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ction enabled by secondary
sphere hydrogen bonds within non-heme iron
complexes

Andrew R. LaDuca, a Jared E. Gonder, a Writhabrata Sarkar, a

John D. Gilbertson *b and Nathaniel K. Szymczak *a

A non-heme iron(II) complex bearing a ligand with secondary sphere hydrogen bond (H-bond) donors,

(tris(6-phenylaminopyridylmethyl)amine, TPANHPh, rapidly reduces nitrite (NO2
−) to nitric oxide (NO) in

the absence of exogenous additives, affording a Fe(III)2(m-O)2 diamond core. An electronically analogous

complex containing a ligand without H-bonds (tris(6-methylpyridylmethylamine), TPAMe, also reduces

NO2
− to NO and forms an Fe(III)2(m-O)2 core, but is four orders of magnitude slower, highlighting the

impact of H-bonds to promote NO2
− reduction. We compare the structural and spectroscopic

differences of the two Fe(III)2(m-O)2 complexes and show that H-bonding interactions weaken the Fe–O

bonds, perturb the electronic structure of the Fe2O2 cores, and thereby engender distinct reductive

stability profiles.
Introduction

Nitrite (NO2
−) is a source for physiological production of nitric

oxide (NO), which is an important bioregulatory signalling
molecule.1 NO has multiple functions as a vasodilator, neuro-
transmitter, and has important roles in mammalian immune
responses.1,2 In these biological contexts, an array of Fe- and Cu-
based metalloenzymes (e.g. cytochrome cd1- or cytochrome c
nitrite reductases, cd1-NiR/cc-NiR, and Cu-NiR) catalyze the
reduction of NO2

− to NO or to NH3 (ccNiR).3 Mutagenesis and
computational studies implicate a critical role of specic
hydrogen-bonding (H-bonding) amino acids close to the active
sites of these enzymes (i.e., in the secondary sphere) for enzy-
matic function.4 Removal of these H-bonding residues in cd1- or
cc-NiR inhibits catalytic activity, affording up to a 99% decrease
in catalytic rates, highlighting their roles to both enable and
accelerate enzymatic NO2

− reduction.5 Although the depen-
dence on H-bonds for overall function is established, the
molecular-level details of these interactions are challenging to
clarify because removal induces larger structural changes,
obfuscating their role(s) on individual reaction steps.4a

Inorganic model complexes can provide insight into the
effects of secondary sphere H-bonds,6 and by extension, the
mechanisms of enzymatic NO2

− reduction. Complexes that do
not contain H-bond donors oen require the addition of an
exogenous Brønsted acid and/or (electro)chemical reducing
ichigan, Ann Arbor, MI, USA. E-mail:

ngton University, Bellingham, WA, USA.

y the Royal Society of Chemistry
equivalents to promote NO release.7 In contrast, systems con-
taining secondary sphere H-bond donors can induce sponta-
neous NO2

− reduction without exogenous acids.8 Seminal work
by the Fout group reported facile NO2

− reduction mediated by
Fe in a tripodal azafulvine-imine ligand scaffold, producing NO
and amonomeric Fe(III)–O(H), a result that was attributed to the
Fig. 1 (a) Previously reported Fe-based systems with secondary
sphere H+/H-bond donors that spontaneously reduce NO2

−,8b–d,9,10 (b)
this work.

Chem. Sci.

http://crossmark.crossref.org/dialog/?doi=10.1039/d5sc04153h&domain=pdf&date_stamp=2025-09-09
http://orcid.org/0009-0004-3514-8846
http://orcid.org/0009-0000-3377-7746
http://orcid.org/0000-0003-3738-9892
http://orcid.org/0000-0003-2450-0846
http://orcid.org/0000-0002-1296-1445
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc04153h
https://pubs.rsc.org/en/journals/journal/SC


