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A non-heme iron(i) complex bearing a ligand with secondary sphere hydrogen bond (H-bond) donors,
(tris(6-phenylaminopyridylmethyllamine, TPANHP" rapidly reduces nitrite (NO,7) to nitric oxide (NO) in
the absence of exogenous additives, affording a Fe(i),(u-O), diamond core. An electronically analogous
complex containing a ligand without H-bonds (tris(6-methylpyridylmethylamine), TPAM®, also reduces
NO,™ to NO and forms an Fe(i),(n-O), core, but is four orders of magnitude slower, highlighting the
impact of H-bonds to promote NO,~ reduction. We compare the structural and spectroscopic
differences of the two Fe(in),(n-O), complexes and show that H-bonding interactions weaken the Fe—O
bonds, perturb the electronic structure of the Fe,O, cores, and thereby engender distinct reductive
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Introduction equivalents to promote NO release.” In contrast, systems con-
taining secondary sphere H-bond donors can induce sponta-
Nitrite (NO, ") is a source for physiological production of nitric neous NO,™ reduction without exogenous acids.® Seminal work
oxide (NO), which is an important bioregulatory signalling by the Fout group reported facile NO,™ reduction mediated by
molecule.! NO has multiple functions as a vasodilator, neuro- Fe in a tripodal azafulvine-imine ligand scaffold, producing NO
transmitter, and has important roles in mammalian immune and a monomeric Fe(III)—O(H), a result that was attributed to the
responses.™” In these biological contexts, an array of Fe- and Cu-
based metalloenzymes (e.g. cytochrome cd1- or cytochrome c
nitrite reductases, cd1-NiR/cc-NiR, and Cu-NiR) catalyze the
reduction of NO,~ to NO or to NH; (CCNiR).3 Mutagenesis and a) Prior work: Appended H-bond/H* donors promote NO,™ reduction
computational studies implicate a critical role of specific
hydrogen-bonding (H-bonding) amino acids close to the active
sites of these enzymes (i.e., in the secondary sphere) for enzy-
matic function.* Removal of these H-bonding residues in cd1- or
cc-NiR inhibits catalytic activity, affording up to a 99% decrease
in catalytic rates, highlighting their roles to both enable and

accelerate enzymatic NO, reduction.® Although the depen- ~ S 9
dence on H-bonds for overall function is established, the 5/@/ NO, Y@/

1 ! ’

. . . . H N / N —_—) N / N
molfacular-level details of t.hese interactions are challenging to aNE oc->|::?/ ‘Dipp -OH Ry ON;F:?/ “Dipp
clarify because removal induces larger structural changes, g od d on
obfuscating their role(s) on individual reaction steps.* Gilbertson, 2016, 2018 Dipp = 2,6-diisopropylphenyl

Inorganic model complexes can provide insight into the b) This work: Spontaneous NO," reduction with and without H-bonds

effects of secondary sphere H-bonds,® and by extension, the : L
mechanisms of enzymatic NO,  reduction. Complexes that do Fe2t
not contain H-bond donors often require the addition of an : W e_Tl+Noz-
exogenous Brensted acid and/or (electro)chemical reducing . Fe'si‘o

é Fe**—0
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pendent-imino groups acting as H-bond donors (Fig. 1a).*>%°
Related reports from the Gilbertson group highlighted Fe-
pyridinediimine complexes with tethered amines that reduced
NO,™ to afford an {Fe(NO),}**® and the Hung group reported an
N-confused porphyrin that similarly reduced NO,™ to form an
{Fe(NO)}W.“

While these prior studies demonstrated synthetic examples
of H-bond promoted NO, reduction, direct comparisons
between ligands that either contain or omit H-bonds are notably
absent. Modification of the secondary sphere of a complex can
impact its primary coordination sphere via perturbations to
ligand field environments, redox potentials, or spin states.>***
These competing effects present challenges when assessing the
role(s) of H-bonds during NO,” reduction. Our group has
attempted to decouple these parameters by comparing reaction
outcomes with electronically similar ligands that differ in their
secondary sphere,” and we previously showed that a scaffold
containing aniline groups as H-bond donors, (tris(6-
phenylaminopyridy-Imethyl)amine, ~ TPAN""™) promoted
capture/activation of O, (with Fe, Cu, and Zn)**#¢ in addition to
tandem ClO,~ reduction/C-H oxygenation (with Fe)."*** We also
reported a Cu(i) complex with a related ligand containing
appended OH groups, tris(6-hydroxypyridylmethyl)amine
TPA°"Cu(1), which reduced NO,”  to NO, an example of
ligand-promoted H'/e™ transfer.!* In this report, we expand
these efforts to Fe-mediated NO,  reduction.

