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ical space: multi-level Bayesian
optimization with hierarchical coarse-graining

Luis J. Walter a and Tristan Bereau *ab

Molecular discovery within the vast chemical space remains a significant challenge due to the immense

number of possible molecules and limited scalability of conventional screening methods. To approach

chemical space exploration more effectively, we have developed an active learning-based method that

uses transferable coarse-grained models to compress chemical space into varying levels of resolution.

By using multiple representations of chemical space with different coarse-graining resolutions, we

balance combinatorial complexity and chemical detail. To identify target compounds, we first transform

the discrete molecular spaces into smooth latent representations. We then perform Bayesian

optimization within these latent spaces, using molecular dynamics simulations to calculate target free

energies of the coarse-grained compounds. This multi-level approach effectively balances exploration

and exploitation at lower and higher resolutions, respectively. We demonstrate the effectiveness of our

method by optimizing molecules to enhance phase separation in phospholipid bilayers. Our funnel-like

strategy not only suggests optimal compounds but also provides insight into relevant neighborhoods in

chemical space. We show how this neighborhood information from lower resolutions can guide the

optimization at higher resolutions, thereby providing an efficient way to navigate large chemical spaces

for free energy-based molecular optimization.
1 Introduction

All molecules consist of a limited set of atoms, but their diverse
properties arise from the intricate arrangements of these atoms.
The vast combinatorial possibilities of such arrangements
dene the so-called chemical space (CS).1 Exploring this space
to discover new molecules with desired properties is chal-
lenging due to its immense size and complexity.2,3 Traditionally,
experimental high-throughput screening is conducted on
a small subset of molecular structures to identify candidates
with the desired properties. However, this approach is costly
and limited by the size of the molecular library.4,5

To address these challenges, computational methods have
been employed to replace expensive experiments.6 In particular,
molecular dynamics (MD) simulations can be utilized to predict
the behavior of molecules based on their structure and empir-
ical force elds.7–9 Combined with automated, high-throughput
setups, they enable the screening of large numbers of mole-
cules.10 While such simulations can reduce the cost of evalu-
ating molecules for their target properties, they do not
inherently facilitate navigation of the vast chemical search
space.
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Active learning methods—particularly Bayesian optimiza-
tion (BO)—offer an efficient way to identify promising mole-
cules from the extensive candidate pool. These methods
optimize functions where gradient-based approaches are inap-
plicable.11,12 As molecular structure–property relationships
generally lack gradient information, BO offers a more efficient
alternative to uniform or random sampling of molecular
space.13–15 Since BO relies on a covariance function over the
input space, a numerical representation of discrete CS is typi-
cally used to quantify molecular similarity. For example,
autoencoder models can encode molecules into latent
representations.16–18 In contrast to ngerprint methods,19–22 they
do not require a manual feature selection. Although BO helps
select promising candidates, it does not reduce the complexity
of CS.

Coarse-graining—grouping atoms into pseudo-particles or
beads—addresses this complexity by effectively compressing
CS. While traditionally employed to accelerate MD simulations,
mapping atoms to beads reduces information and results in
many-to-one relationships between atomistic and coarse-
grained (CG) structures.9,23 The collective properties of the
underlying chemical fragments determine the interactions
between the CG beads. Discretizing these interactions enables
the use of a transferable CG force eld, i.e., a xed set of
interaction or bead types that can be reused across the entire
CS.24 The interaction resolution of such transferable force
elds, determined by the number of available CG bead types,
Chem. Sci., 2025, 16, 16027–16038 | 16027
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directly impacts the many-to-one relationship between atom-
istic and CG structures and therefore the combinatorial
complexity of CG CS.25 Lower-resolution CS representations
with fewer available bead types are easier to explore, but the
resulting molecular structures lack detailed information.26

Higher resolutions provide more detailed results, but their CS
representations are more challenging to explore. This raises the
question of how to combine different coarse-graining resolu-
tions to efficiently explore CS while obtaining detailed molec-
ular results.

In this work, we propose a multi-level BO framework for an
efficient exploration of small molecule CS across multiple CG
force-eld resolutions. Our method combines the reduced
complexity of CS exploration at lower resolutions with a detailed
optimization at higher resolutions. The Bayesian approach
provides an intuitive way to combine information from different
resolutions into the optimization. Our method builds upon the
work of Mohr et al., who applied BO in a single, relatively low-
resolution CG representation of CS to derive molecular design
rules.26 They also conducted optimization in a learned repre-
sentation of an enumerated CG CS. We build on their approach
by integrating multiple CG resolutions into a unied optimi-
zation framework.

Our multi-level BO is related to previous multi-delity BO
efforts,27–30 which rely on different evaluation costs and accu-
racies for each delity. In contrast, we assume a constant eval-
uation cost at all levels and instead utilize the varying
complexity of our different CG resolutions.

Compared to recently popular generative methods for
inverse molecular design,31 our multi-level BO framework is
data efficient and requires no prior training data for the opti-
mization target.

As a demonstration of our method, we optimize a small
molecule to promote phase separation in a ternary lipid bilayer.
Previous studies32,33 have shown that molecules embedded
within lipid bilayers can modulate their phase behavior. We
quantify this phase separation behavior as a free-energy differ-
ence, which serves as the objective function for our molecular
optimization. We demonstrate that our multi-level BO algo-
rithm effectively identies relevant chemical neighborhoods
and outperforms standard BO applied at a single resolution
level. Our proposed approach is versatile and applicable to
a broad range of small-molecule optimization tasks where the
target property can be expressed as a free-energy difference.

