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ale chemical reaction image
parsing via a multimodal large language model

Yufan Chen, a Ching Ting Leung, a Jianwei Sun, ab Yong Huang, b

Linyan Li, c Hao Chen ad and Hanyu Gao *a

Artificial intelligence (AI) has demonstrated significant promise in advancing organic chemistry research;

however, its effectiveness depends on the availability of high-quality chemical reaction data. Currently,

most published chemical reactions are not available in machine-readable form, limiting the broader

application of AI in this field. The extraction of published chemical reactions into structured databases

still relies heavily on manual curation, and robust automatic parsing of chemical reaction images into

machine-readable data remains a significant challenge. To address this, we introduce the Reaction

Image Multimodal large language model (RxnIM), the first multimodal large language model specifically

designed to parse chemical reaction images into machine-readable reaction data. RxnIM not only

extracts key chemical components from reaction images but also interprets the textual content that

describes reaction conditions. Together with a specially designed large-scale dataset generation method

to support model training, our approach achieves excellent performance, with an average F1 score of

88% on various benchmarks, surpassing state-of-the-art methods by an average of 5%. This represents

a crucial step toward the automatic construction of large databases of machine-readable reaction data

parsed from images in the chemistry literature, providing essential data resources for AI research in

chemistry. The source code, model checkpoints, and datasets developed in this work are released under

permissive licenses.
1 Introduction

The eld of organic chemistry has witnessed a transformative
shi with machine learning techniques, enabling signicant
advancements in retrosynthesis, reaction prediction, and
condition recommendation. As researchers increasingly
leverage these methodologies to explore complex chemical
phenomena, high-quality machine-readable chemical reaction
data is essential. Despite the wealth of chemical knowledge
documented in the literature, the data required for effective
machine learning applications remains largely fragmented and
predominantly inaccessible in a format suitable for computa-
tional analysis.1–5

Traditional approaches to chemical reaction data extraction
are predominantly manual, involving labor-intensive curation
processes that are susceptible to human error and inefficien-
cies. This reliance on manual extraction limits the scalability of
data acquisition as well as the potential for comprehensive
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analysis across large datasets. There is an urgent need for
automated solutions that can accurately and efficiently parse
chemical reaction images, transforming them into structured
data that can support advanced machine learning applications.

Substantial efforts have been devoted to automatic chemical
reaction data extraction.6–11 For instance, the Pistachio data-
set,12 primarily derived from patent text, utilizes a classic
natural language processing pipeline that encompasses
syntactic parsing and named entity recognition to identify
chemical names,13,14 followed by event extraction to organize
these chemicals into reactions. To handle the varied text found
in journal articles, Guo et al. developed a deep learning
approach15 that breaks down the task into product extraction
and reaction role labeling, utilizing sequence tagging tech-
niques based on pre-trained language models. Zhong et al.
proposed a reaction extraction system based on large language
models (LLMs),16 which utilized the natural language under-
standing ability of LLMs, and expanded the scope of existing
predened reaction roles to include important attributes that
have been ignored before, thus providing a more comprehen-
sive and accurate description of chemical reactions. Despite
these advancements, existing work primarily focuses only on
processing textual information.

Images serve as a more intuitive medium for documenting
chemical reactions, providing clear visualization of molecular
Chem. Sci.
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structures and the logical ow of multi-component and multi-
step reactions. Yet, reaction image parsing remains under-
explored, largely due to the complexity of reaction images and
the variability of drawing styles. Previous works have attempted
to detect the location of molecular objects from images3,4 or
recognizing their chemical structures.17–20 These methods oen
struggle to understand the role of different components and
their logical connections, which are critical for a comprehensive
understanding of the chemical reactions depicted.3,4 For reac-
tion image parsing, Qian et al. developed a single encoder-
decoder model5 closely following Pix2Seq,21 attempting to
parse reaction data from images directly via an image-to-
sequence translation. This approach demonstrated consider-
able promise, yet it still frequently failed to parse data from
images of more complicated reaction patterns. Additionally, the
multimodality of reaction information has not been explicitly
addressed in previous methods. For example, for the text of
reaction conditions and other auxiliary information, existing
methods typically rely on external optical character recognition
(OCR) tools to recognize the characters, and do not further
process the information (e.g., whether the text describes the
agents, solvents, time, temperature, or yield), resulting in less
comprehensive nal parsed data.

Recently, as an essential subset of LLMs,22–29 multimodal
large language models (MLLMs) represent a signicant break-
through in computer vision.30–42 They have demonstrated
impressive capabilities in both traditional visual tasks, such as
object detection and instance segmentation, as well as in more
complex tasks like referring expression comprehension and
generation.43 Moreover, MLLMs have shown OCR capabilities in
some text-related visual tasks in chemistry with prompt engi-
neering.44,45 Therefore, MLLMs present a promising solution for
parsing data from chemical reaction images, an area that
remains largely uncharted in the literature. In this context, we
investigate whether a single unied MLLM can jointly localize
reaction components and interpret condition texts with
chemical-grade accuracy within complex reaction images. We
further hypothesize that task-driven cross-modal instructions
and model architecture will resolve overlapping graphical
elements and textual annotations more reliably than separate
vision and text pipelines, and that the visual reasoning capa-
bilities of such an MLLM will substantially outperform tradi-
tional vision-only or pipeline-based approaches across diverse
layout conventions.

