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ided inverse engineering
framework to unlock design principles of H-
bonded organic frameworks for gas separation

Yong Qiu, a Lei Wang,a Letian Chen,b Yun Tian, *a Zhen Zhou*ab

and Jianzhong Wu c

The diverse combinations of novel building blocks offer a vast design space for hydrogen-bonded organic

frameworks (HOFs), rendering them highly promising for gas separation and purification. However, the

underlying separation mechanism facilitated by their unique hydrogen-bond networks has not yet been

fully understood. In this work, a comprehensive understanding of the separation mechanisms was

achieved through an iterative data-driven inverse engineering approach established upon a hypothetical

HOF database possessing nearly 110 000 structures created by a materials genomics method. Leveraging

a simple yet universal feature extracted from hydrogen bonding information with unambiguous physical

meanings, the entire design space was exploited to rapidly identify the optimization route towards novel

HOF structures with superior Xe/Kr separation performance (selectivity > 103). This work not only

provides the first large-scale HOF database, but also demonstrates the enhanced machine learning

interpretability of our model-driven iterative inverse design framework, offering new insights into the

rational design of nanoporous materials for gas separation.
Introduction

The efficient adsorption and separation of xenon (Xe) and
krypton (Kr) hold substantial industrial signicance due to their
specic and extensive applications in the nuclear industry,
space exploration, commercial lighting and medical devices.1–4

However, due to the nearly identical kinetic diameters (Kr =

3.66 Å; Xe = 4.05 Å), ultra-low concentrations (Kr = 1.14 ppmv;
Xe = 0.09 ppmv), and extremely low polarizabilities, the major
challenges associated with the separation of Xe and Kr remain
signicant.5 Traditionally, cryogenic distillation is the most
mature technology to separate pure Xe and Kr (20/80 (v/v)) from
air, but these processes are energy- and capital-intensive.6

Metal–organic frameworks (MOFs) and covalent organic
frameworks (COFs) are the most developed porous materials for
Xe/Kr separation, yet their commercialization is signicantly
hindered by issues related to material stability, high costs, and
environmental pollution. Therefore, exploring stable, environ-
mentally friendly porous adsorbents with controllable
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structures to balance capacity and selectivity remains both
appealing and challenging.7

Compared with other classes of nanoporous materials
dominated by relatively stronger intra-molecular interactions
like MOFs and COFs, HOFs possess unique advantages, such as
milder synthesis conditions, facile solution processability and
recyclability, which are usually attributed to their weaker inter-
molecular interactions and higher reversibility of hydrogen
bonding.5 In addition, previous studies have demonstrated that
HOFs exhibit signicant potential for Xe/Kr separation, with
excellent thermal and chemical stability, and can be efficiently
recovered and reused through simple recrystallization, thereby
greatly reducing the operational cost of the adsorbents.1,7

To date, the total number of experimentally reported HOF
structures is still limited to 102, primarily owing to the difficulty
in materials synthesis.8,9 Although the separation of Xe/Kr in
MOFs10,11 was attributed to the modied polarizability of guest
molecules induced by designed functional groups, the separa-
tion mechanism for Xe/Kr in HOF materials remains unknown,
which severely hinders the rational design of high-performance
HOF materials. With a large unexplored design space, the
recent application of modular design in HOF synthesis,12,13 and
the emergence of automated laboratories,14–16 in silico design of
HOFs is highly attractive as a viable alternative to advance the
fundamental understanding of the separation mechanism and
accelerate the discovery of targeted HOFs.

As a well-established high-throughput computational
method for predicting gas adsorption and separation, Classical
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Density Functional Theory (CDFT) has demonstrated its
outstanding efficiency and accuracy under various scenarios,
including thermodynamic phenomena involving diverse
molecular and ionic systems.17–21 The integration of machine
learning techniques with CDFT has further improved the
computational efficiency and revolutionized the design strategy
in recent years.22–25 In our previous work, the forward design
strategy was employed to identify high-performance gas
Fig. 1 Workflow of mechanism exploration based on a self-built dat
construction of a HOF database. (b) Feature extraction and high-throu
learning model training and interpretability analysis. (d) Active learning p
Xe/Kr separation in HOFs.