2 Methods
2.1 Overview

We begin by providing an overview of our computational
screening methodology. First, we dened multiple CG models
with varying resolutions, all using the same atom-to-bead
mapping but differing in the assignment of transferable bead
types. Higher-resolution models featured more bead types,
capturing ner chemical details while still reducing the
combinatorial complexity of CS compared to the atomistic level
(Fig. 1a). This reduction allowed us to enumerate all possible
CG molecules corresponding to a specic region of CS at each
16028 | Chem. Sci., 2025, 16, 16027–16038
resolution. Due to the hierarchical model design, higher-
resolution molecules could be systematically mapped to lower
resolutions (Fig. 1b).

For the next step of our molecule optimization, we
embedded the CG structures into a continuous latent space
using a graph neural network (GNN)-based autoencoder, with
each resolution encoded separately. This encoding step
provided a smooth representation of CS, ensuring a meaningful
similarity measure necessary for the subsequent BO.

Finally, a multi-level Bayesian optimization was performed
based on all previously encoded CS resolutions. The ground
truth values, i.e., the optimization targets, were obtained from
MD simulation-based free-energy calculations (Fig. 1c). In our
example application, such a free-energy estimate characterized
the phase separation behavior of a molecule inserted into
a ternary lipid bilayer. The following sections describe each of
the molecular discovery steps in detail.
2.2 Multi-resolution coarse-graining of CS

Coarse-graining of molecules generally consists of two steps.
First, groups of atoms are mapped to pseudo-particles or beads.
Second, the interactions between these beads are dened based
on their underlying atomistic fragments. For both steps, the
resolution of the coarse-graining can be varied. Assigning larger
groups of atoms to single beads results in a lower CG resolution
for the mapping step. Interactions between beads can be
dened for each bead pair34,35 or discretized into a limited
number of transferable bead types. The number of available
bead types then denes the interaction resolution. Various CG
models with different approaches to the mapping, di-
scretization, and assignment of bead types exist.36,37

Since coarse-graining reduces information, a single CG
molecule corresponds to multiple atomistic conformations or
chemical compositions. The CG resolution determines how
many atomistic structures correspond to a single CG molecule.
Representing CS at a lower CG resolution results in fewer
combinatorial possibilities for molecules and therefore
a smaller CS.25

We started the molecule discovery process by directly
dening small molecule CS at the high-resolution CG level. To
do this, we specied the set of available CG bead types based on
the relevant elements and chemical fragments from atomistic
CS (Fig. 1a). We used three CG resolution levels for our appli-
cation. They shared the same mapping of atoms to beads, but
differed in the number of available bead types. Our high-
resolution model corresponded to the Martini3 model,24

a versatile CG force eld with demonstrated relevance to
materials design.26,38,39 For our model, we ignoredMartini3 bead
labels, e.g., for hydrogen bonding or polarizability. Further
excluding water and divalent ions resulted in a model with 32
bead types per bead size, or 96 bead types in total. The rela-
tionship between bead types at different resolutions was hier-
archical, meaning that higher-resolution bead types could be
uniquely mapped to lower resolutions. In practice, lower-
resolution bead types were obtained by averaging the interac-
tions of higher-resolution bead types. For the medium- and low-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of our multi-resolution coarse-graining molecule optimization workflow. (a) Definition of multiple coarse-grained (CG) models
at varying resolutions. These models share the same atom-to-bead mapping but differ in bead-type assignments, with higher resolutions
featuring more bead types to capture finer chemical details. (b) Enumeration of chemical space (CS) at different resolution levels. Higher-
resolutionmolecules can be hierarchically mapped to lower resolutions. (c) Multi-level Bayesian optimization integrating information from all CS
resolutions. Molecules are iteratively suggested by an acquisition function and evaluated through molecular dynamics (MD) simulations. The
optimization progressively shifts toward higher-resolution evaluations. Optimization at higher-resolution levels is guided by surrogate models at
lower resolutions, improving efficiency and accelerating the search for optimal candidates.
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resolution models, we derived 45 and 15 bead types, respec-
tively. Section S1.1 of the SI provides further details on the
derivation of lower-resolution models.

For all resolutions, we enumerated all possible CGmolecules
based on the available bead types and the dened molecule size
limit of up to four CG beads (Fig. 1b). By directly generating
molecules at the CG level, the atomistic resolution was
bypassed. Since we assumed bead size-dependent but constant
bond lengths and no angle or dihedral interactions, the
enumeration of molecules is equivalent to the enumeration of
graphs. The small molecule size justied the neglected angle
and dihedral interactions. For the three levels of resolution, we
obtained chemical spaces of approximately 90 000, 6.7 million,
and 137 million molecules, respectively. Section S1.2 of the SI
elaborates details on the graph enumeration.

2.3 Chemical space encoding

From the enumeration step, we obtained large sets of molecular
graphs. While direct optimization in graph space is possible
(e.g., via evolutionary algorithms40–42), a numerical representa-
tion facilitates exploration of CS by enabling distance-based
similarity measures. Molecular ngerprints are oen used for
this purpose19–22 but require manual feature selection. Instead,
we used a learned projection of CS into a low-dimensional,
smooth numerical representation.

For the learned encoding, we used a regularized autoencoder
(RAE),43 which offers deterministic behavior compared to the
more common variational autoencoder (VAE) architecture.16,44
© 2025 The Author(s). Published by the Royal Society of Chemistry
As we only aimed for a smooth embedding, the stochasticity of
a VAE was not needed. The built-in regularization of the RAE
ensured a well-structured latent space.43 We used a GNN for the
node-permutation invariant encoder,45,46 which mapped
molecular graphs to the ve-dimensional latent space. A
decoder, composed of fully connected layers, was used to
reconstruct node features and the adjacency matrix. Although
the decoder was not invariant to node permutations, the
reconstruction loss ensured an invariant training of the RAE.