In this paper, we present Reaction Image parsing Multi-
modal large languagemodel (RxnIM), the rst multimodal large
language model specically designed for parsing chemical
reaction images. We rst created a large-scale synthetic dataset
(Fig. 1(a)) by a novel data generation algorithm that extracts
textual reaction information from the Pistachio dataset, gener-
ates visual reaction components, and assembles sub-images
according to predened reaction patterns. Then we designed
the RxnIM architecture (Fig. 1(b)), which integrates a unied
task instruction framework, a multimodal encoder to align
image features with text-based instructions, a ReactionImg
tokenizer for converting visual features into tokens, and an
open-ended LLM decoder for generating the parsing output. We
Chem. Sci.
trained RxnIM using a three-stage training strategy with
a unied language-based task instruction for different chemical
reaction image parsing tasks. The rst stage was pretraining the
model's object detection capability on the large-scale synthetic
dataset. In the second stage, the model was trained to identify
the reaction components and extract reaction conditions using
the synthetic dataset. In the nal stage, the model was ne-
tuned on the synthetic dataset with a smaller, manually
curated dataset to enhance its performance on real reaction
images. Finally, we apply a straightforward and comprehensive
workow using RxnIM (Fig. 1(c)) to seamlessly identify reaction
components, extract reaction conditions, and convert molecular
structures into machine-readable formats such as SMILES or
Molle. Further details can be found in the SI Materials and
methods section. Unlike previous rule-based3,4 or single-task
models,5 RxnIM comprehensively understands chemical reac-
tion images, exibly integrates multiple parsing tasks, and
produces more accurate and holistic outputs.

The model achieved an average F1 of 88% (so match score,
dened in SI Materials and methods section) across various
benchmarks for the reaction component identication task,
signicantly outperforming the state-of-the-art method by an
average of 5%. Additionally, our tests highlighted the model's
superior abilities in interpreting textual information that
describes reaction conditions. We further developed a web
application that can easily be used and deployed. The web
application is hosted at https://huggingface.co/spaces/
CYF200127/RxnIM. Since RxnIM was trained on promising
large-scale data and offered as a ready-to-use open-source
tool, we believe it will greatly reduce the workload and enable
the construction of high-quality datasets for the research
community and promote machine-learning-driven innovations
in organic chemistry.

2 Results and discussion

In our workow, the chemical reaction image parsing task is
divided into two sub-tasks: reaction component identication
and reaction condition interpretation. The reaction component
identication task involves identifying all the reactions, seg-
menting their components, and understanding their roles (such
as reactant, condition, or product) in a reaction image. The
reaction condition interpretation task is to extract the detailed
condition in a reaction by recognizing the words in the text
regions that describe reaction conditions and understanding
their meanings (e.g., names of agents or solvents, temperature,
time, and yield). Further details of the task design can be found
in the SI Materials and methods section.

To minimize the effort for data labeling, we primarily used
“synthetic data” to train our models. Specically, we use struc-
tured reaction data from a large-scale chemical reaction data-
base, Pistachio,12 to construct images of chemical reactions
following the general rules and styles in the chemical literature.
For example, for a single-step reaction, we rst draw the images
of reactant and product molecular structures using chem-
informatics tools, and then place them on a canvas and draw an
arrow that points from the reactant to the product. Agent
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://huggingface.co/spaces/CYF200127/RxnIM
https://huggingface.co/spaces/CYF200127/RxnIM
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc04173b


Fig. 1 Dataset generation and overview of the proposed RxnIM. (a) Synthetic dataset generation pipeline. We obtain textual reaction information
in the Pistachio dataset, generate visual reaction components, and create sub-images based on predefined reaction patterns. These sub-images
are combined to form the final synthetic reaction image. This process resulted in the creation of a large-scale chemical reaction image parsing
dataset containing 60 000 diverse images. (b) Model architecture of our RxnIM. The model incorporates four key components: (1) a unified task
instruction for standardizing chemical reaction image parsing tasks, (2) a multimodal encoder that aligns image information with task instruc-
tions, (3) a ReactionImg tokenizer to convert image features into tokens, and (4) an open-ended LLM decoder that generates the final output. (c)
Workflow for chemical reaction image parsing using RxnIM, where results from two tasks are combined and molecular structures are converted
into machine-readable formats like SMILES or Molfile.
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information is placed above the arrow, while solvent, tempera-
ture, reaction time and yield are placed below the arrow. In this
way, we can construct a large number of labeled images of
chemical reactions automatically. To account for the complexity
of real chemical reaction images, we performed data augmen-
tation in font size, line width, size of the molecular images, and
reaction pattern (e.g., single-line, multiple-line, branch, and
cycle). Full descriptions of the image generation and examples
of generated images are available in the SI Materials and
methods section. Using this approach, we generated 60 200
synthetic images along with their corresponding ground truth
© 2025 The Author(s). Published by the Royal Society of Chemistry
data as our primary dataset. For each image, ground truth data
includes the positions and roles of the reaction components, as
well as the reaction condition texts. We divided the data into
training, validation, and test sets using an 8 : 1 : 1 ratio. To
ensure the model performs well on a broader range of reaction
images found in real literature, we also incorporated a small-
scale real reaction image dataset manually labeled by Qian
et al.5 We followed the original split of the real data set and used
it in both the training and testing phases for the reaction
component identication task. The details of each dataset can
be found in SI Additional Note 1.
Chem. Sci.
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The training process was conducted in three stages, each
utilizing different datasets and tasks. In the rst stage, the
model was trained on the synthetic dataset, focusing on the
object detection task to accurately locate objects within the
reaction images. In the second stage, the model was further
trained on the synthetic dataset, incorporating both the reac-
tion component identication and reaction condition inter-
pretation tasks to enhance its ability to understand the roles
and contents of the parsed objects. In the nal stage, the model
was ne-tuned using the real reaction image dataset specically
for the reaction component identication, allowing it to adapt
to the more diverse and complex scenarios present in real-world
chemical literature. The implementation details can be found
in the SI Materials and methods section.
2.1 Performance on the reaction component identication
task

