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e novo sequencing of peptide
mixtures via network analysis and two-dimensional
tandem mass spectrometry

MyPhuong T. Le,a Yu Zhu,b Eric T. Dziekonski, a Dylan T. Holden, a

David F. Gleichb and R. Graham Cooks *a

Two-dimensional tandem mass spectrometry (2D MS/MS) provides in-depth biopolymer structural

information previously not directly accessible with traditional one-dimensional MS/MS workflows, and in

significantly less time (<1 second per sample). In this study, we enhance 2D MS/MS data analysis for

greater applicability in omics workflows and address challenges in sequencing peptides in mixtures. We

designed a graph-theory-based framework to efficiently manage, visualize, and maximize the structural

information extractable from 2D MS/MS spectra. Graph analysis algorithms, including a PageRank-based

method, are shown to deconvolve MS/MS signals and group together product ions from the same

presursor peptide, enabling the reconstruction of peptide fragmentation trees. From this, MSn

information can be extracted to improve sequencing accuracy relative to current MS/MS methods. We

also introduce a computationally efficient de novo sequencing approach that leverages this structural

information to reduce reliance on databases and sample separation, while also enabling the rapid

sequencing of post-translationally modified peptides. Tests on simulated 2D MS/MS spectra, designed to

mimic those from proteomic samples, achieved high precision in signal assignment. Proof-of-concept

studies were conducted on real data from simple mixtures of short chain peptides, showing the potential

applicability of combining network analysis with de novo sequencing to analyze unknown peptide

mixtures. We anticipate that this technique will complement proteomics workflows and facilitate direct

biopolymer structural analysis.
1 Introduction

Mass spectrometry (MS) lies at the heart of omics studies1,2 and
is fundamental to the sequencing of biomolecules3–5 owing to
the predictable nature of gas-phase fragmentation, especially
under collision-induced dissociation (CID) conditions.6–11 This
allows for structural elucidation of biomolecules from their MS/
MS spectra via sequencing methods such as database search
and de novo sequencing.12–21 A wide range of soware has been
developed for this purpose and tailored to specic sample types,
applications, and experiments, allowing for the signicant
expansion of omics studies over the past several decades.22–24

Challenges remain. Accuracy of database searches relies heavily
on the quality and specicity of the database, not only in terms
of sequence composition but also in the experimental condi-
tions chosen. De novo sequencing methods, in concept, remove
the need for databases and allow for the discovery of novel
structures.13,25–27 However, this generally requires high-
resolution data and is sensitive to the presence of noise and
y, West Lafayette, IN 47907, USA. E-mail:
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y the Royal Society of Chemistry
incomplete fragmentation.26,28,29 Structural modications, or
post-translational modications (PTMs) in the context of pro-
teomics, remain a major problem as they greatly expand the
search space and require databases specic to each modica-
tion, the curation of which requires signicant effort while the
discovery of novel PTMs remains difficult.30,31 Finally, complex
mixtures containing multiple biopolymers as well as other
components add another layer of challenge to biopolymer
studies.26,32–34

Two-dimensional mass spectrometry encompasses tech-
niques that correlate precursor ions with their corresponding
product ions without isolating the former. This experiment was
rst developed using FT-ICR MS instruments.35–37 Newer two-
dimensional methods, Partial Covariance MS (2D-PC-MS) and
Fragment Correlation MS (FC-MS), rely solely on signal pro-
cessing and achieve similar results without signicant instru-
mentation modications.38–41 These methods generate high-
quality data, although they are generally time-consuming,
requiring many minutes to hours of analysis. Recently, our
lab developed a method of two-dimensional tandem mass
spectrometry (2DMS/MS) based on a single quadrupole ion trap
analyzer. The experiment has relatively low mass resolution but
data acquisition times are only a few seconds,42 providing in-
Chem. Sci.
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depth structural information previously inaccessible with 1D
MS/MS.43 In these experiments, biopolymer samples are sub-
jected to two stages of fragmentation, rst before mass analysis
and second during mass analysis so preserving precursor–
product relationships without sacricing analysis time or
sample usage. Essentially the experiment provides – for a single
population of ions – product ion spectra of all precursor ions.
Stairstep patterns can be extracted from the resulting 2DMS/MS
spectrum to reconstruct MS2 pathways of the molecular ion,
from which information regarding the interconnectivity of the
monomers and any structural modications is inferred. The
ability to recover such information makes this method a prom-
ising route to biopolymer structural analysis, potentially
addressing some of the challenges outlined above. Specically,
the preservation of precursor–product relationships between
a molecular ion and its fragment allows efficient deconvolution
of fragmentation signals associated with each component of the
mixture. The precursor–product relationships among frag-
ments generated from the same biopolymer can improve
sequencing accuracy compared to traditional methods which
give only one-dimensional MS/MS data.44