Input and reconstruction node features included bead-type
class, size, charge, and octanol–water partition coefficient.
The latter was added as a continuous feature to improve latent
space structure.

We trained separate RAEs for each CG resolution using the
complete set of enumerated molecules. The separated training
resulted in lower reconstruction losses and better adaptation to
the reduced resolution at lower levels. The loss combined cross-
entropy terms for categorical features, a binary cross-entropy for
the adjacency matrix, and a mean squared error term for the
octanol–water partition coefficient. Aer training, we retained
only the encoder for embedding molecules. The RAE was
implemented using the PyTorch and PyTorch Geometric
libraries,47,48 following the architecture of Mohr et al.26 Further
details on the RAE architecture, the training, and an analysis of
the learned latent space are provided in Section S1.3 and S2.1 of
the SI. In the following steps, we performed BO in these learned
latent spaces.
Chem. Sci., 2025, 16, 16027–16038 | 16029
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2.4 Single-level Bayesian optimization

Before introducing ourmulti-level BO approach, we rst provide
an overview of standard BO and our notation (see, e.g., Frazier12

for a more detailed introduction). We then describe how we
extend this approach to combine multiple resolution levels into
a single optimization process. BO aims to optimize a black-box
function f : X/ℝ that is expensive to evaluate and has no
analytical form or gradient information available. The objective
is to nd the global optimum x* ¼ argminx˛X f ðxÞ or
x* ¼ argmaxx˛X f ðxÞ with as few function evaluations as
possible. Typically, a Gaussian process (GP) is used as a proba-
bilistic model for f(x), i.e., f ðxÞ � GPðmðxÞ; kðx; x0 ÞÞ, dening
a multivariate normal distribution with mean functionm(x) and
a covariance function k(x, x0). This covariance kernel quanties
correlations over X . Although various kernel functions exist,
a common choice is the radial basis function (RBF) kernel,
dened as

k
�
x; x

0
�
¼ exp

�
� 1

2x2
kx� x

0 k2
�
; (1)

where x is the length scale parameter. Given training data
D ¼ fðxi; yiÞgni¼1 with inputs X= {x1,., xn} and observations Y=

{y1,., yn}, the posterior GP provides a predictive mean m(x) and
variance s2(x) for any x˛X . The mean and variance are given by

m(x) = m(x) + k(x, X)K−1(Y − m(X)), (2)

s2(x) = k(x, x) − k(x, X)K−1k(X, x), (3)

where K ¼ kðX ;XÞ þ snI is the covariance matrix of X with an
added noise term sn.

In BO, the GP model is iteratively updated with new evalu-
ations of the target function. First, the function is evaluated at
a set of initialization points. Subsequent evaluations are
selected based on the predictive mean and variance of the GP,
guided by an acquisition function that balances exploration and
exploitation. A common choice for the acquisition function is
the expected improvement (EI),49 which for minimization is
dened as

EIðxÞ ¼ Ez�N ðmðxÞ;s2ðxÞÞ½maxðy*� z; 0Þ� (4)

with y* = miny˛Yy. The next evaluation point is determined by
xnþ1 ¼ argmaxx˛XEIðxÞ. This process repeats until the evalua-
tion budget is exhausted or a sufficiently good solution is found.

2.5 Multi-level Bayesian optimization

For our multi-level BO approach, we considered d = 3 CG
resolution levels of CS. At each level l ˛ {1,., d}, we dened the
mapping of chemical space X l to the target free-energy differ-
ence y as an unknown function fl(x). Our goal was to identify
molecules at the highest resolution d that are near the
optimum, i.e., x* ¼ argminx˛Xd

fdðxÞ, while leveraging informa-
tion from the lower-resolution models (l < d). Similar to the
work of Huang et al., we assumed that each function fl(x) can be
modeled as a correction to the lower resolution

fl(x) = fl−1(x) + dl(x), (5)
16030 | Chem. Sci., 2025, 16, 16027–16038
where dl(x) represents the correction term.27 The hierarchical
bead-type resolutions justied this delta learning approach. We
modeled each dl(x) as a GP, i.e.,

dlðxÞ � GP
�
0; kl

�
x; x

0
��

: (6)

with a mean function equal to zero for all x. For all levels, we
used an RBF kernel function (eqn (1)) with level-specic length
scale parameters xl. By denition of the GP (see eqn (2) and (3)),
this delta learning approach corresponds to a GP with a mean
prior m(x) equal to the next-lower resolution function fl−1(x).
Thus, we can rewrite the GP for fl(x) as

flðxÞ � GP
�
fl�1ðxÞ; kl

�
x; x

0
��

: (7)

At the lowest resolution l = 1, no lower-level prior was available.
Instead of using a zero prior for f1(x), we applied a simple model
f0(x) that approximates the free-energy difference of a molecule
as the sum of the individual bead free energies.