© 2025 The Author(s). Published by the Royal Society of Chemistry
separationmaterials from an existing COF database.26 Given the
vast chemical space with an exponentially increasing number of
building units, it is essential to incorporate inverse design
approaches to uncover the optimization route for novel HOF
structures.27–29 Regrettably, the applicability of current inverse
design methods is usually limited to the initial dataset or their
analogues, which severely hinders the iteration process of new
structures.30–32
abase and the iterative inverse engineering framework. (a) In silico
ghput prediction of separation performance using CDFT. (c) Machine
romoted iterative inverse design of HOFs. (e) Mechanism revelation of

Chem. Sci., 2025, 16, 17450–17460 | 17451
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In this work, we developed a hypothetical framework to
construct a large-scale HOF database with a genomics-based
method as shown in Fig. 1, enabling the rapid generation of
HOF structures and high-throughput predictions of the gas
separation performance of Xe/Kr using CDFT. Through incor-
poration of a genetic algorithm with active learning, for the rst
time, we established an iterative inverse design framework to
efficiently optimize the structure of novel HOF materials to
identify the target ones. As an illustration, we successfully
designed a novel HOF structure with Xe/Kr selectivity over 103,
exceeding the best existing adsorbent for Xe/Kr separation.1,33,34

Furthermore, aer comprehensive analysis with our framework,
it is conclusively demonstrated that the Xe/Kr separation
mechanism in HOFs is not primarily governed by polarizability
differences. Instead, the separation process is driven by
a synergistic dual mechanism involving pore sieving effects and
variable hydrogen bonding intensity. More excitingly, the
fundamental mechanism driving Xe/Kr separation was utilized
to establish a novel descriptor with enhanced interpretability
and universality, which is constructed from both the hydrogen-
bond networks and key structural features of the materials.
With the iterative inverse engineering framework, we expect to
provide a new paradigm for developing nanoporous materials
using materials genomics strategies, offering guiding principles
for the experimental design of HOFs.

Results
Materials genomics-based algorithms for HOF construction

The primary distinction between HOF, COF, andMOFmaterials
lies in the bonding interactions between the building blocks
(BBs).35,36 Experiments have shown that COFs and HOFs can be
interconverted through the modication of functional groups
and by adjusting experimental conditions to control the mate-
rial docking process.36,37 Specically, when the building units
possess functional groups capable of acting as hydrogen-bond
donors or acceptors, thereby facilitating the formation of
stable hydrogen-bond networks, it becomes theoretically
possible to construct novel HOF structures based on existing
topological frameworks. Taking the building units and topo-
logical structures of COF materials collected in the Reticular
Chemistry Structure Resource (RCSR)38 database as a template,
we propose a methodology to construct BBs for hypothetical
HOFs by functionalizing the building units (as shown in
Fig. 1a). Functional groups (–OH, –COOH, –NH2, –F) serve as
hydrogen-bond donors/acceptors, enabling diverse hydrogen-
bond networks. These modied BBs constitute novel HOF
structures, realizing COF-to-HOF transformation as experi-
mentally demonstrated. Through the incorporation of these
functional groups, the BBs were not only saturated but also
capable of forming hydrogen-bond networks, thus satisfying the
preliminary criteria for the design and synthesis of HOFs. New
BBs are named by appending the functional group to the orig-
inal BB name (e.g., ‘C6’ with –COOH becomes ‘C6_COOH’).

The hierarchical assembly of HOFs initiates with the rational
design of ligand building blocks, where ligand units (Fig. S1)
can be functionalized through strategic substitution of
17452 | Chem. Sci., 2025, 16, 17450–17460
hydrogen-bonding motifs (e.g., –COOH, –NH2, –OH, –F) or
alternatively developed via de novo synthesis to create novel
architectures. These designed ligands are then systematically
paired with compatible topological units (e.g., sql, dia, hcb) to
construct a comprehensive gene library, with each entry
explicitly encoding the topology–ligand relationship (topology +
node + edge ligand) Aer assessing the degree of compatibility,
BBs and topological units are assembled using pormake39 to
construct complete new HOFs. Through a parallel design
approach, we signicantly accelerated the materials design
process and established the rst theoretical HOF database,
comprising nearly 110 000 distinct HOF structures. Moreover,
this approach offers sufficient versatility and exibility for users
to perform targeted materials design, enabling facile modi-
cation of functional groups and integration of diverse BBs to
construct materials tailored to specic applications.
Theoretical HOF materials database