For the reaction component identication task, we compared
our RxnIM with current reaction component identication
methods including rule-based OChemR46 and ReactionDataEx-
tractor,3 ReactionDataExtractor 2.0 (ref. 4), learning-based
models RxnScribe,5 as well as MLLMs such as Uni-Finder,
Qwen2.5-Max,40 GPT-4o,41 and GPT-o3 (ref. 42) using evalua-
tion metrics including precision, recall, and F1 score. We
adopted the same concepts of “hardmatch” and “somatch” as
described in the RxnScribe paper, where a hard match only
counts instances where the prediction matches the ground
truth exactly, while a somatch allows the labeling of the role of
an agent as a reactant. The details of the evaluation metrics can
be found in the SI Materials and methods section.

The results on the synthetic test dataset and the real test
dataset are shown in Table 1. RxnIM demonstrates better
performance on various metrics when compared with other
Table 1 Overall comparison of model performance on the reaction com
performance of RxnIMwith other models on both synthetic and real datas
including precision, recall, and F1 scores. Scores are all in %

Dataset Model

Hard match

Precision

Synthetic OChemR46 8.1
ReactionDataExtractor3 8.4
ReactionDataExtractor 2.0 (ref. 4) 54.2
RxnScribe5 78:5

Uni-Finder 4.0
Qwen2.5-Max40 8.0
GPT-4o41 17.1
GPT-o3 (ref. 42) 55.6
RxnIM 86.4

Real OChemR46 4.4
ReactionDataExtractor3 4.1
ReactionDataExtractor 2.0 (ref. 4) 42.1
RxnScribe5 72:3

Uni-Finder 3.1
Qwen2.5-Max4 6.1
GPT-4o4 12.1
GPT-o3 (ref. 4) 44.1
RxnIM 74.7

Chem. Sci.
methods. Specically, in the somatch criteria, RxnIM achieves
a precision of 91.6%, a recall of 90.8%, and an F1 score of 91.2%
on the synthetic test dataset, outperforming the second best
method, RxnScribe, by 4.0%, 6.8%, and 5.4%, respectively. On
the real data set where the images are more diverse and
complex, RxnIM still reports a precision of 86.9%, a recall of
82.8%, and an F1 score of 84.8%, outperforming the second best
method by 3.1%, 6.3% and 4.8%, respectively. This indicates
the advanced abilities of our model in extracting reactions in
diverse reaction images, underscoring its robustness and
adaptability to different levels of image complexity and vari-
ability. Under the hard match criteria, RxnIM reaches a preci-
sion of 86.4%, a recall of 85.9%, and a F1 score of 86.2% on the
synthetic test dataset, outperforming the second best method
by 7.9%, 10.3% and 9.1%, respectively, and a precision of
74.7%, a recall of 69.7%, and an F1 score of 72.1% on the real
test dataset, surpassing the RxnScribe by 2.4%, 3.5% and 3.0%,
respectively.

One of the main reasons for such improvement is that
RxnIM renes the output sequence dened by RxnScribe by
introducing paired start-end tokens for each reaction compo-
nent, which provides more precise structural boundaries and
reduces decoding ambiguity. Besides, our architecture also
outperforms their traditional transformer encoder-decoder
frameworks using multi-scale cross-modal attention and
a task-guided tokenizer to capture text-augmented ne-grained
visual details and generalize across related tasks, respectively.
Furthermore, RxnIM is trained on a larger, purpose-built corpus
of synthetic and real reaction images. Compared to RxnScribe,
RxnIM consistently achieves higher precision, recall, and F1
score across all reaction categories. Overall, these advances
make RxnIM a signicant improvement over RxnScribe in both
scope and performance.
ponent identification task on different test datasets. We contrast the
ets. We present detailedmetrics for hardmatch and soft match criteria,

So match

Recall F1 Precision Recall F1

7.1 7.8 15.9 12.8 14.2
6.9 7.6 22.6 11.4 15.2

53.4 53.7 66.2 63.1 64.6
75:6 77:1 87:6 84:0 85:8

3.1 3.5 5.6 4.5 5.0
7.8 7.9 11.7 10.9 11.3

16.1 16.6 20.3 19.4 19.8
55.1 55.3 61.2 60.4 60.8
85.9 86.2 91.6 90.8 91.2
2.8 3.4 12.4 7.9 9.6
1.3 1.9 19.4 5.9 9.0

