although we have constructed our dataset
from the reviewed portion of the UniProt database, there can
be some mis-annotations present in UniProt. To investigate
how a certain portion of mis-annotation of enzyme EC
numbers during training affects enzyme prediction perfor-
mance, we have intentionally introduced errors into the
dataset. Specically, we have randomly selected between 10%
to 50% of the training dataset and replaced their original EC
numbers with arbitrary incorrect ones, and then we have
checked the performance of SOLVE in different percentages of
error. The results shown in Fig. S5 clearly depict that, even
when the error in the training dataset is almost 30%, SOLVE
provides an F1-score, which is just 8% lower compared to
training with a clean dataset. We have also compared SOLVE's
performance with different methods in a scenario where 20%
errors in the training dataset are present. The results pre-
sented in Fig. S6 demonstrate that SOLVE outperforms all the
other tools—CLEAN, DeepEC, and DeepECtransformer—in
enzyme function prediction. SOLVE achieves 2% and 7%
better F1-scores compared with CLEAN and DeepECtrans-
former, respectively.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Annotation of multi-label multi-functional enzymes

First, we excluded multi-functional enzyme sequences with
incomplete EC numbers at the L4 level. It is important to note
that an enzyme can exhibit promiscuous activity at any level of
the enzyme hierarchy, from L1 to L4 of the EC number. Since L1
represents the main enzyme class, we initially predicted the
multi-functional enzyme activity based on the primary enzyme
function, and the results are presented in Table S4. The RF and
LightGBM models demonstrated highly predictive metrics as
tabulated, while the KNN and DT models performed poorly.
Notably, when applying a so voting ensemble with weights of
10 : 5 : 1 for RF, LightGBM, and DT, respectively, SOLVE out-
performed others in predicting multi-functional enzymes at L1;
other weight ratios with their performance are presented in
Table S2. It attained a subset accuracy of 0.65, a micro F1-score
of 0.97, and a micro precision of 0.97. Following the successful
prediction of multi-functional enzymes at L1, we predicted
multi-functional enzyme activity down to L4, corresponding to
the substrate-binding class. We emphasize that predictions at
this level are more challenging due to the dataset's many unique
class combinations and the meager sample size for each unique
substrate class. Consequently, few studies have attempted to
predict multi-functional enzyme classes down to the last label.

Initially, we ltered our dataset to ensure at least ve
samples for each EC number present, a procedure commonly
applied in other studies in this domain.49 This ltering step
ensures that the ML models have some samples for each class
combination during training. The results of multi-label, multi-
Fig. 3 Comparison of SOLVE with the state-of-the-art models for en
predicting enzymes vs. non-enzymes in UniMono-2024. Three methods
performance of SOLVE, CLEAN, DeepECtransformer, DeepEC in predict
performance of SOLVE at the L4 level of the UniProt 2024 dataset com
performance of SOLVE in the Uniprot 2024 multi-functional dataset with
on the 40% sequence similarity dataset and (F) prediction performance of
L4 level.

© 2025 The Author(s). Published by the Royal Society of Chemistry
functional enzyme prediction down to L4 are presented in
Fig. 2(H). SOLVE reached a subset accuracy of 0.68, approxi-
mately 2% and 11% better than the RF and LGBM models,
respectively. Additionally, SOLVE provided a micro F1-score of
0.89 and a micro precision of 0.90, outperforming the other
models used in this study. Through rigorous testing with
SOLVE, we found that a combination of RF, LGBM, and DT with
an optimal ratio of 5 : 4 : 0.25 yields the best performance. The
results for various other weighting ratios are provided in Table
S3. We also tested the SOLVE performance under different data
distribution scenarios to address the limitations of having only
ve representative samples per class. The subset accuracy drops
from 0.68 to 0.62 when the minimum number of samples per
class decreases from ve to four (see Fig. S8). In the unltered
dataset, many new class combinations that the model did not
encounter during the training phase were present. Interestingly,
even in this situation, SOLVE reached a subset accuracy of 0.51,
a micro F1-score of 0.89, and a micro precision of 0.90. These
results suggest that our model effectively recognizes the
underlying patterns in enzyme sequences to predict specic
catalytic activities, even with limited data.
Benchmarking SOLVE on an independent dataset to compare
the performance among different methods