Under typical industrial separation conditions (296 K, 1 bar, 20/
80 molar ratio for Xe and Kr),1,40 we performed high-throughput
CDFT calculations for Xe/Kr gas separation on the constructed
HOF database aer excluding those with inaccessible pore
geometries for gas molecules, and detailed comparison and
validation with available experimental data are shown in Fig. S2.
Moreover, we tested materials for Xe/Kr separation under
different conditions including air (Xe/Kr = 0.086 ppm : 1.14
ppm (ref. 41)) and nuclear waste gas (Xe/Kr = 500 ppm : 50 ppm
(ref. 42)). Table S1 shows consistent adsorption selectivity
across these scenarios. Key structural characteristics including
the largest included sphere along the free sphere path diameter
(PLD), largest free sphere diameter (LCD), pore volume,
framework density, pore characteristics, specic surface area,
etc., and chemical features including element ratios, unsatura-
tion, electronegativity ratio, etc., were calculated for subsequent
machine learning implementations.

The selectivity values in our database range from 0 to 104,
reecting the diversity of our comprehensive dataset, with the
top-performing materials signicantly surpassing the separa-
tion capabilities of existing experimental HOF materials. We
provide the representative structure of the high-performance
HOFs (selectivity > 103), including its monomer composition
and hydrogen-bonding patterns, as illustrated in Fig. S3.
Detailed data distributions of the entire database can be found
in Fig. S4 to S13. For analytical clarity, we categorized the HOFs
in the database into three groups based on their Xe/Kr
adsorption selectivity: Class 1 (top 10%), Class 2 (top 10–
30%), and Class 3 (the remaining materials). As illustrated in
Fig. 2, an apparent correlation can be drawn between the Xe/Kr
separation performance and the physical structure of these
materials. Materials exhibiting superior separation perfor-
mance typically feature relatively smaller pore sizes with PLD
around 15 Å (Fig. 2a), higher framework densities (Fig. 2b), and
smaller void fractions (Fig. 2c), which can be attributed to the
inert nature of Xe and Kr and the dominating size-exclusion
effects. In terms of these geometric features, the void fraction
plays a vital role in measuring the upper limit of capacity for gas
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Relationship between HOF framework characteristics and Xe/Kr adsorption selectivity. Density plots of the framework's physical structure
and adsorption selectivity: PLD (a), density of frameworks (b), and void fraction (c), as well as the relationship between Henry's constant and ideal
adsorption selectivity (d) and practical adsorption selectivity (e). In panels (d) and (e), the colormap represents the variation in Henry's constant for
Kr, with darker colors indicating higher Henry's coefficients.
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molecule accommodation, and with well-dened pore size and
density of frameworks, the optimal HOF is capable of effectively
differentiating guest molecules through non-uniform intermo-
lecular interactions with its hydrogen-bond networks, leading
to enhanced separation efficiency. Meanwhile, Henry's coeffi-
cient, which accounts for the thermodynamic interactions
between the guest and host molecules, also determines the
relative adsorption strength and separation performance of
porous materials. As shown in Fig. 2d, Henry's coefficients for
Xe/Kr in HOFs exhibit a consistent upward trend, regardless of
whether they are evaluated for ideal adsorption selectivity
(Fig. 2d) or selectivity under practical operating conditions
(Fig. 2e), indicating that separation performance might be
primarily driven by the difference in interacting affinity with
frameworks. However, depending solely on any single physico-
chemical character is inadequate for effectively distinguishing
the performance of HOFs.