41.8 42.0 49.5 49.1 49.4
66:2 69:1 83:8 76:5 80:0

2.9 3.0 4.1 4.0 4.0
6.0 6.0 7.2 6.7 6.9

11.2 11.6 14.6 14.2 14.4
43.4 43.7 51.1 51.8 51.4
69.7 72.1 86.9 82.8 84.8

© 2025 The Author(s). Published by the Royal Society of Chemistry
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It is notable that general multimodal large language models
(Uni-Finder, Qwen2.5-Max, GPT-4o, and GPT-o3) exhibit infe-
rior performance compared to RxnIM and specialized chemical
models, especially under strict criteria (hard match). Uni-Finder
is an MLLM specically designed for information extraction
from scientic literature, but it struggles with this task, which
requires ne-grained image localization capability like other
MLLMs. Among these general models, GPT-o3 performs rela-
tively better, reaching 55.6% precision and 55.1% recall on
synthetic data, and 44.1% precision and 43.4% recall on real
data under the hard match criterion. GPT-o3 outperforms
ReactionDataExtractor 2.0 on the real test set, which shows that
its visual reasoning ability is more exible and effective than the
rule-based method in some complex cases. But it is still
signicantly behind RxnIM. This gap is indicative of the
inherent limitation of generic MLLMs in handling highly
specialized chemical image parsing tasks, underscoring the
advantage of domain-specic training and model specialization
as implemented in RxnIM. Similarly, under the so match
criteria, the general MLLMs still lag behind specialized models
like RxnIM and RxnScribe, although the performance differ-
ences are somewhat reduced. This reects the capability of
general MLLMs to perform moderately well when exact labeling
precision is relaxed, but also emphasizes the necessity of
domain-tailored multimodal approaches like RxnIM to ensure
high-quality chemical information extraction.

We further broke down the performance comparison into
four different patterns of reaction images on the real test
dataset – (1) single line, where all reactions appear in the same
line; (2) multiple line, where there are multiple lines of reac-
tions, (3) branch, where branch is used when multiple reactions
start from a common reactant, and (4) cycle, where multiple
reactions are displayed in a cycle, in four best methods, RxnIM,
RxnScribe, ReactionDataExtractor 2.0 and GPT-o3, shown in
Fig. 2. A detailed data distribution for four reaction image
patterns is shown in SI Additional Note 2 and Table S2. For
single-line reaction images, RxnIM achieves a hard match F1
score of 87.3%, surpassing RxnScribe's score of 85.0%. In
multiple-line images, RxnIM achieves a hard match F1 score of
75.7%, signicantly outperforming RxnScribe's 72.8%. In
branch images, RxnIM demonstrates a clear advantage,
obtaining a hard match F1 score of 72.9%, compared to
RxnScribe's 63.0%. For cycle images, RxnIM attains a hard
match F1 score of 62.9%, notably higher than RxnScribe's 52.7%
and signicantly above GPT-o3's 30.9%. Under the so match
criterion, RxnIM consistently maintains superior performance,
achieving scores of 93.0%, 89.4%, 80.8%, and 75.8% for single-
line, multiple-line, branch, and cycle reaction images, respec-
tively. RxnIM consistently outperforms RxnScribe and signi-
cantly exceeds the capabilities of ReactionDataExtractor 2.0 and
GPT-o3 across all reaction image patterns, and the gap will be
greater in more complex situations. Notably, GPT-o3, despite
being a general multimodal large language model, shows rela-
tively lower performance across all image patterns, with the
largest performance gap in cycle patterns. This highlights the
limitations of general MLLMs in specialized chemical tasks.
Meanwhile, the performance of the rule-based method
© 2025 The Author(s). Published by the Royal Society of Chemistry
ReactionDataExtractor 2.0 remains at the lowest level. The
superior performance of RxnIM, particularly in multiple-line,
branch, and cycle patterns, underscores its enhanced capa-
bility for advanced image reasoning and localization, making it
particularly suited to handling complex chemical reaction
image scenarios. This result also provides users with an esti-
mate of the reliability of model outputs based on the style and
complexity of the reaction images that are being processed.
Further discussions on the synthetic test dataset can be found
in SI Additional Discussion 1 and Table S5.

In addition to quantitative measures, we show some exam-
ples of the reaction component identication task in Fig. 3,
compared to the second-best method, RxnScribe, to provide
intuitive illustrations on the improvement achieved by RxnIM.
RxnScribe and RxnIM both make the correct prediction in
prediction 1, which is a simple single-line image. In prediction
2, RxnScribe misinterprets several key objects in reactants and
conditions, leading to inaccuracies in the reaction representa-
tion. This is due to the diverse single-line image containing
a complex molecular structure and being line-wrapped when
placing products. For this example, RxnIM accurately depicts
the relationship between molecules in different lines and
clearly labels the relevant reaction conditions. In prediction 3,
which is an unusual multiple-line image with a nonparallel
arrow surrounded by condition text, RxnScribe makes mistakes
in labeling conditions in the second reaction step. RxnIM,
however, successfully decodes all reaction steps, showcasing its
robustness in handling complex reaction images.