Until now, we assumed the latent spaces of the different
resolutions to be compatible. However, since they were ob-
tained from separate autoencoder trainings, we could not
directly use a lower level function fl(x) as the prior for the GP on
level l. Instead, a functionMlðxÞ was required that maps points
in latent space X l to points in latent space X l�1. We determined
this mapping from one resolution to a lower one from the
known relationships between molecules at different resolu-
tions. Effectively, we had a many-to-one mapping from X l to
X l�1, which made the mapping MlðxÞ an unambiguous func-
tion. Applying this mapping to eqn (7), we get

flðxÞ � GP
�
fl�1ðMlðxÞÞ; kl

�
x; x

0
��

: (8)

as the nal probabilistic model for resolution l.
The optimization procedure started at the lowest-resolution

level l = 1, with initialization molecules selected through
weighted k-medoid clustering of the encoded CS. The clustering
weights were based on the prior of the lowest resolution and
calculated as wi = exp(−f0(xi)).

The length scale parameters xl of the RBF kernels were
optimized for each level using the GP marginal likelihood. The
kernel noise term sn from K in eqn (2) and (3) was xed to the
standard deviation of the calculated free-energy differences.
This standard deviation was determined by multiple repeated
evaluations of the same molecule (see Section S2.3 of the SI).
Themulti-level BO implementation used the GPyTorch library.50

Although BO is also possible with a batched evaluation of
multiple points,26 we only evaluated one point, i.e., one mole-
cule, at a time. Since each evaluation involved multiple MD
simulations, we parallelized over these simulations. We used
the EI as the acquisition function on each level. For higher
levels l > 1, the EI was computed and maximized only over CS
regions with expected signicant negative free-energy differ-
ences. These regions were dened as the neighborhoods of
points with promising prior information from the lower level.
Restricting the EI calculation to these neighborhoods focused
the optimization on the most relevant CS regions and acceler-
ated the EI maximization process. Details regarding the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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mapping of points between latent spaces and the calculation of
neighborhoods are provided in Section S1.4 of the SI.

Our multi-level BO algorithm transitions to a higher reso-
lution when the prediction error of the GP remains below
a predened threshold for multiple consecutive evaluations.
This prediction error serves as a measure of the GP model's
convergence. For our application, we empirically set the
prediction error threshold to 0.12 kcal mol−1 and required three
consecutive evaluations below this threshold to trigger the
switch. These hyperparameters control the trade-off between
exploration at lower resolutions and faster exploitation of
promising regions at higher resolutions. Lowering the
threshold and increasing the number of required evaluations
enhances exploration at lower resolutions, but increases the
total number of molecule evaluations needed.

In addition to increasing the resolution level, the algorithm
can switch back to the previous lower resolution. Since we want
to effectively leverage lower-resolution models, we are only
interested in high-resolution evaluations in regions where
a reliable prior is available. If the candidate with the maximal EI
is too far away from regions with a reliable prior from lower
levels, we switch back to the previous resolution level. Speci-
cally, the criterion for switching to resolution level l – 1 is
dened as ‖x* – x0‖ > 2xl, cx

0˛fx˛X ljx˛XlnMlðxÞ˛Xl�1g,
where Xl denotes the set of already evaluated points at level l.
2.6 Estimating the membrane demixing behavior

For our application, we optimized small molecules to enhance
phase separation in a ternary lipid bilayer consisting of 1,2-di-
palmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dilinoleoyl-
sn-glycero-3-phosphocholine (DLiPC), and cholesterol (Fig. 2).
DPPC and DLiPC differ only in their acyl chains, with DPPC
having two saturated 16-carbon chains and DLiPC having two
doubly unsaturated 18-carbon chains. The phase separation can
be quantied by the DPPC–DLiPC contact fraction.32 However,
directly observing the effect of a molecule on lipid mixing
requires long simulations with large bilayer leaets, which is
impractical for high-throughput screening. Alternatively,
potential of mean force (PMF) proles along the axis
Fig. 2 Influencing phase separation in a lipid bilayer by inserting small
molecules. Shown is a top view of a CG ternary lipid bilayer composed
of DPPC (blue), DLiPC (red), and cholesterol (yellow). (a) In the mixed
state, the bilayer contains small, dispersed lipid patches. (b) Upon
inserting specific small molecules, (c) the bilayer transitions to
a demixed state with pronounced phase separation between the two
phospholipids.

© 2025 The Author(s). Published by the Royal Society of Chemistry
perpendicular to the bilayer plane can be compared for pure
DPPC, DLiPC, and ternary bilayers.33 Since PMF calculations
(e.g., via umbrella sampling51) are still computationally expen-
sive, we employed thermodynamic integration (TI)52,53 calcula-
tions at a few key positions in the bilayers as a proxy. Centi
et al.33 showed that molecules that inuence the demixing or
mixing of a DPPC–DLiPC bilayer localize near the bilayer center
because the two phospholipids differ only in their carbon tails.
To determine a molecule's preferred localization, we performed
TI computations at the center (z = 0 nm) of the ternary bilayer,
at the interface (z= 1.5 nm) and in bulk water (Fig. 3), obtaining
the free-energies DGcenter, DGinterface, and DGwater, respectively.
We initially used DGcenter and DGwater to identify non-inserting
molecules, allowing us to skip further free-energy evaluations
for these cases. Centi et al.33 showed that molecules that
enhance the phospholipid demixing localize near the DLiPC
phase. Therefore, we performed a fourth TI calculation at the
center of a pure DLiPC bilayer, yielding DGDLiPC. Unlike the
direct observation of DPPC–DLiPC contacts, DG-based scoring
was easily parallelized, thereby further reducing the wall time
per evaluated molecule. The main optimization target was the
free-energy difference, DDG = DGcenter − DGDLiPC, assuming the
molecule localizes near the ternary bilayer center. To ensure
robust optimization even when molecules localize at the inter-
face or in the water, we combined DDG with a score S dened as
a conditional weighted sum of DGwater − DGinterface and
DGinterface − DGcenter. In contrast to using a constant DDG for
interface- or water-localizing molecules, this score provided
a more nuanced direction for optimization, steering it toward
relevant regions of CS. Negative DDG values indicated a prefer-
ence for the DLiPC phase, corresponding to a demixing
behavior. Overall, the molecule optimization corresponded to
a minimization of min(DDG, 0) + S. Section S1.5 of the SI
provides further information on the calculation of the score S.
Fig. 3 Estimating the demixing behavior of molecules via free-energy
calculations at four bilayer depths (circles) as an alternative to potential
of mean force (PMF) computations (solid lines). For the molecule
optimization, we aim to minimize DDG= DGcenter− DGDLiPC under the
conditions that DGcenter < DGinterface and DGcenter < DGwater. The
background illustrates the hydrophobic tails (grey), the charged
headgroups of DPPC (blue) and DLiPC (red), as well as cholesterol
(yellow). The plotted PMFs correspond to a molecule with DGcenter >
DGinterface, indicating that it localizes at the bilayer interface and
therefore does not significantly influence lipid mixing.
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2.7 Molecular dynamics simulations