While experimental results show the inuence of measur-
able physicochemical properties on performance, high-
throughput calculations and machine learning models enable
rapid prediction of materials performance and offer deeper
insights into the underlying mechanisms. In this regard, we
conducted feature selection using the Pearson correlation
coefficient (Fig. 3a) integrated with unsupervised learning
methods, including t-SNE and PCA (Fig. S14–S16). Our analysis
revealed that the physical structural features predominantly
inuence the target property prediction, while the chemical
characteristics exhibit a relatively weaker correlation with the
separation performance. Owing to the inert nature of noble
gases, Kr and Xe molecules are less prone to chemically react
with the framework and are predominantly adsorbed through
physical interactions. To more specically quantify the
© 2025 The Author(s). Published by the Royal Society of Chemistry
relationship between features and performances, we applied
a variety of machine learning models (listed in Table S2) to
predict the actual Xe/Kr adsorption selectivity of the HOFs (Fig.
S17). Through hyperparameter optimization for each model,
with an 80 : 20 training-to-test set ratio and 5-fold cross-
validation, we identied the model with the best performance.
Our results show that tree-based models, such as Random
Forest (RF) and Gradient Boosting Regression (GBR), out-
performed linear regression algorithms including Least Abso-
lute Shrinkage and Selection Operator (LASSO), Linear Support
Vector Machine (Linear SVM), and Partial Least Squares (PLS)
regarding data regression. Neural-network-based models like
Articial Neural Networks (ANN) and K-Nearest Neighbors
(KNN) were prone to overtting, indicating excessive model
complexity. Among all of them, the GBR model delivered the
best performance, achieving an R2 of 0.905 on the test set as
illustrated in Fig. 3b. In spite of the minor divergency in regions
of high selectivity due to sparse data distribution in these areas,
the machine learning model generally provides satisfactory
predictions for separation performance based on physical
properties. To further investigate the structure–property rela-
tionships of the materials, we conducted SHapley Additive
exPlanations (SHAP) analysis on the trained GBR model to
assess the signicance of each feature, as depicted in Fig. 3c and
d. The top nine most important features, all of which are
physical properties, are listed, based on both the average SHAP
values and individual feature contributions, which further
substantiate our earlier feature selection analysis, conrming
that physical properties are most critical in determining sepa-
ration performance, with framework density ranking among the
top three most signicant features. However, our analysis of
individual feature weights (Fig. 3d) reveals the coexistence of
Chem. Sci., 2025, 16, 17450–17460 | 17453
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Fig. 3 Correlation of different features, importance analysis, and prediction performance. (a) Pearson correlation coefficients, with color
mapping representing both the direction (positive/negative) and magnitude of correlations (the top 10 are physical features, while the others are
chemical features. The full names are provided in Table S1); (b) GBR machine learning model performance on the test set; (c) average SHAP
values, indicating the mean feature importance across all samples; (d) SHAP beeswarm plot visualizing the distribution of SHAP values, with
higher values represented by redder colors.
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both positive and negative correlations among features across
different frameworks. This observation indicates that these
descriptors cannot be used in isolation to reliably assess
materials performance, highlighting the need to uncover the
more complex underlying mechanisms that govern the inter-
correlation of these individual features.
Performance-driven inverse design of HOFs

Inverse design represents a paradigm shi in materials
discovery, wherein the process initiates from the desired
materials performance and systematically traces back to the
requisite structural properties. This approach facilitates more
efficient and targeted materials development. However, mate-
rials properties are typically governed by multiple performance
factors rather than a single determinant. An exclusive focus on
a singular objective during the design process may lead to
impractical outcomes, such as the materials with extremely
high selectivity but very low adsorption capacity. To address this
issue, we employed the NSGA43 (Non-dominated Sorting Genetic
Algorithm) for multi-objective optimization, incorporating both
the adsorption capacity and selectivity for the target gas species
17454 | Chem. Sci., 2025, 16, 17450–17460
of Xe. The simultaneous achievement of high adsorption
density and high selectivity is set as a key indicator of superior
materials performance, demonstrating both efficient molecular
uptake capacity and precise target-specic recognition capa-
bilities. Given that inverse design is intrinsically associated with
the BBs and topology of the material, we incorporate these
critical factors as high-dimensional input features. Leveraging
the pre-trained MOF-NET39 model, we predict Xe/Kr adsorption
selectivity and Xe adsorption capacity of HOFs, enabling a more
targeted and efficient design process. The model employs
a resampling strategy to address data imbalance by selectively
augmenting underrepresented regions within the dataset,
thereby enhancing the overall balance and representativeness
of the database. As shown in Fig. S18, the R2 values for the test
set are consistently approximately 0.99, demonstrating signi-
cantly improved predictive accuracy compared with models
trained exclusively on physical and chemical features as seen in
Fig. S17. The enhanced performance can be exclusively attrib-
uted to the model's implicit incorporation of critical structural
factors, particularly the coordination environment of diverse
BBs, which encompasses the synergistic effects of hydrogen-
bond networks and their surrounding chemical environments.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Compared with Deng and Sarkisov's multi-objective opti-
mization model,44 our approach represents a substantial
advancement through integration of an active learning process
into the NSGA-II framework, thereby enhancing the model's
adaptive capabilities and optimization efficiency. By selecting
the top 10% materials predicted with the most promising
performance in each generation for further materials design
and high-throughput computation, we continuously assess the
model's accuracy and facilitate iterative updates, which are
subsequently applied to the next cycle of structure predictions,
thereby creating a self-improving optimization loop. This
enhanced sampling methodology effectively mitigates decision-
making errors arising from materials performance deviations
from the pre-trained database, while simultaneously acceler-
ating the discovery and optimization of next-generation mate-
rials. Additionally, NSGA-II optimizes the selection process by
incorporating crowding distance and elitism, which enhances
multi-objective optimization, maintains population diversity,
and reduces premature convergence. In this work, as a proof of
concept, we implemented three genetic cycles, with each cycle
generating approximately 100 000 potential structures (note
that duplicate HOFs are systematically eliminated in subse-
quent generations to maintain structural diversity). As shown in
Fig. 4a, the materials generation and performance prediction
for the three cycles are depicted. Through comprehensive
analysis of the performance density distribution across
successive generations, it is evident that the inverse design
process effectively directs the transition from performance-
oriented to structure-based materials design. In the newly
generated third-generation materials, the majority exhibit
superior Xe gas density and adsorption selectivity. Notably,
Fig. 4 Performance analysis of inverse-designed materials. (a) Inverse d
indicating an increase in iteration cycles. Higher values correspond to b
mances metrics is shown at the top and right sides. Frequency analysis o
cycle 3.