We further show some RxnIM's predictions on more
complex reaction images in Fig. S2 to S7. Fig. S2 is a multiple-
line image with four reactions. RxnIM correctly predicts all
reactions, even when the products of the last reaction are placed
vertically, which is a rare style. In Fig. S3, which is a branch
image containing two different branches and three reactions in
total, and RxnIM correctly identies all reactions in each
branch. Fig. S4 is a catalytic cycle that represents one of the
most complex styles in reaction images. This image contains
nine diverse reactions, with a blend of many different types of
arrows, such as curved, branching, vertical, and bidirectional.
RxnIM successfully makes eight correct predictions out of nine
reactions. The only incorrect prediction is a reaction where the
model misses a small-molecule byproduct, and the major
reactants and products are well recognized. Fig. S5 shows
a radially branching reaction scheme with condition texts
placed at various angles and orientations rather than strictly
horizontally. RxnIM accurately identies all reaction compo-
nents and correctly parses the angled condition texts, high-
lighting the model's robustness against layout variability. In
Fig. S6, we illustrate RxnIM's ability to correctly interpret reac-
tion arrows explicitly marked with a cross (×), indicating that
these particular reaction paths do not occur or are otherwise
invalid. The model successfully distinguishes these invalid
reaction branches from the valid ones. Fig. S7 shows reactions
involving reversible reactions denoted by bidirectional arrows.
RxnIM accurately identies both the forward and reverse
directions, correctly interpreting the reversible nature of these
chemical equilibria. These additional examples underscore
Chem. Sci.
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Fig. 2 Comparison of model performance on the reaction component identification task on four different patterns of reaction images on the
real test dataset. We display precision, recall, and F1 scores in hard match and soft match, of our model and current methods across four patterns
of reaction images: single-line, multiple-line, branch, and cycle. The performance is evaluated to demonstrate the models' capabilities in
accurately extracting reactions under varying image complexities and layouts.
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RxnIM's comprehensive ability to handle various complex arrow
notations and reaction layouts commonly encountered in
chemical literature.

The performance of RxnIM across various metrics, datasets,
and reaction image patterns underscores its effectiveness in
handling the complexities of the reaction component identi-
cation task in the chemical literature, highlighting its excep-
tional image reasoning and localization abilities to extract every
reaction step in complex and diverse reaction images.

2.2 Performance on the reaction condition interpretation
task

RxnIM uniquely leverages the multimodal capabilities of LLMs
to perform multiple reaction image parsing tasks within
a unied framework. By integrating visual and textual infor-
mation, our model is able to not only identify the locations of
reaction components but also interpret the textual content in
the components, i.e., perform the reaction condition interpre-
tation task, differentiating it from existing models. The overall
performance of RxnIM on the reaction condition interpretation
task is outlined in Fig. 4(a). We evaluated the performance from
two perspectives: (1) whether the text of the reaction condition
is correctly recognized, which we term “condition OCR”, and (2)
whether the roles of different elements in the reaction condition
are correctly understood, which we term “condition role iden-
tication (CRI)”. For condition OCR, RxnIM achieved a high
accuracy of 94.9%, indicating the model's effectiveness in
recognizing and converting text within chemical images into
editable and searchable data.
Chem. Sci.
For the CRI task, the model reached an accuracy of 93.6%.
The CRI performance in Fig. 4(b) and the confusion matrix in
Fig. 4(c) further detail the model's performance across various
condition roles such as agent, solvent, temperature, time, and
yield. The model demonstrates strong performance in identi-
fying agents with a precision of 89.3%, a recall of 88.8%, and an
F1 score of 89.1%. For solvent, the precision is 90.2%, recall is
90.7%, and F1 score is 90.4%. These results suggest that the
model effectively distinguishes between chemical agents and
solvents. It is worth noting from the confusion matrix that
agents and solvents are more oen misidentied with each
other, as compared to with other elements. This is likely due to
some inherent ambiguity of these two roles – some chemicals
can both serve as the solvent to dissolve the reactants, and the
agent to promote reactivity. For numerical parameters like
temperature, time, and yield, the model exhibits high accuracy.
The precision, recall and F1 scores are 96.3%, 96.4%, and
97.6%, respectively, indicating strong performance in identi-
fying and classifying these crucial elements in reaction condi-
tions. The confusion matrix further conrms the model's
accuracy, showing minimal misclassication among these
categories.

We further compare the accuracy of our model with the
MLLMs mentioned in the previous section on ve condition
roles in Table 2, while other methods cannot classify the roles.
We asked these models to nd all reaction conditions from
a reaction image and classify them. RxnIM consistently achieves
the highest accuracy across all roles, signicantly out-
performing general MLLMs. Notably, RxnIM achieves an
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Visualization examples on the reaction component identifica-
tion task compared to the current best method RxnScribe. We display
the comparison between RxnScribe and RxnIM on the reaction
component identification task across three different prediction
examples. Each predicted reaction is visualized in a separate image,
showing the predicted reaction components, including reactants,
conditions, and products, with color-coded boxes representing
different component types. Check marks and cross marks indicate
correct and incorrect predictions, respectively, under the hard match
criteria. The red dashed circle indicates that the reaction is not pre-
dicted. The DOI numbers of the relevant journal articles for these real
reaction images can be found in SI Additional Note 3 and Table S3.