Results and discussion

Introduction of excess (ca. 10 equiv.) [BuyN][NO,] to an MeCN
solution of TPAN"""Fe(n) bis(bis-
trifluoromethylsulfonylazanide), (TPAN"F"Fe(NTf,),, I-NTf,,
Fig. 2a), under ambient conditions afforded a two-step reaction
sequence: a rapid color change from colorless to yellow
(seconds), followed by a gradual transition to reddish-brown
(hours). Removal of MeCN in vacuo followed by precipitation
from CH,Cl,/Et,O provided a single product, as assessed by 'H-
NMR spectroscopy. A solution-phase IR spectrum of the product
contained no Fe-NO stretches between 1600-1850 cm™*, but
did exhibit broadened and bathochromically shifted N-H
stretches (vyy = 3232 and 3188 cm ™) relative to I-NTf, (vny =
3361 and 3278 cm '), consistent with strengthened H-bond
interactions.” To examine whether NO was released during
this reaction, we allowed I-NTf, to react with excess [Bu,N]|[NO,]
in the presence of CoTPP (TPP = tetraphenyl porphyrin), which
provided quantitative yield of CoTPP(NO) after 5 h.*® These data
are consistent with spontaneous NO,~ reduction to NO by I-
NTf,, potentially with concomitant formation of an Fe-O unit,
as we did not observe Fe-NO bond formation.

To determine the molecular composition of the product, we
performed a single-crystal X-ray diffraction (XRD) experiment
on crystals grown from CH,Cl,/Et,O. Rather than a monomeric
Fe-O, the refined structure revealed a [Fe(III),(11-0),]** diamond
core (I, Fig. 2c) enveloped by moderate strength H-bonding
interactions (average O,-N; distance of 2.9 & 0.2 A).”” This
Fe,O, structural motif is reminiscent of higher valent inter-
mediates within non-heme di-iron enzymes (e.g. soluble

© 2025 The Author(s). Published by the Royal Society of Chemistry
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10 equiv.
/" [BusNIINO;]

23 °C, MeCN
16 h

I-NTH, (X = NTf,)
1-OTf (X = OT)

[BugNJ[NO]
s

12
| J 23°C,MeCN

d) comparison of structural metrics ; v V

Fe-O1 Fey-O, Feq-Fe, Feq-Ny Feq-N* 04-N;* ZFeq-O4-Fe;
Il 1.886(3) 1.925(3) 2.729(1) 2.178(3) 2.23(1) 2.9(2) 91.5(2)
IV 1.848(2) 1.925(2) 2.695(1) 2.215(2) 2.27(7) - 91.1(1)°
IVP 1.844(5) 1.916(3) 2.716(1) 2.215(3) 2.25(2) 92.5(2)°

Fig. 2 (a) Reaction of TPANHPhFe(x), (X = OTf™ or NTf,~; I-OTf or I-
NTf,) with NO,~ to form NO(g) and TPAN"PM Fe(in),(u-0),2" (I1). (b)
Reaction of TPAMSFe(NTf.), (IlI-NTf,) with NO,~ to form TPAMS,-
Fe(n),(u-0),2*(IV) and NO(), (c) molecular structures of Il and IV
(NO, ™ -derived); 50% probability ellipsoids, short H-bond contacts
highlighted in blue, phenyl groups are wireframed, H-atoms not
involved in H-bonds, and outer sphere anions omitted for clarity (d).
Bond metrics of II, IV® and IV® (a: this work, b: ref. 19g, *denotes an
average of 3 bond distances).