© 2025 The Author(s). Published by the Royal Society of Chemistry
when compared with the randomly generated ∼105 structures,
the proportion of materials with excellent adsorption perfor-
mance increased substantially. These results underscore the
effectiveness of our inverse design approach in generating
a higher proportion of candidates with optimized materials
performance. Building upon these ndings, we conducted
a detailed frequency analysis of the BBs present in third-
generation materials to identify key structural motifs contrib-
uting to these performance enhancements. Fig. 4b and c
present the top-ranked node and edge building blocks,
respectively. They reveals that –F, –O, and –N functional groups,
prone to form strong hydrogen bonds, dominate the BB
composition, which is crucial for facilitating efficient Xe/Kr gas
separation. Furthermore, we observed a signicantly higher
frequency of the C36_COOH building block compared with
other node types, which can be attributed to C36_COOH's
unique structural characteristics in matching more edge
building blocks, consequently promoting the formation of
additional hydrogen bonds with increased framework density,
as illustrated in Fig. S19. To quantitatively evaluate this struc-
tural distinction, we conducted a comparative analysis of
hydrogen-bond networks across nearly 50 structural variants, in
which only the node type was displaced (replacing typical high-
frequency-node C36_COOH with low-frequency node
C36_NH3). As demonstrated in Fig. S20, the HOF structures
with the C36_COOH node consistently exhibit more hydrogen
bonds in virtually all cases, which can be attributed to the
presence of additional ‘–O’ groups in C36_COOH, which serve
as effective hydrogen-bond acceptors and intensify the
hydrogen-bond networks with edge components, thereby
enhancing adsorption and separation capabilities.
esign performance over three cycles, with shading from light to dark
etter performance. The materials density analysis for the two perfor-
f the top-ranked node (b) and edge (c) building blocks for materials in

Chem. Sci., 2025, 16, 17450–17460 | 17455
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The separation mechanism of Xe/Kr in HOFs

To gain deeper insights into the adsorption mechanisms of
guest molecules within the framework, we take ‘sxt+C6_NH3+-
L39_CN_F0 as a representative study (Fig. S21). As shown in
Fig. 5a and b, we rst determined the adsorption sites of Xe/Kr
gas molecules in the HOF based on the adsorption density map
(the XY direction is shown in Fig. S23a). The pore size distri-
bution (PSD) is an important structural characteristic that
correlates with adsorption capacity,45 as shown in Fig. S22.
Specically, the PSD of sxt+C6_NH3+L39_CN_F exhibits
a certain correlation with adsorption density (Fig. S23a). The
adsorption sites for Xe and Kr are essentially the same, while the
adsorption intensity of Xe is stronger than that of Kr, as evi-
denced by the more concentrated adsorption pattern. As shown
in the adsorption density map, the central cage-like region
serves as an important adsorption site within the framework. In
addition, heat of adsorption exhibited a consistent decreasing
trend with increasing loading over a wide pressure range shown
in Fig. 5e, reecting that the dominating molecular interactions
transit from guest–host to guest–guest, and larger initial
adsorption heat for Xe indicates stronger intermolecular inter-
action between Xe and the framework.