Fig. 2 (a) Reaction of TPANHPhFe(X)2 (X = OTf− or NTf2
−; I-OTf or I-

NTf2) with NO2
− to form NO(g) and TPANHPh

2Fe(III)2(m-O)2
2+ (II). (b)

Reaction of TPAMeFe(NTf2)2 (III-NTf1) with NO2
− to form TPAMe

2-
Fe(III)2(m-O)2

2+(IV) and NO(g), (c) molecular structures of II and IV
(NO2

−-derived); 50% probability ellipsoids, short H-bond contacts
highlighted in blue, phenyl groups are wireframed, H-atoms not
involved in H-bonds, and outer sphere anions omitted for clarity (d).
Bond metrics of II, IVa and IVb (a: this work, b: ref. 19g, *denotes an
average of 3 bond distances).
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pendent-imino groups acting as H-bond donors (Fig. 1a).8b–d,9

Related reports from the Gilbertson group highlighted Fe-
pyridinediimine complexes with tethered amines that reduced
NO2

− to afford an {Fe(NO)2}9,10 and the Hung group reported an
N-confused porphyrin that similarly reduced NO2

− to form an
{Fe(NO)}6/7.11

While these prior studies demonstrated synthetic examples
of H-bond promoted NO2

− reduction, direct comparisons
between ligands that either contain or omit H-bonds are notably
absent. Modication of the secondary sphere of a complex can
impact its primary coordination sphere via perturbations to
ligand eld environments, redox potentials, or spin states.5a,12

These competing effects present challenges when assessing the
role(s) of H-bonds during NO2

− reduction. Our group has
attempted to decouple these parameters by comparing reaction
outcomes with electronically similar ligands that differ in their
secondary sphere,13 and we previously showed that a scaffold
containing aniline groups as H-bond donors, (tris(6-
phenylaminopyridy-lmethyl)amine, TPANHPh), promoted
capture/activation of O2 (with Fe, Cu, and Zn)13b,f,g in addition to
tandem ClO4

− reduction/C–H oxygenation (with Fe).13a,c We also
reported a Cu(I) complex with a related ligand containing
appended OH groups, tris(6-hydroxypyridylmethyl)amine
TPAOHCu(I), which reduced NO2

− to NO, an example of
ligand-promoted H+/e− transfer.14 In this report, we expand
these efforts to Fe-mediated NO2

− reduction.

Results and discussion

Introduction of excess (ca. 10 equiv.) [Bu4N][NO2] to an MeCN
solution of TPANHPhFe(II) bis(bis-
triuoromethylsulfonylazanide), (TPANHPhFe(NTf2)2, I-NTf2,
Fig. 2a), under ambient conditions afforded a two-step reaction
sequence: a rapid color change from colorless to yellow
(seconds), followed by a gradual transition to reddish-brown
(hours). Removal of MeCN in vacuo followed by precipitation
from CH2Cl2/Et2O provided a single product, as assessed by 1H-
NMR spectroscopy. A solution-phase IR spectrum of the product
contained no Fe–NO stretches between 1600–1850 cm−1, but
did exhibit broadened and bathochromically shied N–H
stretches (nNH = 3232 and 3188 cm−1) relative to I-NTf2 (nNH =

3361 and 3278 cm−1), consistent with strengthened H-bond
interactions.15 To examine whether NO was released during
this reaction, we allowed I-NTf2 to react with excess [Bu4N][NO2]
in the presence of CoTPP (TPP = tetraphenyl porphyrin), which
provided quantitative yield of CoTPP(NO) aer 5 h.16 These data
are consistent with spontaneous NO2

− reduction to NO by I-
NTf2, potentially with concomitant formation of an Fe–O unit,
as we did not observe Fe–NO bond formation.