For the comparison of SOLVE with other existing tools, the nal
model was trained with all the manually reviewed UniProt
sequences up to 2023 (UniEnz-ALL). To rigorously assess SOL-
VE's performance, we curated a dataset of enzyme and non-
zyme function prediction. (A) Prediction performance of SOLVE for
, CLEAN, DeepEC and ECPred, are taken for comparison, (B) prediction
ing the enzyme main class on the UniProt 2024 dataset, (C) prediction
pared with SOLVE, DeepECtransformer and DeepEC, (D) prediction
three contemporary methods, (E) evaluation of SOLVE's performance
differentmethods in the New-392 dataset for enzyme prediction at the

Chem. Sci., 2025, 16, 18438–18449 | 18443
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enzyme sequences from the reviewed portion of the UniProt
database released aer 2023, ensuring these sequences were not
involved in SOLVE's development. The dataset comprises 505
enzyme and 694 non-enzyme sequences, against which we
benchmarked SOLVE alongside state-of-the-art methods as
mentioned in the Dataset preparation section. Fig. 3(A) clearly
demonstrates the superiority of SOLVE in discriminating
enzymes from the non-enzymatic ones. SOLVE achieved
a precision of 0.84 and an F1-score of 0.82, suppressing the
second-best model, ECPred, by 9% and 8%, respectively, in the
independent dataset. Moreover, it is essential to note that
CLEAN cannot discriminate enzymes from non-enzymes.
Consequently, when presented with an unknown non-enzyme
sequence, CLEAN indiscriminately assigns an EC number,
resulting in wrong annotations and undermining the reliability
of high-throughput enzyme function prediction. SOLVE also
demonstrated notable improvements over DeepEC, delivering
17% and 18% greater precision and recall, respectively. We
subsequently evaluated the predictive performance of SOLVE
and other methods in different levels of enzyme EC number
prediction using the Uniprot 2024 dataset (UniMono-2024). The
results shown in Fig. 3(B) depict that SOLVE provided better
performance compared to CLEAN in enzyme main class
prediction, attaining an accuracy of 0.80 and an F1-score of
0.76, whereas CLEAN achieved 0.76 and 0.74, respectively.
Additionally, DeepECtransformer and DeepEC lagged signi-
cantly, with accuracy scores of 0.67 and 0.58. SOLVE achieved
improvements in F1-score of 4%, 12% and 20% over Deep-
ECtransformer, Proteinfer and DeepEC, respectively. Further-
more, we examined the performance of SOLVE with
contemporary methods at the L4 level. We have found that in
this level of enzyme hierarchy, using combinations of 6-mer and
4-mer feature descriptors delivered better performance. So, at
the L4 level, we have presented the performance of SOLVE with
combinations of K-mer features along with other tools for
enzyme EC number annotations in Fig. 3(C). The detailed
ablation study of how different combinations of feature
descriptors inuence the prediction results is presented (Fig.
S9). SOLVE consistently provided better performance than
CLEAN and four other state-of-the-art methods, achieving an
accuracy and F1-score of 0.48 and 0.36, representing 2% and 3%
enhancement over CLEAN. The performance of SOLVE against
CLEAN in L2 and L3 level prediction on this dataset is given in
Table S6 and S7. Moreover, SOLVE delivered 11% and 14%
better F1-score compared to recently developed tools Deep-
ECtransformer43 and Proteinfer.40 For benchmarking SOLVE in
multi-functional enzyme prediction, we have used thevUni-
Multi-2024 dataset. As demonstrated in Fig. 3(D), SOLVE
demonstrated superiority in enzyme promiscuity predictions,
providing a precision and F1-score of 0.89 and 0.73, respec-
tively, which are almost 42% and 36% improvements over the
second-best model CLEAN. It is important to note that we have
trained mono-functional and multi-functional enzymes sepa-
rately in our framework, whereas other methods used for
benchmarking here trained these enzymes together. For this
reason, we have also compared SOLVE's performance with the
methods, which solely developed to predict promiscuous
18444 | Chem. Sci., 2025, 16, 18438–18449
activity of enzymes such as mlHECNet and mlDEEPre.49,50 The
results shown in Table S8 clearly depicts that SOLVE outperforms
other multi-functional enzyme prediction tools also. We then
evaluated the SOLVE's performance along with other tools in the
dataset, where testing enzyme sequences share less than 40%
sequence similarity with the training set ones. In such a low
sequence similarity scenario SOLVE delivered a precision and F1-
score of 0.8 and 0.78, respectively, as depicted in Fig. 3(E), whereas
CLEAN achieved a precision and F1-score of 0.77 and 0.75
respectively. Next we evaluate SOLVE's performance on the New-
392 dataset. Since SOLVE was trained using UniProt enzyme
sequences up to 2023, we rst removed all the 392 sequences from
the training set before making predictions. DeepECtransformer,43