In this paper, we propose a framework that combines the
two-stage fragmentation method of 2D MS/MS with a graph
theory-based data analysis scheme to efficiently manage, visu-
alize, and extract information. A network analysis algorithmwas
developed to deconvolute signals from 2D MS/MS spectra of
biopolymer mixtures, and it was evaluated against synthetic
data that mimic the complexity of typical proteomics data to test
potential applicability to current proteomics workows. We also
introduce a de novo sequencing algorithm to support peptide
structural elucidation using the fragmentation tree recon-
structed from the 2D MS/MS signals. By taking advantage of
well-dened neutral loss values, we demonstrate how PTM
information can be recovered without the need for preexisting
databases, all the while mitigating isobaric interferences and
reducing the reliance on high-resolution data in comparison to
traditional de novo sequencing approaches. Finally, in a proof-
of-concept study of peptide mixtures, we apply the proposed
network analysis and de novo sequencing algorithms to 2D MS/
MS data. This framework should be applicable to 2D MS/MS-
like data38–41 generated via data independent or dependent
acquisitions methods45 and so enhance the accuracy of current
biopolymer analysis studies.

2 Methods
2.1. 2D MS/MS analysis of biopolymer

2.1.1 Two-step fragmentation. Aqueous solutions of
biopolymer (50 mM, 1% formic acid) are directly ionized by
nano-electrospray ionization (nESI) and sprayed into a linear
ion trap instrument (Thermo Electron Finnigan LTQ) modied
for 2D MS/MS experiments.71 Prior to their arrival in the ion
trap, injected ions are fragmented simultaneously and indis-
criminately by in-source fragmentation (IS-CID) or broadband
excitation waveforms, gas-phase methods somewhat akin to the
effect of non-specic enzymatic digestion to convert longer (bio)
polymers into shorter chain versions.72 The resulting fragments
Chem. Sci.
are analyzed by 2D MS/MS, during which each precursor is
sequentially activated and fragmented to form product ions.
Them/z values of each precursor are plotted on the x-axis, while
the m/z values of their corresponding products are plotted on
the y-axis. The resulting 2D MS/MS spectrum is therefore
a combination of product ion proles from each precursor ion
generated from the fragmentation of the original biopolymer
molecule (Fig. 1A). Following data processing, during which
peak centroid identication and m/z calibration against stan-
dard were done to obtain precise unit resolution m/z values,
stairstep patterns were reconstructed from the signals to
recover MSn information (Fig. S1A). Detailed description of the
2D MS/MS instrumentation, 2D MS/MS data processing, and
data interpretation can be found in our earlier publications.42,43

For proof-of-concept experiments, an incompletely phos-
phorylated pentapeptide, Ac-IYGEF-NH2, and an equimolar
mixture of three enkephalin analogs, YGGFL, YAGFL, and
YGGFM, were used to examine the capability of the method in
analyzing heavily overlapping structures. Additionally, a single-
blind study was carried out using a sample containing ve
peptides covering a mass range from m/z 300 to m/z 800. In
addition, 2D MS/MS spectra of these ve individual peptides
were collected to establish a “ground truth” to test the perfor-
mance of the graph partitioning algorithms. Final 2D MS/MS
spectra were generated by combining spectra from various IS-
CID energies and instrument settings to (1) cover a wide
range of fragmenting precursors and (2) capture lower mass
product ions of high mass precursors.
2.2. A graph-theory based data analysis framework

An example of 2D MS/MS data analysis using graph data
structure is shown in Fig. 1B. Data from a 2D MS/MS spectrum
is dened as a collection of multiple reaction monitoring
(MRM) transitions,73 or pairwise relationships between two m/z
values (Fig. 1B, step 1). Consequently, a graphical representa-
tion can be used for efficient data management and visualiza-
tion. Graphs are data structures with a set of nodes and a set of
edges. Each edge represents a connection between two nodes.
Accordingly, we model each m/z value as a node and add
a directed edge, or an arrow, connecting one m/z value to
another if there exists such a precursor-product pair in the 2D
MS/MS spectrum. This construction forms a directed acyclic
graph (Fig. 1B, step 2). The advantage of this construction is
that paths in this graph represent potential fragmentation
sequences. A path in graph theory is dened as a sequence of
edges connecting a sequence of nodes within a graph, such that
no node is repeated along the path. In a directed graph, these
paths must follow the direction of each edge.