We used MD simulations in a high-throughput manner54,55 to
perform the TI calculations of the free-energy differences. All
MD simulations were performed using GROMACS 2024.2.56,57

Martini3 andMartini3-derived (see Section 2.2) force elds were
used for the CG simulations.24,58 The derived lower-resolution
bead types are compatible with the standard Martini3 bead
types and can therefore be evaluated within unmodied
Martini3 environments.

Our lipid bilayer simulation setup was based on the protocol
by Ozturk et al.59 We used a leap-frog stochastic dynamics
integrator with an integration time step of 20 fs (in reduced CG
units). All simulations were performed in the NPT ensemble at
a temperature of 305 K and pressure of 1 bar,33 controlled by
a semi-isotropic C-rescale barostat.60 For the TI, we used 26
linearly-spaced l steps for the decoupling of Lennard-Jones
interactions and 10 additional linear l steps for the decou-
pling of Coulomb interactions in the case of charged molecules.
Since each molecule evaluation required up to four TI calcula-
tions, each with up to 36 l steps, evaluating a single molecule
could require up to 144 individual simulations. Further simu-
lation parameters are provided in Section S1.6 of the SI. The
package MBAR61,62 was used to calculate free-energy differences
from the MD simulation data.

Membrane systems were generated using the program
insane.63 Following the approach of Centi et al., we used a lipid
composition of DPPC : DLiPC : cholesterol in a 7 : 4.7 : 5 ratio.33

For a bilayer area of 6 × 6 nm2, used for the free-energy evalu-
ations, this corresponded to 26 DPPC, 18 DLiPC, and 19
cholesterol molecules per bilayer leaet. We used the colvars
module64 in GROMACS to calculate or restrain the phospholipid
contact fraction. Specically, the collective variable was dened
as the coordination number between the rst C1 beads of
DLiPC and DPPC with a cutoff distance of 1.1 nm.33 During the
TI simulations, the coordination number was restrained to 65
contacts per leaet, yielding an average of 2.5 DLiPC molecules
within the cutoff per DPPC. This slightly exceeds the 2.15
contacts expected from random lipid placement by insane.63
3 Results and discussion
3.1 Multi-level Bayesian optimization

We applied our multi-level BO workow to identify small
molecules that enhance the phase separation of a ternary lipid
bilayer, demonstrating its effectiveness in navigating chemical
space. We restricted the search to small molecules with up to 16
heavy atoms, corresponding to a maximum of four beads in our
CG model. We imposed no additional constraints, such as the
presence of specic functional groups, to rigorously test our
method. Our multi-level molecule optimization utilized three
coarse-graining resolutions, incorporating 15, 45, and 96
distinct bead types. While all three levels use the same spatial
coarse-graining, complexity increased with the combinatorial
diversity of bead types, spanning approximately 90 000, 6.7
million, and 137 million possible CG molecules. To identify
phase separation-enhancing molecules at the highest
16032 | Chem. Sci., 2025, 16, 16027–16038
resolution, we used lower-resolution models only to guide the
search, thereby reducing the complexity of the optimization
compared to direct high-resolution exploration. At all levels,
a molecule's effect on phase separation was quantied by an
MD simulation-derived free-energy difference, DDG (see Section
2.6).

The optimization was conducted within RAE-learned latent
embedding spaces, generated from the CG models at each
resolution. As a rst step, we computed theDDG values for all 15
low-resolution bead types. These results enabled us to construct
a cost-effective prior for the low-resolution model, based on an
additivity assumption over individual bead values (see Section
S2.1 of the SI for a detailed evaluation of this assumption).
Using this prior, we initialized the multi-level active learning
with 50 low-resolution molecules. Subsequent molecules and
their resolution levels were determined iteratively by our multi-
level BO algorithm. We evaluated 327 molecules in total: 106
molecules (15 + 50 + 41) at the low resolution, 148 at the
medium resolution, and 73 at the high resolution. In each
iteration, a single molecule was selected for evaluation using
MD simulations. The resulting DDG value was then used to
update the BO model, which informed the selection of the
following molecule.