methane monooxygenase (SMMO-Q) in the Fe(IV), state and
ribonucleotide reductase (RNR-X) in the Fe(III)Fe(IV) state)*® but
is comparatively rare in synthetic systems." Que and coworkers
reported the first isolated Fe(III),(u-O), core, supported by two
tris(6-methylpyridylmethyl)amine) ligands, (TPAM®,Fe(III),(u-
0),>" 1IV), which was prepared via more standard oxygenation
reagents (tBuOOH and NEt;)."® Another related example, re-
ported by Masuda, is a TPA™™ analogue that formed an H-
bonded Fe(IlI),(n-O), species from O,.'* We found that IV
could also be prepared directly from [Bu,N]|[NO,], albeit over
a longer time frame (1 week, Fig. 2b). Importantly, TPAM®
provides an analogous primary sphere environment as
TPAN""™ but does not contain pendent H-bond donors.'
Thus, we propose that differences in the chemical properties of
II and IV can be attributed to the effects of secondary sphere H-
bonds.

The structural metrics in II are similar to those in IV, with
a few notable exceptions (Fig. 2d).*° The Fe,O, diamond core in
11 displays two distinct Fe-O bonds (Fe;-0;: 1.886(3) A, and Fe,-
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0,: 1.925(3) A), an Fe,-Fe, separation of 2.729(1) A, and an Fe,-
0,-Fe, angle of 91.5(2)°. In comparison, IV has a 0.038(4) A
shorter Fe;-O, bond (1.848(2) A) and a 0.034(2) A shorter Fe-Fe
distance (2.695(1) A), but the other Fe,O, core metrical param-
eters are similar (Fe;-O,: 1.925(2) A, and /Fe;-O;-Fe,:
91.1(1)°). The elongated Fe;-O, bond likely exhibits a weaker
trans-influence, which is manifest by the contracted Fe;-N;
distance of II (2.178(3) A) compared to IV (2.215(2) A). We
attribute these structural differences to the trifurcated H-bonds
surrounding each p-O>~ ligand in II, which are proposed to
reduce the basicity of oxo ligands, thereby weakening the Fe-O
bondS‘IBE,Zl,ZZ

To clarify the electronic differences that are imparted by H-
bonding interactions, we examined the electronic absorption
spectra of II and IV. Their respective spectra are distinct: II
exhibits a prominent shoulder band at 433 nm (¢ = 2.6
mM ' cm™ ') while IV displays a similarly intense shoulder band
at 375 nm (¢ = 2.0 mM ' ecm™ "), both assigned to LMCT
transitions.’®” These spectral shifts suggest that H-bonding
interactions alter the electronic structure of the Fe,(u-O),
cores, which we interrogated further by Mossbauer spectros-
copy. The zero-field Mdssbauer spectrum (Fig. 3, top) of II as
a solid (at 298 K) displays a symmetric doublet with an isomer
shift (6) of 0.33 mm s~ ' and quadrupole splitting (AE,) of
1.422 mm s~ ', consistent with two identical high spin Fe(m)
centers.””** These data are distinct from the reported Moss-
bauer parameters of IV: (symmetric, 6 = 0.50 mm s *; AE, =
1.93 mm s~ ). We attribute the differences in ¢ (lower 6 for II) to
more oxidized/Lewis acidic Fe(u) centers,?” and the differences
in AE, values to H-bond induced charge redistribution and/or

1.000

0.995

5 0.33 0.50
AE, 1.422 1.93

\4

0.990

Rel. transmissions (a.u)

Velocity (mm/s)

L L L L L L

-04 -0.6 -0.8 -1.0 -1.2 -14

Potential (V vs Fc*)

Fig. 3 Top: 298 K Mdssbauer spectrum of Il and associated spectral
data for both Il and IV.25?” Bottom: cyclic voltammograms of Il and IV
(6 MM [Fe,(u-0),, 0.1 M [BusN]INTF,] in MeCN, 100 mV s™3).
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orbital rehybridization of the p-O ligands.** These effects may
also be partially responsible for the decrease in antiferromag-
netic coupling in II (J = —28 cm™ ") relative to IV (J = —
54 cm 1),