To determine the molecular composition of the product, we
performed a single-crystal X-ray diffraction (XRD) experiment
on crystals grown from CH2Cl2/Et2O. Rather than a monomeric
Fe–O, the rened structure revealed a [Fe(III)2(m-O)2]

2+ diamond
core (II, Fig. 2c) enveloped by moderate strength H-bonding
interactions (average O1–N3 distance of 2.9 ± 0.2 Å).17 This
Fe2O2 structural motif is reminiscent of higher valent inter-
mediates within non-heme di-iron enzymes (e.g. soluble
Chem. Sci.
methane monooxygenase (sMMO-Q) in the Fe(IV)2 state and
ribonucleotide reductase (RNR-X) in the Fe(III)Fe(IV) state)18 but
is comparatively rare in synthetic systems.19 Que and coworkers
reported the rst isolated Fe(III)2(m-O)2 core, supported by two
tris(6-methylpyridylmethyl)amine) ligands, (TPAMe

2Fe(III)2(m-
O)2

2+ IV), which was prepared via more standard oxygenation
reagents (tBuOOH and NEt3).19g Another related example, re-
ported by Masuda, is a TPANH2 analogue that formed an H-
bonded Fe(III)2(m-O)2 species from O2.19c We found that IV
could also be prepared directly from [Bu4N][NO2], albeit over
a longer time frame (1 week, Fig. 2b). Importantly, TPAMe

provides an analogous primary sphere environment as
TPANHPh, but does not contain pendent H-bond donors.13b

Thus, we propose that differences in the chemical properties of
II and IV can be attributed to the effects of secondary sphere H-
bonds.

The structural metrics in II are similar to those in IV, with
a few notable exceptions (Fig. 2d).20 The Fe2O2 diamond core in
II displays two distinct Fe–O bonds (Fe1–O1: 1.886(3) Å, and Fe1–
© 2025 The Author(s). Published by the Royal Society of Chemistry
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O2: 1.925(3) Å), an Fe1–Fe2 separation of 2.729(1) Å, and an Fe1–
O1–Fe2 angle of 91.5(2)°. In comparison, IV has a 0.038(4) Å
shorter Fe1–O1 bond (1.848(2) Å) and a 0.034(2) Å shorter Fe–Fe
distance (2.695(1) Å), but the other Fe2O2 core metrical param-
eters are similar (Fe1–O2: 1.925(2) Å, and :Fe1–O1–Fe2:
91.1(1)°). The elongated Fe1–O1 bond likely exhibits a weaker
trans-inuence, which is manifest by the contracted Fe1–N1

distance of II (2.178(3) Å) compared to IV (2.215(2) Å). We
attribute these structural differences to the trifurcated H-bonds
surrounding each m-O2− ligand in II, which are proposed to
reduce the basicity of oxo ligands, thereby weakening the Fe–O
bonds.19c,21,22

To clarify the electronic differences that are imparted by H-
bonding interactions, we examined the electronic absorption
spectra of II and IV. Their respective spectra are distinct: II
exhibits a prominent shoulder band at 433 nm (3 = 2.6
mM−1 cm−1) while IV displays a similarly intense shoulder band
at 375 nm (3 = 2.0 mM−1 cm−1), both assigned to LMCT
transitions.19b These spectral shis suggest that H-bonding
interactions alter the electronic structure of the Fe2(m-O)2
cores, which we interrogated further by Mössbauer spectros-
copy. The zero-eld Mössbauer spectrum (Fig. 3, top) of II as
a solid (at 298 K) displays a symmetric doublet with an isomer
shi (d) of 0.33 mm s−1 and quadrupole splitting (DEq) of
1.422 mm s−1, consistent with two identical high spin Fe(III)
centers.19a,23 These data are distinct from the reported Möss-
bauer parameters of IV: (symmetric, d = 0.50 mm s−1; DEq =

1.93 mm s−1). We attribute the differences in d (lower d for II) to
more oxidized/Lewis acidic Fe(III) centers,22 and the differences
in DEq values to H-bond induced charge redistribution and/or
Fig. 3 Top: 298 K Mössbauer spectrum of II and associated spectral
data for both II and IV.26,27 Bottom: cyclic voltammograms of II and IV
(6 mM [Fe2(m-O)2, 0.1 M [Bu4N][NTf2] in MeCN, 100 mV s−1).