Our multi-level BO approach progressively narrows the
search space through the three resolution levels. The optimi-
zation begins with a broad exploration of low-resolution CS,
identifying coarse regions likely to contain molecules with
favorable DDG values. Insights from this stage inform the
medium-resolution search, allowing the algorithm to focus on
more promising sub-regions. This process is further rened at
the high-resolution level to pinpoint localized areas within CS
that are most likely to yield effective candidates. By leveraging
information from the preceding levels, the algorithm bypasses
large areas of the CS landscape that are unlikely to yield relevant
molecules. Therefore, the number of required evaluations and
the overall computational cost are reduced. Fig. 4 presents 2D
projections of the encoded CS (black) together with the evalu-
ated molecules. Because each resolution is encoded indepen-
dently, the representations differ and prevent a direct transfer
of points. However, molecules can be readily mapped across
latent spaces by leveraging the known mapping between bead
types. The gure illustrates the funnel-like optimization: as
resolution increases, the search becomes more focused, even-
tually concentrating on localized sub-regions of chemical space.
Many low-resolution candidates display unfavorable DDG
values or negligible effects on phase separation (yellow). In
contrast, searches at medium and high resolutions increasingly
yield molecules with lower DDG values corresponding to a more
substantial impact on lipid demixing (orange to red). Fig. 5
further illustrates this trend, showing the distribution of eval-
uated DDG values across the three resolution levels, including
the initialization points at resolution l= 1. Candidates from the
low-resolution optimization already show lower DDG values
relative to the initialization set. However, higher-resolution
candidates generally exhibited even stronger phase-separation
effects, with medium resolution peaking around
−1 kcal mol−1 and high resolution around−1.2 kcal mol−1. The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Encoded chemical spaces and evaluated points for the three levels of resolution. The full chemical spaces are shown as kernel-density
estimations of latent space principal component analysis (PCA) projections (black). Evaluated molecules across the three resolutions are overlaid
as colored points (yellow to red), where lower DDG values indicate stronger lipid bilayer demixing. Due to separate encodings at each resolution,
latent space points are not directly transferable. (a) Optimization proceeds from broad, low-resolution exploration to (b) progressively focused
searches in medium and (c) high resolutions.

Fig. 5 Distribution of DDG values for all evaluated candidates at
different stages of themulti-level Bayesian optimization process. Violin
plots show the distributions for the initialization set and candidates
evaluated at low, medium, and high-resolution levels. As the optimi-
zation progresses to higher resolutions, the distribution of DDG values
progressively shifts toward lower (more favorable) values. Horizontal
bars indicate the median of each distribution.

Fig. 6 CG structures of the best eight high-resolution molecule
candidates identified in the optimization process. The molecules
exhibit low free-energy values (DDG) below−1.3 kcal mol−1, indicating
a strong influence on phospholipid bilayer phase separation. All
molecules are exclusively composed of hydrophobic C4, C5, and C6
beads (in different sizes, indicated by prefixes S/T), corresponding to
Martini3 types for alkenes, aromatic rings, and sulfide groups,
respectively. Six of the eight molecules have an extended/chain-like
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differences between the low- and medium-resolution minima
support our hypothesis about the varying smoothness of the
free-energy landscape across resolutions.

The computational cost per simulation is the same across all
three resolutions. Consequently, the overall computational load
at each level is primarily determined by the number of evaluated
molecules. For non-inserting molecules, two of the four TI
calculations can be omitted (see Section 2.6). As the lowest
resolution ltered out most non-insertingmolecules, its average
computational load per evaluation was slightly lower than at
higher resolutions.

We terminated the optimization aer 73 high-resolution
evaluations, as no further improvement in DDG was observed.
The 327 evaluated molecules correspond to less than 3× 10−4%
of the total high-resolution molecule space. While global opti-
mality is not guaranteed, the workow identied multiple
© 2025 The Author(s). Published by the Royal Society of Chemistry
promising candidates with pronounced effects on lipid phase
separation despite limited evaluations.
3.2 Evaluation of optimized molecules

Following the overall optimization process analysis, we now
focus on the top candidate molecules with the lowest DDG
values. As the Martini3 CG model (without bead labels)24

corresponds to our high-resolution model, the optimized
molecules do not provide atomistic details but reveal valuable
insights into the chemical moieties driving the phospholipid
phase separation. The top eight CG molecules, shown in Fig. 6,
all display DDG values below −1.3 kcal mol−1, with the best
candidate at −1.4 kcal mol−1 (top le of the gure). These
results indicate a strong effect on the phase separation. A
consistent feature across all eight CG molecules is the exclusive
topology.

Chem. Sci., 2025, 16, 16027–16038 | 16033
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presence of hydrophobic C4, C5, and C6 beads in varying bead
sizes. These Martini3 beads correspond to alkenes, aromatic
rings, and thiol/sulde groups, respectively.24 This observation
aligns with Barnoud et al., who showed that aromatic groups
promote demixing, while aliphatic groups (C1, C2, and C3
beads) favor phospholipid mixing.32 The two distinct topologies
shown in Fig. 6 correspond to the two prominent point clusters
in the 2D projection of Fig. 4c. While each cluster contains
molecules with a variety of topologies, the highest-scoring
molecules within them are predominantly of the two topolo-
gies in Fig. 6.

The highest-performing molecules at both low and medium
resolution (see Section S2.4 of the SI) exhibit more diverse
topologies but share similar trends in bead-type composition.
While the low-resolution results already provide preliminary
chemical insights, more detailed information—such as the
unfavorable contribution of C1, C2, and C3 beads—only
becomes evident through the inclusion of higher-resolution
models.