To understand the adsorption separation mechanism facil-
itated by the unique hydrogen-bond networks, we also investi-
gated the adsorption sites within corresponding COF structures
with the same topology for direct comparison. It was observed
that the corresponding COF framework adsorbs guest
Fig. 5 Mechanistic insights into adsorption, site analysis, and descrip
material: (a) Xe adsorption density distribution map (the isosurface is set a
bonding distribution in the HOF material; (d) hydrogen bonding distributi
(sphere) and adsorption density (dashed line) with pressure variation (Xe :
selectivity and H-bond*.

17456 | Chem. Sci., 2025, 16, 17450–17460
molecules preferentially at the edge sites (Fig. S23b), instead of
the central cage-like region as promoted by the hydrogen-bond
networks in HOFs (Fig. S23a). From the adsorption energy
analysis (Fig. S24) and the differential charge distribution (Fig.
S25), the adsorption strength for Xe at this site is higher than
that for Kr and the electron transfer between Xe/Kr and the
surrounding BBs is nearly zero, indicating negligible polariz-
ability difference, consistent with the non-polar nature of inert
gases. Rather than the polarizable effect,46 the primary factor
driving Xe/Kr separation is probably the difference in the
intermolecular interactions between the hydrogen-bond
acceptors and gas molecules, which is closely related to the
intensity of hydrogen-bond networks within the system.
Therefore, we statistically analyzed the distribution of hydrogen
bonds within the framework, as shown in Fig. 5c. It was found
that this distribution aligns well with the adsorbed density
distribution of guest molecules, suggesting that the arrange-
ment of hydrogen-bond networks reects the relative strength
of guest molecule adsorption within the framework. In contrast,
there is no such apparent correlation in corresponding COF
structures (Fig. 5d), which demonstrates the fundamental
difference in the adsorption separation mechanisms between
these two types of framework materials.

Is there a universal correlation between the hydrogen-bond
networks and the gas separation performance of HOF mate-
rials? To address this question, we randomly selected approxi-
mately 500 HOF structures and examined the direct
tor optimization for selectivity prediction. sxt+C6_NH3+L39_CN_F
t 10−5 mol L−1); (b) Kr adsorption density distribution map; (c) hydrogen
on density in the corresponding COF framework; (e) heat of adsorption
Kr = 20 : 80, T = 296 K) in the HOF; (f) correlation between adsorption

© 2025 The Author(s). Published by the Royal Society of Chemistry
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relationship between the number of hydrogen bonds and
adsorption selectivity. Through Lasso regression, it was found
that the number of hydrogen bonds consistently ranked among
the top four features with the highest weight (Fig. S26).
However, the number of hydrogen bonds itself does not exhibit
a strong correlation with adsorption selectivity as seen in Fig.
S27. Taking the top-ranking structural features into consider-
ation, the density of the framework was further identied to
possess a stronger correlation with adsorption selectivity as
shown in Fig. S28. Besides the void fraction and the simplest yet
straightforward feature, it does not involve any complex calcu-
lations like Henry's constants. While PSD is an essential char-
acterization tool in separation systems, obtaining PSD data is
time-consuming and also cannot reveal the complete struc-
tural feature. Through integration of key structural factors with
the information on hydrogen-bond networks, we propose
a novel descriptor, H-bond*, to represent the effective hydrogen
bonding density, which effectively captures the linear correla-
tion with adsorption selectivity without any input from molec-
ular simulation data as illustrated in Fig. 5f. It is worth noting
Fig. 6 Experimental validation of the separation mechanism. (a) Relation
experimentally synthesized HOFs, where stars represent experimentally m
and the triangles are computed selectivity with experimentally synthes
density map of Kr gas in the structure of Bbiphen (2D).12 (c) Hydrogen bo
gas in the structure of Bbiphen (2D),12 where Bbiphen (2D) corresponds

© 2025 The Author(s). Published by the Royal Society of Chemistry
that the slight deviation from linearity is probably due to the
varied interaction strength between guest molecules and
hydrogen-bond acceptors, which is acceptable as a universal
screening tool for rapid performance assessment that bypasses
cumbersome molecular simulations. Additionally, the
enhanced linear correlation was also conrmed with symbolic
regression using SISSO as seen in Fig. S29.