© 2025 The Author(s). Published by the Royal Society of Chemistry
orbital rehybridization of the m-O ligands.24 These effects may
also be partially responsible for the decrease in antiferromag-
netic coupling in II (J = −28 cm−1) relative to IV (J = −
54 cm−1).19g,25

The differences in electronic structures of the Fe(III)2(m-O)2
cores within II and IV allude to distinct redox behaviors, which
we investigated by cyclic voltammetry (CV, Fig. 3, bottom). The
CV of II exhibited three principal features: a reversible 1e−

reduction at −0.78 V (vs. Fc0/+, assigned as a Fe(III)2/Fe(III)Fe(II)
couple), and two irreversible events at −1.2 V and +0.92 V, see
SI. The well-behaved reduction event of II is in stark contrast to
IV, where the CV was not well-dened, and instead, displayed
broad features with an Eonset = −0.80 V (Fig. 3, see SI).28,29

To probe differences in reductive stability, we evaluated
chemical reductions of II and IV. The reaction of II with 1 equiv.
Na0 (as 5% Na/NaCl) in frozen THF afforded a mixture of
products (as assessed by 1H-NMR spectroscopy) but did not
induce demetalation. An analogous reduction of IV underwent
immediate demetalation, generating free ligand as the sole
TPAMe containing product. In contrast, introduction of milder
reagents capable of delivering H+/e− equivalents (i.e. H-atom
donors) provided tractable reactivity with both II and IV. Addi-
tion of 1.5 equiv. 1,2-diphenylhydrazine (DPH, N–HBDFE =

68 kcal mol−1)30 to II (23 °C, MeCN) provided quantitative
formation of TPANHPhFe(II)(OH)+ (I-OH, Fig. 4) and azobenzene
aer 24 h, a net 2H+/2e− reduction of II.31 In comparison,
addition of 1.5 equiv. DPH to IV immediately (ca. 15 min, 23 °C)
produced a new species (assigned as TPAMeFe(II)(H2O)x(-
MeCN)y

2+, III-H2O),32 with a low conversion to azobenzene
(∼20%). The slower reduction of II by DPH relative to IV is
consistent with distinct reductive stability proles of these
Fe(III)2(m-O)2 cores as a result of secondary sphere H-bonding
interactions.

The H-bond dependent differences in reaction times for
reduction of II and IV noted above are opposite from
Fig. 4 Reductions of II and IV with 1,2-diphenylhydrazine (DPH).

Chem. Sci.
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Fig. 6 Kinetic profiles of NO evolution and lines of best fit for NO2
−

reduction with I-NTf2 (red circles, 1st order exponential fit), III-NTf2
(orange triangles, linear fit) or III-NTf2 + 3 equiv. [HA] and 10 equiv.
[NO2

−] (green squares, linear fit). Error bars represent the range of
yields from reactions executed in triplicate.
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observations in Fig. 2 (NO2
− reactivity). To investigate the role of

H-bonds during the initial NO2
− reduction step, we examined

reactions between NO2
− and the control compound

TPAMeFe(NTf2)2 (III-NTf2), which maintains a similar primary
sphere environment to I-NTf2 but does not contain secondary
sphere H-bonds (Fig. 1b).13b Introduction of excess (ca. 10
equiv.) [Bu4N][NO2] to a colorless solution of III-NTf2 in MeCN
immediately produced a yellow solution that exhibited ve
broad 1H-NMR resonances (assigned as NO2

− binding). Aer 7
days, the solution turned orange and developed a characteristic
UV-vis shoulder feature at 470 nm, corresponding to IV in 93%
yield (see SI), and a separate NO trapping experiment provided
CoTPP(NO) in 80% yield.