Directly measuring bilayer phase separation requires
signicant simulation time and is therefore computationally
expensive. Instead, we estimated demixing effects from free-
energy differences. To validate this approach and conrm that
the identied candidates indeed promote phase separation, we
perform 1600 ns MD simulations (in reduced CG units) of the
best candidate (top le in Fig. 6) in a ternary lipid bilayer
system. Using this method to evaluate the demixing effect
required one to two orders of magnitude more wall time than
the free energy-based scoring used for the optimization. As
a reference, we employ benzene, previously identied by Bar-
noud et al.32 as a potent driver of lipid bilayer phase separation.
Following their protocol, we use a solute/lipid mass ratio of
4.8% (see Section S2.5 of the SI for composition details). Phase
separation was quantied by tracking DLiPC and DPPC contacts
Fig. 7 Time evolution of DPPC–DLiPC lipid contacts in ternary bila-
yers over 1200 ns CG MD simulations (excluding 400 ns for equili-
bration). Three conditions are compared: a bilayer without solutes
(black), a bilayer containing benzene as a known demixing agent (olive
green), and one with the top-performing optimized molecule from
Fig. 6 (cyan), each at a solute/lipid mass ratio of 4.8%. Dashed hori-
zontal lines indicate mean contact numbers. The optimized molecule
reduces DPPC–DLiPC contacts more than benzene, demonstrating
a stronger phase-separation effect.

16034 | Chem. Sci., 2025, 16, 16027–16038
over the simulation trajectory. Fig. 7 presents the evolution of
these contacts throughout the simulation, with dashed lines
indicating average values. Each trajectory's initial 400 ns were
discarded to ensure equilibration. Additionally, a control
simulation without any added solute was conducted. Compared
to this bilayer without solutes, our best candidate substantially
reduced DLiPC–DPPC contacts, indicating a pronounced effect
on bilayer demixing. Our best candidate also outperforms
benzene, producing a greater reduction in the number of
contacts, suggesting a stronger inuence on phospholipid
phase separation.

To identify relevant molecular features and design rules
from the set of optimized molecules, we applied LASSO
regression analogous to Mohr et al.26 Derived rules could
subsequently inform the design of atomistic structures. We
analyzed single-bead and bead-pair features across all mole-
cules with DDG < 0, yielding 85 features. Higher-order features
were not included due to the size of the dataset. Feature
extraction and LASSO regression details are provided in Mohr
et al.26 The top ten most relevant molecular features, along with
their regression coefficients, bootstrapped uncertainties, and
frequencies of occurrence, are shown in Fig. 8. Consistent with
our earlier analysis of the top eight molecules, the most inu-
ential features involve hydrophobic C4, C5, and C6 beads.
Moreover, combinations of a regular-sized and tiny or small-
sized bead (indicated by T or S) appear relevant. These
derived features provide interpretable insights into the physical
interaction mechanisms that drive bilayer phase separation.
They can be used to design atomistic molecular structures that
exhibit the same phase separation behavior.
3.3 Comparison with standard BO

Is multi-level BO computationally advantageous compared to
BO using only the high-resolution model? To address this, we
performed standard BO with the same number of initial points
and total evaluations as in the multi-level case. While BO is
typically benchmarked by averaging the cumulative best result
across multiple runs to reduce initialization bias, this is
computationally infeasible for our bilayer demixing system.
Fig. 8 Top tenmost influential molecular features contributing to lipid
bilayer phase separation, identified via LASSO regression of the opti-
mized CG molecules with DDG < 0. Features were limited to single
beads and bead pairs. Each panel displays a feature's structure along
with its corresponding regression coefficient, bootstrapped uncer-
tainty, and frequency of occurrence within the dataset (number in
parentheses). Features only involve hydrophobic C4, C5, and C6 beads
and pairs of differing bead sizes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Chemical neighborhood sizes across different CG resolutions
of CS. The chart shows the number of molecules within a chemical
neighborhood at low (blue), medium (pink), and high (teal) resolution,
derived by fitting the lengthscale of a GP RBF kernel to the evaluated
molecule data. The total number of molecules is shown in gray.
Lower-resolution neighborhoods are mapped to higher resolutions by

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 1
0:

34
:3

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Instead, we compare the distributions of obtained DDG values
and the cumulative best result within single runs. We provide
a toy model comparison of results averaged over multiple runs
in Section S2.7 of the SI. Fig. 9 presents the progression of the
best DDG values for both optimization approaches. The
diagram excludes the 50 initialization points and accounts for
the 15 additional evaluations required to construct the low-
resolution prior for the multi-level approach. The multi-level
BO consistently outperforms the standard BO, achieving supe-
rior cumulative best values (solid lines) across all resolution
levels. Additionally, the distribution (based on the best 50
molecules) and scatter plots in orange and green highlight that
multi-level BO not only nds a better overall candidate, but
multiple candidates with signicantly lower DDG values than
the standard BO optimization. The peak of the multi-level BO
distribution is shied toward lower DDG values compared to
the standard BO optimization.
considering average molecule densities. These different neighbor-
hood sizes reflect the varying smoothness of the free-energy land-
scape across different CS resolutions.
3.4 Chemical neighborhood sizes across resolutions

Our multi-level BO algorithm relies on the assumption that the
free-energy landscape over the learned chemical representa-
tions is smoother at lower resolutions. To test this, we introduce
the concept of chemical neighborhoods and analyze their sizes
across different resolution levels. We dene a chemical neigh-
borhood as a region in chemical space containing similar
molecules. Similarity implies that known properties about one
molecule help predict properties of its neighbors. Here, neigh-
borhood size is determined by the lengthscale xl of an RBF
kernel tted in a GP regression. This length scale quanties
correlations between points in the latent space and is thus an
intrinsic measure of chemical neighborhood size. To obtain the
xl, we t independent GP models to the evaluated molecules at
each resolution level, excluding lower-resolution priors to
prevent bias. Neighborhood size is then calculated as the
Fig. 9 Progression of the DDG values during multi-level and standard
BO runs. Multi-level BO uses evaluations at low (blue), medium
(magenta), and high (green) resolutions, while the standard BO
(orange) operates only at the high resolution. Solid lines show the
current best value during the optimization. Initialization points are
excluded. The multi-level case accounts for the 15 extra evaluations
for the low-resolution prior. Kernel density estimates (right edge)
reflect the distribution of best 50 high resolution candidates. Multi-
level BO consistently achieves lower DDG values, as indicated by the
shifted distribution.