To organize the resulting complex network, the molecular
ion(s) of each biopolymer(s) present in the sample must rst be
identied. These values are oen associated with peaks that (1)
are accompanied by common adducts (+22 Da and +38 Da for
Na+ and K+ adducts relative to +1 in positive mode), (2) decrease
in intensity following the application of IS-CID if singly charged,
and (3) have a relatively more abundant product ion prole in
comparison to other peaks.74,75 If the sample contains
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) 2D Tandemmass spectrum of Neuromedin N collected using the two-step fragmentation experiment. Summing all signals onto the x-
axis allows for the recovery of the full mass spectrum of fragments generated from KIPYIL during IS-CID. The product ion profile of each
precursor ion, e.g. m/z 615, can be recovered by extracting signals in the y-dimension that coincide with the x-axis at the m/z value of the
precursor. Signals from unfragmented precursors are often not observable for reasons associated with the instrument's scan function, but they
should fall along the diagonal autocorrelation line where product ionm/z equals precursor ionm/z, as reconstructed in the spectrum. (B) Step-
by-step data analysis of a 2D mass spectrum begins by locating the coordinates of all signals within the spectrum (step 1). For each pair of
coordinates, nodes with x and y values are created and an edge is added from x to y (step 2). If the molecular ion is identified, the longest path
from each node in the graph to the molecular ion node is calculated, and the length of this path is used to classify each node with respect to
layers beneath themolecular ion (step 3). Further simplification can be achieved by applying a restricted transitive reduction to remove redundant
edges (step 4). An MSn path can be reconstructed by tracing a path from the molecular ion through the layers to any lower node of choice, or to
the lowest node for the longest path (step 5). Signals with x and y coordinates corresponding to each pair of nodes in the selected path can then
be used to map the stairstep pattern onto the original 2D spectrum (step 6).
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a molecular species, a subgraph is extracted by selecting all
nodes accessible from the node representing the m/z value of
the identied molecular ion. This subgraph is subsequently
plotted as a layered graph, with the molecular ion at the top and
descendant nodes arranged in layers based on the length of the
longest path between them and themolecular ion. The resulting
graph resembles a fragmentation tree (Fig. 1B, step 3).

Further simplication can be done for visualization
purposes via transitive reduction,76 an algorithm that removes
redundant edges (Fig. 1B, step 4). Given the tree-like structure of
the graph, directed paths can be extracted starting from the
molecular ion and extending to any descendant node (Fig. 1B,
step 5). These paths represent MSn pathways and, therefore, are
equivalent to the stairstep pattern mentioned earlier (Fig. 1B,
step 6).
2.3. Network analysis for deconvolution of peptide mixture
fragmentation

2.3.1 Graph partitioning algorithm. If multiple biopoly-
mers are determined to be present in the mixture, signal
deconvolution is required before the fragmentation trees of
individual species can be constructed (Fig. 1B, step 3). The 2D
MS/MS data generated from biopolymer mixtures oen produce
fragments originating from different species that share the
same m/z, resulting in an entangled network of fragmentation
trees with “shared” nodes. To resolve this, we developed a graph
partitioning algorithm based on Personalized PageRank (PPR)77

to identify nodes originating from the same biopolymer.
Specically, for each species with identied molecular ions, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
PPR score of each node in the graph relative to this ion is
calculated, as detailed in the SI.

A two-threshold system was implemented, where high and
low thresholds, T1 and T2, are calculated as percentiles of all
PPR scores between all nodes and the molecular ion node.
Nodes with a PPR score above T1 are classied as fragments of
the molecular ion under consideration, while those with scores
below T2 are excluded. For scores between T1 and T2, a node is
assigned to the species only if its score for this biopolymer is
higher than its scores for all other species in the mixture. This
process is repeated for each molecular ion identied in the
mixture, resulting in nodes that may originate from a single
biopolymer, multiple biopolymers, or neither (e.g., noise).

2.4. De novo sequencing of unknown peptides using 2D MS/
MS data

Once the fragmentation tree of a peptide is constructed, a de
novo sequencing method is used to recover the peptide's
structure based on the following assumptions and principles:

(1) The molecular ion of the peptide is correctly identied.
(2) There is a nite list of possible peptide structures at each

m/z and neutral loss value.
(3) Ions of higher mass must contain the amino acids

present in the ions of lower mass within the same MSn pathway.
(4) Structural information for each fragment can be inferred

from the ion type of its precursor and product, as well as the
nature of the associated neutral losses.