The differences in electronic structures of the Fe(),(p-O),
cores within IT and IV allude to distinct redox behaviors, which
we investigated by cyclic voltammetry (CV, Fig. 3, bottom). The
CV of II exhibited three principal features: a reversible 1e™
reduction at —0.78 V (vs. Fc®", assigned as a Fe(un),/Fe(m)Fe(u)
couple), and two irreversible events at —1.2 V and +0.92 V, see
SI. The well-behaved reduction event of II is in stark contrast to
IV, where the CV was not well-defined, and instead, displayed
broad features with an E,,s.c = —0.80 V (Fig. 3, see SI).>#>°

To probe differences in reductive stability, we evaluated
chemical reductions of Il and IV. The reaction of Il with 1 equiv.
Na® (as 5% Na/NaCl) in frozen THF afforded a mixture of
products (as assessed by '"H-NMR spectroscopy) but did not
induce demetalation. An analogous reduction of IV underwent
immediate demetalation, generating free ligand as the sole
TPAM® containing product. In contrast, introduction of milder
reagents capable of delivering H'/e™ equivalents (i.e. H-atom
donors) provided tractable reactivity with both II and IV. Addi-
tion of 1.5 equiv. 1,2-diphenylhydrazine (DPH, N-Hgppg =
68 kecal mol ') to II (23 °C, MeCN) provided quantitative
formation of TPAN"""Fe(u)(OH)" (I-OH, Fig. 4) and azobenzene
after 24 h, a net 2H'/2e” reduction of IL** In comparison,
addition of 1.5 equiv. DPH to IV immediately (ca. 15 min, 23 °C)
produced a new species (assigned as TPAM®Fe(i)(H,0),(-
MeCN),*", II-H,0),*> with a low conversion to azobenzene
(~20%). The slower reduction of II by DPH relative to IV is
consistent with distinct reductive stability profiles of these
Fe(ur),(p-0O), cores as a result of secondary sphere H-bonding
interactions.

The H-bond dependent differences in reaction times for
reduction of II and IV noted above are opposite from

Ph
HNf,h Ph H\ - H'Nl
WHT T A P
NH TN, |2 NN
4" \
Ph 5 I N\ N/Fe )# \
1 MeCN _ | I
(R=NHPh) 23°C,24h N 7,
I-OH

Ph,
SN

Ph
quantitative

~20% yield

I11-H,0
(L = H,0 or MeCN)

Fig. 4 Reductions of Il and IV with 1,2-diphenylhydrazine (DPH).
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observations in Fig. 2 (NO, ™~ reactivity). To investigate the role of
H-bonds during the initial NO,™ reduction step, we examined
reactions between NO, and the control compound
TPAMFe(NTf,), (III-NTf,), which maintains a similar primary
sphere environment to I-NTf, but does not contain secondary
sphere H-bonds (Fig. 1b).*** Introduction of excess (ca. 10
equiv.) [BuyN][NO,] to a colorless solution of III-NTf, in MeCN
immediately produced a yellow solution that exhibited five
broad "H-NMR resonances (assigned as NO,~ binding). After 7
days, the solution turned orange and developed a characteristic
UV-vis shoulder feature at 470 nm, corresponding to IV in 93%
yield (see SI), and a separate NO trapping experiment provided
CoTPP(NO) in 80% yield.

Formation of NO from NO,” can occur through multiple
distinct pathways (inner- or outer-sphere 2H"/1e™ reduction or
through H'-mediated disproportionation);** thus, we executed
additional control experiments to provide further clarity into
the mechanism for NO,™~ reduction in this system. To probe
a disproportionation process, we introduced an exogenous acid,
1-methyl-2-(phenylamino)pyridinium?** ([HA], Fig. 5), which has
a similar structure and charge, and therefore acidity/H-bond
donor strength as the appended NHPh groups in I-NTf,, to
excess [Buy,N][NO,] in MeCN. NO did not form in appreciable
amounts after 5 h (3% yield of NO (via CoTPP(NO)). To examine
outer-sphere reduction, we introduced ferrocene® to a mixture
of 10 equiv. [Bu,N][NO,], TPAN"*" and Zn(OTf),, and again did
not observe NO formation after 5 h. Collectively, these control
experiments suggest that neither disproportionation nor outer-
sphere reduction pathways proceed at rates comparable to
those occurring during NO, ™ reduction with I-NTf, or III-NTf,.
Because the O-atoms from NO,  reduction are incorporated
into the terminal Fe-containing products (II and IV), we propose
that an inner-sphere reduction pathway is most likely.