Fig. 4 Performance and visualization examples on the reaction
condition interpretation task. (a) Overall performance on the reaction
condition interpretation task in OCR and CRI (Condition Role Identi-
fication) accuracy. (b) The CRI performance in precision, recall, and F1
scores on five different condition roles: agent, solvent, temperature,
time, and yield. (c) The confusion matrix detailing the model's
performance in correctly identifying these condition roles, highlighting
areas of accurate and confused classifications. (d) Example model
outputs for the reaction condition interpretation task across two
different predictions. Each prediction involves extracting and identi-
fying the text and corresponding roles within reaction condition boxes.
The output format indicates the recognized text along with its
assigned condition role, such as agent [Age], solvent [Sol], temperature
[Tem], time [Time], and yield [Yld].

Table 2 Per-role CRI accuracy on the reaction condition interpreta-
tion task. We report the accuracy (%) of RxnIM, Uni-Finder, Qwen2.5-
Max, GPT-4o and GPT-o3 across the five condition roles: agent,
solvent, temperature, time and yield

Model Agent Solvent Temperature Time Yield

Uni-Finder 81.2 80.1 91.5 92.4 91.3
Qwen2.5-Max40 77.2 79.4 90.4 91.2 91.5
GPT-4o41 81.5 83.0 93.2 94.1 95.1
GPT-o3 (ref. 42) 85:3 87:1 95:6 95:7 97:0

RxnIM 88.9 90.1 96.3 96.4 97.6
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accuracy of 88.9% for agents and 90.1% for solvents, clearly
surpassing GPT-o3, the second-best model, which scores 85.3%
and 87.1%, respectively. It is noteworthy that general MLLMs
perform relatively poorly in accurately identifying agents and
solvents but achieve comparatively higher accuracy for numer-
ical parameters such as temperature, time, and yield. For these
parameters, RxnIM further demonstrates superior perfor-
mance, achieving accuracies of 96.3%, 96.4%, and 97.6%,
respectively, indicating substantial improvement over general
MLLMs and highlighting its specialized capability in accurately
extracting and classifying detailed chemical reaction condi-
tions. For numerical parameters like temperature, time, and
yield, the model exhibits high accuracy. The precision, recall,
and F1 scores are 96.3%, 96.4%, and 97.6%, respectively, indi-
cating strong performance in identifying and classifying these
crucial elements in reaction conditions. The confusion matrix
further conrms the model's accuracy, showing minimal
misclassication among these categories.

We visualize some examples of this task in Fig. 4(d). RxnIM
exhibits strong performance in accurately extracting and cate-
gorizing text within reaction conditions. In two separate
predictions, it effectively identies and assigns roles to chem-
ical agents, solvents, temperatures, and times. For instance, in
the rst example, it correctly labels ‘ArCHO’ as an agent and
© 2025 The Author(s). Published by the Royal Society of Chemistry
‘THF’ as a solvent, while in the second, it accurately recognizes
‘H2’ and ‘PdC’ as agents, and ‘35C’ as the temperature. These
results underscore the model's precision and utility in parsing
condition text information in reaction images, making the nal
reaction component identication results more detailed and
comprehensive. We further show more examples in Fig. S8 to
demonstrate RxnIM's ability to capture condition texts that fall
outside the ve predened roles and correctly omit role tokens.
In example 1, RxnIM accurately extracts the tilted, non-
horizontal text “R1 = Ar, Alk”, “R2 = Ar, Alk” and “R3 =

CO2Alk” without assigning any role token. In example 2, it
extracts “MeOH” and “pH 10–11” and recognizes that “pH” is
not among the core categories, refraining from outputting a role
Chem. Sci.
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Table 3 Reaction SMILES exact match accuracy and average infer-
ence time per image in the final output. We report the reaction SMILES
exact match accuracy (%) of RxnIM, Uni-Finder, Qwen2.5-Max, GPT-
4o and GPT-o3 on the synthetic datasets and the average inference
time per image

Model
Inference time
per image

Exact match
accuracy

Uni-Finder 1 m 4 s 12.3
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token. These cases highlight RxnIM's exibility in handling
unexpected or auxiliary condition text while maintaining clean,
structured output.