2.4.1 Library generation. Based on the second assumption
above, an in silico library of all possible peptide ions and neutral
loss structures was generated at unit mass level. Peptide
Chem. Sci.
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sequences with masses up to 1000 Da, formed from the 20
common amino acids, were calculated. The nominal mass of
each sequence was calculated as b-type, y-type, a-type, and x-
type ion; c- and z-ions were excluded as they are not
commonly generated under conventional CID conditions.10,58,78

Neutral losses of up to 300 Da consisting of up to two amino
acid residues generated from the fragmentation of intact
peptides as well as fragmentation of common product ions (b-
and y-types) were calculated (Fig. S3). Post-translationally
modied amino acids were included only in the neutral loss
library. This latter is based on the weak assumption that the
PTM moieties remain attached to the modied amino acid
during fragmentation. Neutral losses of small molecules (e.g.,
H2O, CO2, CO, NH3, etc.)78 were also considered depending on
the presence of specic amino acids, based on known frag-
mentation trends.

2.4.2 Three-step sequencing. A three-step sequencing
algorithm that takes an MSn pathway as input and returns the
best possible sequence(s) of molecular ion(s) that may fragment
into ions with the corresponding series of m/z values. An
example of this algorithm being applied to a pathway extracted
from a fragmentation tree is shown in Fig. 2.

In the rst step, the structures of ions at each m/z value are
narrowed down in a bottom-up direction, i.e., from the lowest to
Fig. 2 Application of the de novo sequencing algorithm. (A) Stairstep seq
difference between each node was calculated as neutral loss values and a
corresponding structure candidate pools resulting from the application o
node and NL value in the direction indicated by the arrow for each step. N
structure in the library and is a known product ion formed by loss of NH3 f
for in the sequencing algorithm can be found in several m2 / m1 pairs, s
possibility of an acetylated I/L. As a result, candidates for m2 in the first s
with 42 corresponding to the mass shift resulting from the acetyl group

Chem. Sci.
the highest mass in each pathway. For each pair of m/z values,
m2/m1 and their corresponding neutral loss value n12=m2/

m1, a list of candidate structures for m1, m2, and n12 is retrieved
from the library. If a modication P corresponding to a mass
shi of DP is present in the candidate list of n12, the candidate
pool form2 is extended to include structures withmassm2− DP.
The third assumption is then applied to narrow down the
candidate pool for m2. This process is repeated until the
molecular ion is reached. The rst step is repeated across as
many pathways as necessary to obtain the smallest possible
number of potential structures of the molecular ion.

The second step is performed in a top-down manner. The
narrowed-down structure(s) of the molecular ion is used to
further rene and narrow down the structural candidates
identied in the rst step to arrive at the component m/z values
and neutral losses of each pathway.

The third and nal step is a bottom-up sequencing process,
in which the ion types and neutral loss types are used to accu-
rately determine the relative order of the amino acids in each
fragment, ultimately reconstructing the sequence of the
molecular ion.

2.4.3 Path selection. To efficiently sequence a molecular
ion from its fragmentation tree, pathways are submitted to de
novo sequencing algorithm based on their information content.
uence (or MSn sequence) extracted from a fragmentation tree. (B) The
nnotated as + x Da. Listed next to the node'sm/z and NL values are the
f structural constraints imposed by the structure pools of the previous
odem/z 119 is not included in the steps as it does not correspond to any
rom Y (immonium) ions. Examples of howmodifications are accounted
uch as m/z 456 / m/z 301. Here, the NL value of 155 Da includes the
equencing step include fragments of both m/z 456 and m/z 456 + 42,
.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc03762j


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/1
6/

20
25

 8
:0

5:
51

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
To identify the most informative pathways,m/z values providing
little structural information, such as those resulting from the
loss of small molecules or a neutral loss (NL) not in the library,
are disregarded. Typically, these are NLs exceeding 300 Da in
mass or those involving rearrangements. Aer the removal of
suchm/z values, the length of the remaining pathway reects its
relative information content. If multiple pathways have similar
lengths, priority is given to those with greater interconnectivity
among their nodes and stronger connections between each
node and the molecular ion node. Interconnectivity can be
evaluated by the number of edges within each pathway, while
connectivity to the molecular ion can be assessed by the average
shortest path from each node to the molecular ion node.