ProteInfer,40 DeepEC,42 and ECPred39 models are used for
benchmarking. We have found that SOLVE outperformed all of
these methods in performance indicators. SOLVE's precision and
recall score is about 36% and 26% higher than ECPred and about
4% and 3% higher than DeepECtransformer (Fig. 3(F)). This
demonstrates that our method, SOLVE, is more effective in pre-
dicting enzyme functions than these existing tools. However,
comparative analysis showed that SOLVE underperforms slightly
compared to CLEAN on New-392, with CLEAN exhibiting
a marginal greater F1-score of 4%. In the end, we have tested
SOLVE's generalization ability with othermethods inve enzymes
for which enzymemain class is known experimentally (NCBI-Bact
dataset). SOLVE correctly characterized the enzyme class of 4 out
of 5 sequences, whereas CLEAN correctly identied only one. The
details of the predictions are given in Note S4 and Table S9,
further underscoring SOLVE's superior efficacy in enzyme func-
tion annotation compared to CLEAN. Moreover, we have tested
SOLVE's prediction performance in ‘UniEnz-2025’. Out of 10
enzymes, SOLVE accurately predicts the main enzyme class for 9
enzymes, as detailed in Table S10.
Feature importance analysis

Feature importance analyses are crucial as they provide insight
into which features most inuence model predictions, enabling
better interpretability and trust in ML models. Many deep
learning models lack interpretability, which in turn creates
obstacles to understanding the actual biological phenomena
that guide ML models' predictions, such as the CLEAN method.
Understanding feature importance can signicantly enhance
model renement and optimization by focusing on the most
predictive variables, improving overall model accuracy and
robustness. Over the last decade, many interpretable AI models
have been developed to explain the ML model's outcomes.51,52

This study focused on interpreting our model by calculating the
average feature importance with Shapley analyses, which
provides critical insights about the underlying mechanism of
the black-boxMLmodel's decision process and is widely used in
different domain problems.48,53–55 We selected two proteins
from PDB (IDs: 5MO4 and 6OIM) and excluded these sequences
from the training dataset. Our model accurately identied these
enzymes' EC numbers.

We computed the feature importance for each 6-mer amino
acid subsequence and then highlighted the top 30 subsequence
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Important 6-mers extracted from feature importance analysis
are mapped onto the 3D structure of two enzymes. (A) PDB ID: 4Q21
(KRAS protein) and (B) PDB ID: 5MO4 (ABL kinase protein). The top
thirty important 6-mers calculated from SHAP analysis are shown in
the left panel, and binding and allosteric sites are marked in red circles.
The actual binding and allosteric sites of the two proteins are shown in
the right panel.
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stretches that contributed most signicantly to the model's
predictions within the protein's tertiary structure (Fig. 4).
Annotating these stretches on the protein structures revealed
that our model effectively captures critical biological patterns
within the protein's primary sequence. These top-performing
features are located within these proteins' orthosteric binding
sites and allosteric sites, as illustrated in Fig. 4. In recent years,
numerous experimental and computational studies have
focused on identifying allosteric sites and investigating the
mechanism of signal transduction within proteins.56–60 ABL1
kinase is extremely important in signal transduction and is
oen targeted in cancer therapies, particularly for chronic
myeloid leukemia (CML).61,62 For the ABL1 kinase, the asciminib
drug binds to the myristoil pocket, which is also the allosteric
site of this enzyme.63,64 In contrast, the nilotinib drug binds to
the ATP-binding pocket of this enzyme. For the G12C mutant
KRAS enzyme is an important target in cancer research.65 GDP
binds to the orthosteric site of this KRAS enzyme, and a covalent
inhibitor AMG 510 binds to the allosteric sites.66,67 The top 15
features are predominantly found within or adjacent to the
allosteric site regions, while the subsequent top 15 features
correspond to the orthosteric binding sites for both proteins.
Conclusion