Overall, our comprehensive evaluation of RxnIM shows that
it consistently outperforms the current methods. It demon-
strates promising abilities in image reasoning, localization, and
OCR, proving to be a reliable tool for chemical reaction image
parsing and machine-readable reaction database construction.
Qwen2.5-Max40 50 s 9.6
GPT-4o41 47 s 18.7
GPT-o3 (ref. 42) 2 m 45 s 32:7

RxnIM 17 s 80.2

Fig. 5 Visualization examples of the final JSON output compared to
GPT-o3. This example compares RxnIM and GPT-o3 on a reversible
reaction image. RxnIM completes inference in 13 s, correctly outputs
both reaction directions in JSON with accurate SMILES including
aromaticity and formal charges. In contrast, GPT-o3 requires over
3 min, returns only one reaction direction with incorrect SMILES, and
fails to capture the correct chemical structure.
2.3 Reaction SMILES output using RxnIM.web

RxnIM.web is a web application that combines the outputs of
the previously described tasks using the proposed workow for
reaction image parsing (Fig. 1(c) and SI Materials and methods
section). We also provide an example of RxnIM.web in action in
Fig. S9. In this case, the RxnIM.web begins with the user
uploading a multiple-line reaction image. RxnIM.web will rst
run the reaction component identication task to extract the
regions of reactants, conditions, and products for each reaction.
Visualized outputs are presented in the Reaction extraction
output panel. Each reaction is displayed individually in an
image. Then, RxnIM.web will run reaction condition interpre-
tation tasks for each condition text region to extract the detailed
conditions for each reaction. Molecular objects are then pro-
cessed by our previously proposed molecular recognition model
MolNexTR47 to obtain machine-readable SMILES strings.
Finally, RxnIM.web will integrate this information in the
Reaction image parsing output panel. Additionally, in the
Machine-readable data output panel, we integrate the SMILES
part of each reaction in the reaction image parsing output into
reaction SMILES strings, making them accessible for common
chemistry tools such as RDKit and ChemDraw. Each reaction
structure is also visualized as a 2D molecular diagram by RDKit.
Besides, the reaction image parsing output can also be down-
loaded in a machine-readable JSON le format in this panel.

Since our synthetic datasets were generated from the Pista-
chio database, exact ground-truth reaction SMILES annotations
were readily available. However, our real datasets contain only
bounding-box annotations without corresponding reaction
SMILES. Thus, we evaluate reaction SMILES exact match accu-
racy using only the synthetic dataset. We compare our model to
the MLLMs mentioned in the previous section. We let these
models directly output SMILES following a predened data
structure. As shown in Table 3, RxnIM signicantly outperforms
all MLLMs, achieving a reaction SMILES exact-match accuracy
of 80.2%, compared to GPT-o3's 32.7%, GPT-4o's 18.7%, Uni-
Finder's 12.3%, and Qwen2.5-Max's 9.6%. Furthermore, RxnIM
exhibits substantial inference-time advantages, requiring only
17 seconds per image compared to signicantly longer times by
other models, such as GPT-o3 (2 minutes 45 seconds) and GPT-
4o (47 seconds). We provide a visualized example in Fig. 5,
comparing RxnIM with GPT-o3 on a challenging case involving
a real reversible reaction image indicated by a bidirectional
arrow and containing aromaticity and formal charge. In this
example, RxnIM correctly recognizes and outputs both reaction
directions separately, accurately generating correct SMILES
strings that include aromaticity and formal charges,
Chem. Sci.
demonstrating its robust chemical feature extraction capability.
In contrast, GPT-o3, despite signicantly longer inference time
(3 minutes 14 seconds compared to RxnIM's 13 seconds),
incorrectly outputs only one direction of the reaction, and the
SMILES strings generated are chemically incorrect, missing
critical details related to aromaticity and formal charges.

To further assess and mitigate prediction errors, we con-
ducted a systematic error analysis (see SI Additional Discussion
2 and Fig. S11), which indicates that the predominant errors
arise from molecular recognition inaccuracies when converting
molecular structures into SMILES. This type of error can be
reduced with future improvements of the molecular image
recognition models. A secondary source of errors stems from
highly complex reaction layouts, where the model may fail to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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fully capture the relationships among reactants and products or
may omit certain reaction steps. In addition, a comparatively
minor proportion of errors is attributable to condition inter-
pretation, where textual information is misclassied. In prac-
tice, we integrate a Human-AI collaboration workow into
RxnIM.web (see SI Section 1.8), which allows chemists to visu-
ally compare parsed reactions with the original image and
rapidly correct misclassications. Overall, these results
demonstrate the strength and efficiency of RxnIM in extracting
chemically meaningful and precise molecular information,
highlighting both its practical value for downstream chem-
informatics applications and the importance of complementary
workows in constructing reliable datasets.

2.4 Effect of model components and congurations

In this section, we provide evaluations of the components and
congurations that inuence the performance of our model in
terms of precision, recall, and F1 under the so match criteria
for the reaction component identication task, as well as OCR
accuracy and CRI accuracy. All evaluations for the reaction
component identication task are conducted on the real test
dataset. The results are shown in Fig. 6.

2.4.1 Number of image tokens. In our exploration of the
effect of varying the number of image tokens, depicted in
Fig. 6(a), we observe a clear trend of increasing performance
across all metrics as the number of tokens increases from 100 to
300. The performance peaks at 300 tokens, achieving a so
Fig. 6 Model performance with different components and configu-
rations (a) effect of varying the number of image tokens in precision,
recall, F1 score, OCR accuracy, and CRI accuracy. (b) Influence of
training strategies using different training stages, showing perfor-
mance improvements across multiple training stages. (c) Compares
the use of special location tokens versus numerical tokens in position
representation. (d) Effect of the text encoder, contrasting performance
with a frozen BERT, without BERT, and with a fine-tuned BERT. More
discussions of model performance with different components and
configurations are illustrated in SI Additional Discussions 3 and 4.