Additionally, pathways with lowest m/z values should also be
prioritized, as fewer structures are possible at low m/z values
(Fig. S4). These ions are oen comprised of just one amino acid,
which can more efficiently narrow down the possible structures
in the subsequent steps. Tomitigate interference from potential
internal isobaric and misassignments, pathways lacking
chemical senses, such as those containing multiple consecutive
small losses, are also excluded.

3 Results and discussion
3.1. Analysis of 2D MS/MS data using graph structure

Due to the polymeric nature of the analyte being considered,
a particular fragment can be generated during either of the two
stages of fragmentation, leading to the presence of signal pairs
in which the precursor ion of one event has an m/z value that is
also the product ion m/z value of the other.43 By connecting
these pairs of signals, stairstep patterns can be drawn to
reconstruct an MSn pathway (Fig. S1), information previously
inaccessible using traditional 1D MS and conventional 1D MS/
MS methods. Data generated from 2D MS/MS experiments, is
therefore rich in structural information, particularly the inter-
connectivity among substructures of a biopolymer. By arranging
2D MS/MS data into a graphical structure, this valuable infor-
mation can be efficiently stored, accessed, and utilized in
structural studies. This approach should also facilitate the
automation of data analysis which would be challenging to
perform manually as the complexity of the data increases. In
addition, graphical organizationmakes MS/MS data suitable for
diverse network analysis algorithms, many of which offer
innovative approaches to addressing MS challenges, such as
facilitating the comparison and correlation of MS/MS frag-
mentation patterns among structurally similar compounds.46,47

During graph construction (Fig. 1), multiple disconnected
subgraphs may be generated. However, most nodes typically
connect to form one large component due to the inter-
connectivity of the biopolymer's fragments. As a result, noise
signals will seldom overlap with signicant m/z values so
enabling the removal of noise and background signals. Using
graph format also allows simplication and visualization of 2D
MS/MS in a more intuitive manner compared to stairstep
patterns, facilitating manual data inspection and interpretation
when necessary. If the molecular ion(s) can be identied,
a layered graph can be constructed from all m/z values that can
© 2025 The Author(s). Published by the Royal Society of Chemistry
be “reached” from the molecular ion, structurally resembling
a fragmentation tree. Paths within this graph, therefore,
represent potential fragmentation sequences. Such structures
are widely recognized by mass spectrometrists as supporting
structural elucidation and serve as the basis for various MS
soware platforms.13,48–50

When interpreting the reconstructed fragmentation tree, it is
important to note that no relationship between any two m/z
values can be assumed without a direct connection between
them. Accordingly, we simplify the fragmentation tree for
visualization purposes without compromising the information
presented within the graph by employing a restricted transitive
reduction method, i.e., an edge can only be removed if there
exists a two-step path connecting the nodes. In addition, the
absence of a connection between twom/z values does not negate
their relationship. This situation oen arises when data is
collected using ion trap mass spectrometers, in which smaller
fragments may not be detected due to inherent low mass cutoff
values.51,52
3.2. Graph partitioning algorithm and its evaluation using
synthetic peptide mixture fragmentation

3.2.1 Graph partitioning algorithm. Elucidating the struc-
tures of individual biopolymers in complex mixtures remains
challenging, particularly in omics workows where co-eluting
species generate convoluted MS/MS spectra. This is especially
relevant in data-independent (DIA) workows, where multiple
peptides are usually simultaneously co-fragmented in the MS/
MS scan.45 As a result, individual MS/MS proles must be
deconvoluted to be effectively analyzed using common
sequencing methods.53,54 In some current omics workows,
precursor–product relationships are reconstructed by corre-
lating changes in signal intensity, assuming that uctuations in
precursor ion intensity are mirrored by those of its product ions.
These correlations are established by analyzing relative ion
intensity against LC elution time55–57 or by leveraging the
intrinsic signal intensity uctuations during MS/MS measure-
ments (2D-PC-MS and FCMS).38–41 However, both methods
require signicant analysis time and substantial sample
quantities.

As previously noted, isobaric ions, combined with data
complexity, pose signicant challenges to the application of 2D
MS/MS techniques for peptide mixture analysis.40 This issue is
especially pronounced in unit-resolution data.26,58,59 Along with
shared fragments from structurally overlapping peptides, these
ions introduce “shared nodes” which convolute the fragmen-
tation trees. Simply extracting fragmentation trees from source
nodes, therefore, can lead to misassigned descendant nodes. To
address this, we developed a graph partitioning algorithm
based on the assumption that an ion with a particular m/z value
is more likely to be a product ion of a molecular ion if there are
other fragmentation paths connecting that molecular ion to the
product ion m/z value.