Prediction of enzyme function is a fundamental challenge in
biology. Due to the time-consuming nature of experimental
© 2025 The Author(s). Published by the Royal Society of Chemistry
methods, new computational tools based on biochemical
features, sequence similarity, and ML-based methods are
necessary for high-throughput screening of enzyme functions.
However, most of the previous enzyme annotation models
needed improvements in feature extraction, interpretability,
and their ability to adapt to unseen datasets. Most of them
struggle to distinguish between enzyme and non-enzyme
sequences, leading to misclassication and limited
generalization.

In this work, we developed SOLVE, a supervised ensemble
learning framework augmented with a crucial focal loss penalty
that iteratively learns the weights for hard-to-classify enzymes,
boosting prediction accuracy for both mono- and multi-
functional enzyme functions. This ensemble model leverages
numerical tokenization of raw protein sequences, allowing it to
capture key sequence patterns without relying on predened
biochemical features. This feature extraction strategy provides
a route to predict enzyme functions based on their short
subsequence pattern. SOLVE distinguishes enzymes from non-
enzyme sequences, predicts mono- and multifunctional
enzymes, and provides substrate-binding classications down
to the substrate-binding level with greater accuracy. SOLVE
offers valuable insights into enzyme function and activity by
pinpointing essential functional regions, such as those involved
in oncogenic proteins such as KRAS. Our model's ability to
directly link sequence patterns to enzymatic activity provides
deeper insights into protein's functionality. These improve-
ments may position SOLVE as a critical tool in accelerating drug
discovery, genomics research, enzyme engineering and the
functional annotation of novel enzymes. Moreover, this frame-
work is not only limited to enzymatic activity prediction, but
this method can be used to predict other functional proteins.
User-friendly framework of SOLVE enables broader adaptation
and streamlined enzyme EC number prediction by the research
community. However, we acknowledge that there is room for
improvement for enzyme function at the L4 level. Moreover, for
feature extraction, incorporating protein structural features and
information about the catalytic site of enzymes may signi-
cantly enhance the performance of this model. These points will
be the main focus of our future work.

Materials and methods
Dataset preparation

Previous studies have compiled datasets for enzymes and non-
enzymes, but the dataset preparation process has some draw-
backs. These ambiguities include the following:

(A) Prior studies have limited protein sequence lengths to
between 50 and 1000 amino acids. While it is documented that
feature extraction and training of ML models on protein
sequences longer than 1000 amino acids are computationally
intensive, excluding these sequences omits a signicant portion
of protein sequences present in the UniProt database.

(B) As noted earlier, datasets created before 2018 do not
include translocase enzymes.38