Formation of NO from NO2
− can occur through multiple

distinct pathways (inner- or outer-sphere 2H+/1e− reduction or
through H+-mediated disproportionation);33 thus, we executed
additional control experiments to provide further clarity into
the mechanism for NO2

− reduction in this system. To probe
a disproportionation process, we introduced an exogenous acid,
1-methyl-2-(phenylamino)pyridinium34 ([HA], Fig. 5), which has
a similar structure and charge, and therefore acidity/H-bond
donor strength as the appended NHPh groups in I-NTf2, to
excess [Bu4N][NO2] in MeCN. NO did not form in appreciable
amounts aer 5 h (3% yield of NO (via CoTPP(NO)). To examine
outer-sphere reduction, we introduced ferrocene35 to a mixture
of 10 equiv. [Bu4N][NO2], TPA

NHPh, and Zn(OTf)2, and again did
not observe NO formation aer 5 h. Collectively, these control
experiments suggest that neither disproportionation nor outer-
sphere reduction pathways proceed at rates comparable to
those occurring during NO2

− reduction with I-NTf2 or III-NTf2.
Because the O-atoms from NO2

− reduction are incorporated
into the terminal Fe-containing products (II and IV), we propose
that an inner-sphere reduction pathway is most likely.

Since both I-NTf2 and III-NTf2 enabled spontaneous reduc-
tion of NO2

− to NO, we quantied the effects of H-bonds on
their kinetic proles (Fig. 6). Evolution of NO (monitored via
CoTPP trapping) from a reaction between I-NTf2 and 10 equiv.
[Bu4N][NO2] t well to a rst-order exponential model with kobs
= (2.3 ± 0.2) × 10−4 s−1. In contrast, with III-NTf2, we observed
a slow reaction (linear t) with kobsz (3)× 10−8 s−1, four orders
of magnitude slower than I-NTf2. To clarify the extent to which
the N–O bond cleavage step is promoted by weak Brønsted acids
(including the appended NHPh H-bond donors), we performed
a control experiment with [HA] and III-NTf2. Introduction of 3
equiv. [HA] to a mixture of III-NTf2 and 10 equiv. [Bu4N][NO2]
marginally enhanced NO2

− reduction, affording kobs = (7.0 ±

0.9) × 10−8 s−1 and a concomitant increase in NO yield to 21%
Fig. 5 Assessment of alternative pathways for NO production from
NO2

−.

Chem. Sci.
(5 h). These results contrast with the rapid reaction rate and
quantitative NO yield (5 h) afforded by I-NTf2, suggesting
a proximity requirement for the weakly acidic-HNPh groups to
provide large rate accelerations for NO2

− reduction activity as
an H-bond donor.
Conclusions

In conclusion, we have reported the rst examples of sponta-
neous NO2

− reduction to afford Fe(III)2(m-O)2
2+ cores, both in the

presence and absence of appended H-bonds (II and IV respec-
tively). The appended H-bonds within I-NTf2 provide a four-
order of magnitude rate acceleration for NO2

− reduction, rela-
tive to III-NTf2, which does not contain H-bonds. Control reac-
tions using exogenous reagents of similar H+/e− strengths as I-
NTf2 illustrate the requirement of preorganization of H-
bonding units to facilitate rapid nitrite reduction.

The H-bond interactions surrounding the resulting Fe2(m-O)2
core of II imparts distinct electronic and chemical properties
relative to IV, and as a consequence, II is more challenging to
reduce with H-atom donors. These observations illustrate the
interplay between Fe–O stabilization and subsequent H+/e−

transfer necessary to promote a net reductive transformation, of
particular relevance to nitrite reductases and reaction inter-
mediates containing Fe2(m-O)2 cores of dioxygenases, as those
found in sMMO-Q or RNR-X. Ongoing work in our lab is focusing
on the effects of H-bonds on the electronic structure and reac-
tivity of Fe(III)2(m-O)2 cores, as well as their application toward
catalytic nitrogen-oxyanion reduction.
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