H-bond* = [a + log(rH-bond)] × rf/Vf

where a is a universal parameter to avoid nonphysical results
(e.g., negative values for H-bond*), and rH-bond represents the
averaged number density of hydrogen bonds within the
framework. rf represents the gravimetric density of the frame-
work, and Vf is the void fraction of the material.
Mechanism validation with experimental data and universal
applicability

In addition to the theoretical database, we have also compre-
hensively evaluated HOF materials reported in recent
ship between the proposed descriptor and adsorption selectivity from
easured selectivity data (HIAM-103 (ref. 47) and HOF-FJU-46a (ref. 1)),
ized HOFs (Xe/Kr selectivity has not been measured). (b) Adsorption
nding arrangement in the framework. (d) Adsorption density map of Xe
to the circled structure in Fig. 6(a).
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experimental literature. As anticipated, through feature analysis
with available experimental data, we validated the universality
of our proposed descriptor, which exhibits a strong linear
correlation with adsorption selectivity as shown in Fig. 6a. The
separation mechanism was also veried with a typical experi-
mental HOF material, as highlighted in Fig. 6a. Fig. 6c and
d present the adsorption density maps for Xe and Kr, respec-
tively. The hydrogen bonding distribution map in Fig. 6c
revealed that the adsorbed gas molecules are predominantly
located within the central-cage region, surrounded by
hydrogen-bond networks, which is consistent with the mecha-
nism proposed in this work. Guided by the universal descriptor
with enhanced mechanism understanding, we suggest that
experimentalists increase framework density while maintaining
porosity and incorporating functional groups to enhance
effective hydrogen bonding density, to realize rational design of
high-performance HOF materials for gas separation.

Considering that cyano, pyrazole, and formyl functional
groups have not been previously employed in HOF construc-
tion, we systematically incorporated these motifs into our
design. Fig. S30 presents representative building blocks
featuring these newly introduced groups. Fig. S31 displays
a representative structure assembled from these building units,
showing both its molecular conguration and hydrogen-
bonding patterns. Through our computational framework, we
generated and evaluated nearly 800 new HOF structures,
analyzing their adsorption selectivity and structural character-
istics. Remarkably, comparative analysis demonstrates that
although these functional groups were absent in earlier models,
their resulting adsorption selectivity maintains a strong corre-
lation with our proposed H-bond* descriptor (Fig. S32). This
correlation is also corroborated by experimental evidence, as
several reported HOF structures containing these groups exhibit
consistent performance trends.

Discussion

In this work, we have successfully demonstrated a hypothetical
framework to construct the rst large-scale HOF database with
a materials genomics method and integrate active learning into
the inverse design workow to achieve efficient iteration and
optimization towards target materials. More importantly, we
have leveraged inverse design tools to elucidate the underlying
design principles of high-performance HOF materials, thereby
revealing key mechanisms governing gas separation perfor-
mance. Utilizing this tool, we have successfully designed a novel
HOF structure with superior Xe/Kr separation selectivity > 103,
while simultaneously maintaining a high Xe adsorption
capacity. Aer comprehensive evaluation of the separation
mechanism of Xe/Kr in both theoretical and experimental
databases, a novel universal descriptor was established to
enable rapid performance prediction bypassing cumbersome
molecular simulations, with the screening speed enhanced by
at least two orders of magnitude. With continuous advance-
ment in the modular manipulation strategies of HOFs, the
material design concept we proposed in this work holds great
promise for application in automated experimental
17458 | Chem. Sci., 2025, 16, 17450–17460
laboratories. While recognizing the inherent limitations of
theoretical predictions (particularly in anticipating synthetic
stability and other experimental challenges48), we emphasize
that mechanistic understanding for guiding structural modi-
cations holds greater signicance than material screening per
se. Furthermore, the iterative inverse engineering framework
can be generalized to various scenarios in promoting systematic
mechanism investigation and achieving rational design of novel
materials.
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