© 2025 The Author(s). Published by the Royal Society of Chemistry
match F1 score of 84.8%, OCR accuracy of 94.9%, and CRI
accuracy of 93.6%. This improvement suggests that a higher
number of tokens allows the model to capture more detailed
information from the images, enhancing its ability to differ-
entiate and recognize complex structures and reaction compo-
nents. However, as the number of tokens exceeds 300, we
observe a slight decline in performance at 400 tokens. This
decrease may be due to the reduced effectiveness of capturing
long-range dependencies between tokens, as more tokens could
represent smaller image regions, leading to diminished global
context understanding. This suggests that 300 tokens provide
an optimal balance, capturing sufficient detail while main-
taining effective long-range relationships. Therefore, we select
300 image tokens as the ideal conguration to maximize
performance without compromising the model's ability to
understand the overall image structure.

2.4.2 Inuence of training strategies. The analysis of
training strategies using different training stages is shown in
Fig. 6(b). Detailed training strategies are described in the SI
Materials and methods section and SI Additional Notes 4.

When using only Stage 1, the model cannot effectively
perform the two downstream tasks because this stage focuses
solely on pre-training the vision backbone for object detection.
Once Stage 2 is incorporated (Stage 1 + 2), the performance
increases substantially, highlighting the importance of the
reaction component identication and reaction condition
interpretation tasks in enabling cross-modal reasoning.

For the mixed strategies, Stage 1 + 3 and Stage 2 + 3 also lead
to performance improvements over single-stage training.
However, both settings converge to slightly lower scores
compared with the full three-stage pipeline, suggesting that
skipping any intermediate stage results in suboptimal learning.
In particular, Stage 1 + 3 benets from visual pre-training and
real-data ne-tuning but misses the multi-task training that
builds alignment between image and text features; Stage 2 + 3
benets from multi-task training and real-data adaptation but
lacks the foundation provided by object detection pre-training.

The all stages pipeline consistently achieves the best
performance, demonstrating the cumulative benets of our
sequential strategy. These results conrm that each stage plays
a distinct and complementary role: Stage 1 establishes locali-
zation ability, Stage 2 enhances recognition and semantic
parsing, and Stage 3 adapts the model to real-world data.
Together, they ensure both strong performance on synthetic
benchmarks and robust generalization to practical
applications.

2.4.3 Special location tokens vs. numerical tokens. We
compared the different position representation techniques in
Fig. 6(c). Detailed position representation is described in the SI
Materials and methods section. The model using numerical
representations outperforms the one using vocabulary-based
representations. This advantage likely arises from the numer-
ical method's ability to provide more granular and precise
positional information, which is critical in understanding
spatial relationships in reaction images. Numerical tokens can
encode exact coordinates and sizes, enabling the model to
better differentiate between closely positioned elements and
Chem. Sci.
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capture the detailed layout of reaction schemes. While numer-
ical tokens might increase computational complexity during
training, the trade-off is justied by the substantial improve-
ment in model accuracy and reliability. This nding under-
scores the importance of precise positional representations in
enhancing a model's image reasoning and localization
capabilities.

2.4.4 Inuence of text encoder. We investigated the role of
the text encoder BERT in the multimodal encoder in Fig. 6(d).
The result illustrates that integrating BERT into the model
without freezing any parameters provides a signicant
improvement in all metrics compared to congurations without
BERT or with BERT and frozen parameters. This suggests that
BERT's powerful contextual understanding of the task instruc-
tions signicantly contributes to the model's performance,
particularly when it is allowed to adapt to the specic context of
the reaction parsing tasks. Freezing parameters while using
BERT results in a noticeable drop in performance, particularly
in CRI accuracy and somatch F1, underscoring the importance
of dynamic parameter adjustment during training.
3 Conclusion

In this work, we introduced RxnIM, the rst MLLM designed for
reaction image parsing tasks. RxnIM demonstrates superior
performance across diverse reaction images, particularly in
handling complex cases, due to its robust image reasoning and
localization capabilities. A large synthetic reaction image data-
set and a structured three-stage training strategy signicantly
contributed to RxnIM's strong generalization and robustness in
real-world applications. However, RxnIM currently faces limi-
tations, including the inability to directly generate SMILES
representations, difficulties in handling R-group substitutions,
and challenges in linking reaction images with contextual text
information such as footnotes or captions. Addressing these
limitations through annotating more real-world complex reac-
tion images, improving molecular recognition methods, devel-
oping more advanced table-to-template mapping algorithms,
enhancing contextual understanding, and employing more
sophisticated data generation strategies will further enhance
RxnIM's applicability and reliability in cheminformatics. Over-
all, our work provides a powerful tool for chemical reaction
image parsing while also serving as a valuable data resource for
the wider research community. Additionally, it opens up new
avenues for applying multimodal large-language models to
broader image-based cheminformatics.
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44 S. X. Leong, S. Pablo-Garćıa, B. Wong and A. Aspuru-Guzik,
ChemRxiv, 2025, preprint, DOI: 10.26434/chemrxiv-2025-
8z6h2.
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