This study aims to address these challenges in constructing
enzyme and non-enzyme datasets. We utilized the publicly
Chem. Sci., 2025, 16, 18438–18449 | 18445
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available UniProt database7 to assemble the datasets (Fig. 1(A)).
Only reviewed sequences were included, as these are manually
annotated and considered superior quality due to extensive
curation, including experimental validation. To prepare the
enzyme dataset, we rst web-scraped all protein sequences
containing an EC number from the UniProt database. For the
non-enzyme dataset, we searched for protein sequences in
UniProt that lack both EC numbers and catalytic activity. Then,
we removed all protein sequences containing unnatural amino
acids (e.g., X, J, B) from this ltered dataset to weed out
unwanted noise and restricted sequence lengths to between 50
and 5000 amino acids. Our nal dataset for enzymes and non-
enzymes comprised 231 907 enzyme sequences and 232 474
non-enzyme sequences, and we refer to this dataset throughout
the manuscript as UniEnz-ALL. At the L4 level of the enzyme
dataset, there are 4835 different substrate classes. The number
of samples per class varies widely, ranging from as few as 1 to
over 2000 in some cases. It should be noted that we have
collected all the sequences from UniProt up to the 2023 release,
which is the most updated dataset for enzyme function
prediction till now. Next, for multiple prediction tasks within
the enzyme category, we have removed the sequences that have
incomplete EC numbers and constructed subsequent datasets
from this primary dataset. To assess the effectiveness of SOLVE,
we subsequently deployed the CD-HIT68 program to ensure that
the sequence similarity among the gathered sequences, both for
enzymes and non-enzymes, remained at 50%. This implies that
the training set and testing set share less than 50% sequence
similarity, representing a challenge to any ML models. In this
dataset, there are 74 764 enzymes and 138 256 non-enzyme
sequences, which is referred to as EnzClass50. Throughout
this manuscript, we have evaluated the performance of SOLVE
in this EnzClass50 dataset at various enzyme hierarchy levels,
and for benchmarking purposes, we have used the UniEnz-ALL
dataset.

For comparison of our method with state-of-the-art methods,
we have used several independent datasets. One is the New-392
dataset, which consists of 392 enzyme sequences with 177
different EC numbers created from Swiss-Prot released aer
2022, and is used by other studies for comparison purposes.
Another dataset is constructed by us from the UniProt 2024
release, which contains 504 mono-functional enzymes covering
205 different EC numbers. We refer to this dataset as UniMono-
2024. For multi-functional enzyme prediction, we have curated
another dataset from the UniProt 2024 release, which contains
39 samples, referred to as the UniMulti-2024 dataset. The
dataset comprising enzyme sequences that share less than 40%
sequence similarity with one another is described as Enz-
Class40. We have also extracted four bacterial enzymes from the
NCBI database for which enzyme annotation at level 1 is known
experimentally, and tested our model prediction ability on
them. This dataset is called the NCBI-Bact dataset. We have
further curated another dataset from UniProt containing
experimentally veried enzyme sequences in 2025, which
includes 8 enzyme sequences. We refer to this as the ‘UniEnz-
2025’ dataset.
18446 | Chem. Sci., 2025, 16, 18438–18449
Feature extraction

In the literature, protein's raw sequences have been one-hot
encoded40,42 to extract features and feed them into algorithms
for classication. However, unlike protein structure prediction
studies, the sliding window technique69 has received much less
attention in enzyme classication. Recently, many language
models have gained much attention for extracting meaningful
representations from sequence information.70–73 Inspired by
these methods, in this study, we have used a ne-tuned subse-
quence tokenization strategy to extract functional features from
sequences, which was previously used in other bioinformatics
problems;48,74,75 however, this strategy has not yet been used in
enzyme prediction problems. Given a protein sequence,
a window of a specied size (k) slides over the sequence, one
position at a time, extracting k-length overlapping subsequences
(k-mers). The feature extraction process is detailed in Fig. 1(B).

Let S = s1s2s3.sn be a protein sequence of length n, where si
represents the i-th amino acid in the sequence. We dene k as
the length of the k-mer subsequences. The sliding window
technique involves extracting subsequences of length k from S,
starting from each position i where 1 # i # n − k + 1. Mathe-
matically, the i-th k-mer subsequence can be represented as:

Si
k= sisi+1si+2.si+k−1 (1)

For each starting position i, the subsequence Si
k is generated

by taking the amino acids from position i to i + k − 1, and the
process continues until i = n − k + 1. The method can be rep-
resented mathematically as:

{Si
k}i=1

n−k+1 = {sisi+1.si+k−1}i=1
n−k+1 (2)

Once all k-mers have been generated, we proceed to tokenize
each k-mer. Let T be the tokenizer function that maps each k-
mer to a unique token:

T
�
Si

k
� ¼ ti (3)

where ti is the token assigned to the k-mer Si
k. We utilize the

tokenizer T to encode all k-mer subsequences in the dataset.
Considering E to be the encoding function that uses the
tokenizer to encode each k-mer:

E
�
Si

k
� ¼ T

�
Si

k
�

(4)

Applying this encoding to all k-mers in the dataset:
�
E
�
Si

k
��

i¼1

n�kþ1 ¼ �
T
�
Si

k
��

i¼1

n�kþ1 (5)

Once all possible k-mers have been assigned a numerical
token, the features of every protein sequence are fed into the
model along with their corresponding labels. This procedure
not only automates feature extraction but also addresses the
issue of dimensional non-uniformity and improves memory
efficiency. By leveraging the sliding window technique for k-mer
generation and subsequent tokenization, we aim to capture
local sequence patterns crucial for enzyme classication,
thereby improving the predictive performance of our model.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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ML model selection and evaluation indices

We have used ve different ML models in this study, namely,
Random Forest (RF), Light Gradient Boosting Machine (LGBM),
K-nearest neighbor (KNN), Decision Tree (DT), and SOLVE, to
evaluate performance across different enzyme hierarchy levels.
The brief descriptions of each ML model are given in Note S1.
For all the predictions, we used evaluation indices—precision,
recall, F1 score, sensitivity, and specicity—to evaluate the
performance of the proposed method. For multi-functional
enzyme prediction, we have used slightly different evaluation
parameters: subset accuracy, micro F1, macro F1, micro preci-
sion, and macro precision.76 Micro-averaged evaluation
parameters are calculated by aggregating all individual class
predictions from the model, whereas macro-averaged evalua-
tion parameters are calculated independently for each class and
take the unweighted average. Subset accuracy is the most
appropriate indicator to evaluate multi-label classication. All
the mathematical expressions for each evaluation indicator and
the tuned hyperparameters for each model are given in Note S2
and S3. As the enzyme function at the L4 level faces signicant
class imbalance and some classes are very rare, we implement
a focal loss-inspired penalty into the SOLVE training frame-
work, which adjusts the importance of classes during training
to prioritize more on the difficult cases.77 Unlike traditional ML
models with default hyperparameters, this approach updates
the weight given to different classes dynamically throughout the
training phase and boosts the prediction performance overall.
The expression for the focal loss penalty function is given below.
The details of how iterative training of SOLVE with focal loss
penalty is conducted are given in Note S5. We analyzed
prediction probabilities from SOLVE to understand their
correlation with the prediction accuracy score, which provides
researchers across disciplines access to the reliability of SOL-
VE's prediction (Fig. S7).

Lfocal = −a(1 − pt)
glog pt (6)

Here a is the balancing parameter, g is the focusing parameter,
pt is the predicted probability for the class and Lfocal is the focal
loss function. We adjust the gamma parameter to tune the
weight of misclassied classes in successive rounds of training.
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A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl,
A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov,
R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli and D. Hassabis, Nature, 2021,
596, 583–589.

22 F. Morcos, B. Jana, T. Hwa and J. N. Onuchic, Proc. Natl.
Acad. Sci. U. S. A., 2013, 110, 20533–20538.

23 X. Guan, Q. Y. Tang, W. Ren, M. Chen, W. Wang,
P. G. Wolynes and W. Li, Proc. Natl. Acad. Sci. U. S. A.,
2024, 121, 1–11.

24 S. Gelman, S. A. Fahlberg, P. Heinzelman, P. A. Romero and
A. Gitter, Proc. Natl. Acad. Sci. U. S. A., 2021, 118(48),
e2104878118.

25 S. Cocco, L. Posani and R. Monasson, Proc. Natl. Acad. Sci. U.
S. A., 2024, 121, 1–12.

26 A. J. M. Ribeiro, I. G. Riziotis, N. Borkakoti and
J. M. Thornton, Biochem. J., 2023, 148, 1845–1863.

27 M. desJardins, P. D. Karp, M. Krummenacker, T. J. Lee and
C. A. Ouzounis, Proceedings, Fih International Conference
on Intelligent Systems for Molecular Biology ISMB, 1997, vol.
1997, pp. 92–99.