Since both I-NTf, and III-NTf, enabled spontaneous reduc-
tion of NO,™ to NO, we quantified the effects of H-bonds on
their kinetic profiles (Fig. 6). Evolution of NO (monitored via
CoTPP trapping) from a reaction between I-NTf, and 10 equiv.
[BuyN][NO,] fit well to a first-order exponential model with kops
=(2.340.2) x 10~* s, In contrast, with III-NTf,, we observed
a slow reaction (linear fit) with kops = (3) x 10~ % s, four orders
of magnitude slower than I-NTf,. To clarify the extent to which
the N-O bond cleavage step is promoted by weak Brgnsted acids
(including the appended NHPh H-bond donors), we performed
a control experiment with [HA] and II-NTf,. Introduction of 3
equiv. [HA] to a mixture of III-NTf, and 10 equiv. [BuyN][NO;]
marginally enhanced NO,™ reduction, affording ko5 = (7.0 +
0.9) x 10~% s~ " and a concomitant increase in NO yield to 21%

Control reactions
30mol% H N

N
e
HA] X

TPANHPh 4 Zn(OTH),

+ FeCp,
NOg  «——— [BuMNJNO,] ——> NO
3% 23 °C, MeCN 23 °C, MeCN o%
5h 5h

Fig. 5 Assessment of alternative pathways for NO production from
NO, ™.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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additive
[Fe] + 10 [BusN]JINO;] ————> NO

CHiCN R
7 -—"
-
-
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6 Ve
7
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5 s [Fel additive kst YO
g y
8—“‘ / ® INT, - (23%02)-10% 100%
£, ,{ ® IINT, 3[HA] (7.0£0.9)-10% 21%
/ N-NTF, - (3) 10 9%
2- }/
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ot
T T T
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Fig. 6 Kinetic profiles of NO evolution and lines of best fit for NO,™
reduction with I-NTf, (red circles, 1st order exponential fit), [lI-NTf,
(orange triangles, linear fit) or II-NTf, + 3 equiv. [HA] and 10 equiv.
[NO,7] (green squares, linear fit). Error bars represent the range of
yields from reactions executed in triplicate.

(5 h). These results contrast with the rapid reaction rate and
quantitative NO yield (5 h) afforded by I-NTf,, suggesting
a proximity requirement for the weakly acidic-HNPh groups to
provide large rate accelerations for NO,™ reduction activity as
an H-bond donor.

Conclusions

In conclusion, we have reported the first examples of sponta-
neous NO, ™~ reduction to afford Fe(m),(1-0),>* cores, both in the
presence and absence of appended H-bonds (II and IV respec-
tively). The appended H-bonds within I-NTf, provide a four-
order of magnitude rate acceleration for NO,™ reduction, rela-
tive to III-NTf,, which does not contain H-bonds. Control reac-
tions using exogenous reagents of similar H'/e~ strengths as I-
NTf, illustrate the requirement of preorganization of H-
bonding units to facilitate rapid nitrite reduction.

The H-bond interactions surrounding the resulting Fe,(u-O),
core of II imparts distinct electronic and chemical properties
relative to IV, and as a consequence, II is more challenging to
reduce with H-atom donors. These observations illustrate the
interplay between Fe-O stabilization and subsequent H'/e™
transfer necessary to promote a net reductive transformation, of
particular relevance to nitrite reductases and reaction inter-
mediates containing Fe,(u-O), cores of dioxygenases, as those
found in sSMMO-Q or RNR-X. Ongoing work in our lab is focusing
on the effects of H-bonds on the electronic structure and reac-
tivity of Fe(u),(u-O), cores, as well as their application toward
catalytic nitrogen-oxyanion reduction.
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