© 2025 The Author(s). Published by the Royal Society of Chemistry
average number of neighbors within a distance d, where d = axl

and a = 0.5 determines the required similarity for a chemical
neighborhood.

Fig. 10 shows relationships between the obtained neigh-
borhood sizes, the total number of molecules in the chemical
space, and neighborhoods from lower resolutions mapped to
higher resolutions (exact numbers in Section S2.6 of the SI).
Considering the logarithmic scale of the y-axis, we observe that
neighborhood sizes span several orders of magnitude across the
three resolutions. When mapped to medium or high resolution,
low-resolution neighborhoods with about 249 molecules
expand to about 18 600 and 378 000 molecules. Similarly,
a medium-resolution neighborhood with about 23 molecules
maps to a neighborhood of 468 molecules at high resolution.
This exponential scaling suggests that prior information for
many high-resolution molecules can be inferred from relatively
few low-resolution evaluations. Section S2.8 of the SI further
illustrates this by showing the coverage of the higher-resolution
latent spaces by mapping evaluated molecules from the lower
resolutions. These results support our assumption of
a smoother free-energy landscape at lower resolutions.
4 Conclusions

This work introduces a multi-level Bayesian optimization (BO)
framework for efficient exploration of chemical space (CS). Our
method employs multiple levels of coarse-graining to exploit the
varying smoothness of free-energy landscapes across different
model resolutions. By informing the optimization process at
higher resolutions with prior knowledge from lower resolu-
tions, we accelerate the search for optimal molecules. Our BO-
based algorithm combines information from multiple resolu-
tions in a Bayesian manner, enabling a funnel-like optimization
process through CS. This approach allows us to bypass irrele-
vant regions of CS at higher-resolution representations,
Chem. Sci., 2025, 16, 16027–16038 | 16035
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substantially reducing the number of required molecule evalu-
ations and the overall computational cost. We demonstrate the
effectiveness of our method by identifying small coarse-grained
(CG) molecules that enhance phase separation in a ternary lipid
bilayer. Despite evaluating only approximately 3 × 10−4% of the
total number of high-resolution molecules and assuming no
prior knowledge of relevant CS regions, we successfully identi-
ed several candidates with a signicant impact on lipid bilayer
phase separation. Our multi-level approach outperforms stan-
dard BO, achieving a better overall best result and obtaining
a signicantly shied distribution of evaluated molecules
toward stronger effects on phase separation. The optimized CG
molecules enable us to extract relevant molecular features and
design rules. Our analysis of chemical neighborhood sizes at
different resolutions conrms the assumption of smoother free-
energy landscapes at lower resolutions. Notably, obtained
neighborhood sizes vary by several orders of magnitude,
allowing us to get prior information for many molecules at high
resolution from a small number of evaluations at low
resolution.

In this study, we limited our funnel optimization to the CG
level and thus did not derive atomistic structures for the iden-
tied candidates. Similar to Mohr et al., atomistic structures
could be reconstructed based on the extracted molecular
features.26 Notably, these features provide an intuitive and
interpretable summary of the key chemical factors, providing
valuable insight into the underlying physical interaction
mechanisms. Moreover, the atomistic resolution could be
integrated directly into our multi-level optimization framework.
Since each CG bead maps to 102 to 104 atomistic fragments,54

the atomistic chemical space is vastly larger. Combined with
evaluation costs two to three orders of magnitude higher,65,66

this poses challenges. Nevertheless, these cost differences
enable approaches like multi-delity BO,27,30 and high-
resolution CG results generally provide an efficient starting
point that reduces the number of required atomistic
evaluations.

A limitation of our multi-level BO method is its reliance on
a hierarchical relationship between resolutions, with higher
resolutions required to exhibit sufficient complexity. Although
multi-level BO improves efficiency over standard BO for
complex optimization landscapes, it may underperform on
simpler problems. In our application, the target function—
mapping the learned latent representation of CS to free
energy—is sufficiently complex and non-smooth to benet from
the multi-level BO strategy. Further work is needed to identify
optimal complexity hierarchies and resolution-level differences,
which could further enhance efficiency. Another limitation is
the increased complexity in implementation and hyper-
parameter tuning. Multi-level BO requires setting hyper-
parameters for each resolution, as well as additional parameters
for resolution switching. Nevertheless, these hyperparameters
are primarily related to the chemical space and can thus be
transferred across different molecular optimization tasks.

Beyond its demonstrated application in lipid bilayer phase
separation, our multi-level BO framework can solve other opti-
mization problems characterized by free-energy differences. We
16036 | Chem. Sci., 2025, 16, 16027–16038
expect our method to be particularly advantageous in applica-
tions with little prior knowledge or training data. Furthermore,
integrating our method with a FAIR67 data infrastructure and
automated simulation workows, such as Martignac,68 will
enhance data management, reproducibility, and end-to-end
automation, thereby making the multi-level BO approach
more systematic and streamlined.

Our work provides a versatile and efficient molecular design
and optimization framework, offering a promising direction for
tackling complex chemical search problems.
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