28 C. Z. Cai, W. L. Wang, L. Z. Sun and Y. Z. Chen,Math. Biosci.,
2003, 185, 111–122.

29 C. Claudel-Renard, C. Chevalet, T. Faraut and D. Kahn,
Nucleic Acids Res., 2003, 31, 6633–6639.

30 W. Tian, A. K. Arakaki and J. Skolnick, Nucleic Acids Res.,
2004, 32, 6226–6239.

31 H. Bin Shen and K. C. Chou, Biochem. Biophys. Res. Commun.,
2007, 364, 53–59.

32 A. Roy, J. Yang and Y. Zhang, Nucleic Acids Res., 2012, 40,
471–477.

33 E. Nasibov and C. Kandemir-Cavas, Comput. Biol. Chem.,
2009, 33, 461–464.

34 C. Chen, Y. X. Tian, X. Y. Zou, P. X. Cai and J. Y. Mo, J. Theor.
Biol., 2006, 243, 444–448.

35 K. Blekas, D. I. Fotiadis and A. Likas, J. Comput. Biol., 2005,
12, 64–82.

36 S. R. Han, M. Park, S. Kosaraju, J. M. Lee, H. Lee, J. H. Lee,
T. J. Oh and M. Kang, Briengs Bioinf., 2024, 25, 1–11.

37 R. Semwal, I. Aier, P. Tyagi and P. K. Varadwaj, J. Biomol.
Struct. Dyn., 2021, 39, 2733–2743.

38 M. Ann Benore, Biochem. Mol. Biol. Educ., 2019, 47, 481–483.
39 A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay,

V. Atalay and T. Doğan, BMC Bioinf., 2018, 19, 1–13.
40 T. Sanderson, M. L. Bileschi, D. Belanger and L. J. Colwell,

eLife, 2023, 12, 1–21.
41 T. Yu, H. Cui, J. C. Li, Y. Luo, G. Jiang and H. Zhao, Science,

2023, 379, 1358–1363.
42 J. Y. Ryu, H. U. Kim and S. Y. Lee, Proc. Natl. Acad. Sci. U. S.

A., 2019, 116, 13996–14001.
43 G. B. Kim, J. Y. Kim, J. A. Lee, C. J. Norsigian, B. O. Palsson

and S. Y. Lee, Nat. Commun., 2023, 14, 1–11.
18448 | Chem. Sci., 2025, 16, 18438–18449
44 P. Radivojac, W. T. Clark, T. R. Oron, A. M. Schnoes,
T. Wittkop, A. Sokolov, K. Graim, C. Funk, K. Verspoor,
A. Ben-Hur, G. Pandey, J. M. Yunes, A. S. Talwalkar,
S. Repo, M. L. Souza, D. Piovesan, R. Casadio, Z. Wang,
J. Cheng, H. Fang, J. Gough, P. Koskinen, P. Törönen,
J. Nokso-Koivisto, L. Holm, D. Cozzetto, D. W. A. Buchan,
K. Bryson, D. T. Jones, B. Limaye, H. Inamdar, A. Datta,
S. K. Manjari, R. Joshi, M. Chitale, D. Kihara,
A. M. Lisewski, S. Erdin, E. Venner, O. Lichtarge,
R. Rentzsch, H. Yang, A. E. Romero, P. Bhat, A. Paccanaro,
T. Hamp, R. Kaßner, S. Seemayer, E. Vicedo, C. Schaefer,
D. Achten, F. Auer, A. Boehm, T. Braun, M. Hecht,
M. Heron, P. Hönigschmid, T. A. Hopf, S. Kaufmann,
M. Kiening, D. Krompass, C. Landerer, Y. Mahlich,
M. Roos, J. Björne, T. Salakoski, A. Wong, H. Shatkay,
F. Gatzmann, I. Sommer, M. N. Wass, M. J. E. Sternberg,
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