The PageRank algorithm,60,61 developed to rank components
of a network based on how well connected they are via the
number and quality of their links to others, has been
Chem. Sci.
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successfully applied in various scientic disciplines due to its
versatility, robustness to noise, and the intuitive nature of the
results.62–64 Personalized PageRank, specically, allows one to
introduce biases into specic nodes (e.g., molecular ions) and to
prioritize nodes with direct connections, which is important in
the context of MS data and therefore is used in this application.
Effective clustering methods must be capable of assigning the
same m/z values to single or multiple peptides while also
ltering out noise, thus necessitating a two-threshold system.
Specically, threshold T1 accounts for shared structures
between different peptides, allowing some nodes to be grouped
into multiple clusters simultaneously. Threshold T2 is used to
identify and exclude noisy nodes loosely connected to some
clusters through isobaric ion contributions. By carefully tuning
T1 and T2, we can mitigate isobaric interference and strike
a balance between identifying as many peptide fragments as
possible while avoiding the inclusion of isobaric ions from
other peptides or noise, or in other words, balance recall and
precision.

3.2.2 Simulated 2D MS/MS proteomics data. To evaluate
the performance and applicability of the proposed graph par-
titioning algorithm, we generated simulated 2DMS/MS datasets
to mimic the complexity of MS data typically obtained during
Fig. 3 Precision-recall (red) curves evaluate the graph partitioning al
a constant T1 with varying T2 values in intervals of 5 percentile, with the
right to left of each curve. For the highest and lowest T1 values, precis
correspond to the T2 value that represent a compromise between precisi
curves are plotted using the average value overN= 50 individual samples
background noise, (B) mixture of 10 peptides with only 5 molecular ions i
the molecular ion identified and low background noise, and (D) mixture
ground noise.

Chem. Sci.
traditional proteomics experiments, specically co-eluted
peptides from a preceding LC separation step (SI, Section 3).
Specically, peptide sequences ranging from 8 to 15 amino
acids in length were randomly generated from the 20 common
amino acids. Three types of noise signals were added from: (1)
coeluting peptides whosemolecular ion is not identied, (2) Na+

and K+ adducts of peptides in the mixture, and (3) random
precursor-product pairs mimicking chemical noise and
contaminants. All of these components were subjected to in
silico two-stage fragmentation, during which arbitrary rear-
rangements might occur, including internal switching of amino
acid positions and losses of neutral fragments of arbitrary mass.
The mass of each fragment was recorded at unit resolution
while its isotopic distribution was discarded given that these
relatively low intensity signals are oen not recorded or are
removed during signal processing. Signals from all fragments
were combined and subsequently deconvoluted using the graph
partitioning algorithm. We evaluated the performance using
two metrics: precision, which calculates the percentage of
correctly assigned nodes out of all nodes assigned to a peptide,
and recall, which calculates the percentage of correctly assigned
nodes out of all the nodes that actually belong to a peptide.
gorithm using varying T1 and T2 thresholds. Each curve represents
lowest T2 being 0 percentile and highest being T1 – 5 percentile, from
ion and recall are plotted as a function of T2 value. Crossover points
on and recall. Plots are generated for four types of samples, for each the
. (A) Mixture of 5 peptides with all molecular ions identified and with low
dentified and high background noise, (C) mixture of 15 peptides with all
of 20 peptides with only 10 molecular ions identified and high back-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.2.3 Evaluation using simulated proteomics data. We
tested the performance of the partitioning algorithm against
several factors including the number of peptides in the mixture,
the number of peptides with identied molecular ions, the
relative noise levels, and different combinations of thresholds
T1 and T2 (Fig. 3). Results were compared against a “näıve”
method, which assigns nodes to peptide groups based solely on
path existence, resulting in a recall of one.

As the complexity of the mixture increases, the precision of
the näıve method drops signicantly, consistent with the
increased number of overlapping nodes as more species are
introduced. In contrast, the precision of data partitioned using
the graph partitioning algorithm remains markedly higher than
that of the näıve method, even in cases where there are high
levels of noise – conditions that can be detrimental to tradi-
tional 1D-MS sequencing methods.28,65,66

Generally, there is a clear trade-off between precision and
recall as T1 and T2 vary. Increasing the T1 threshold improves
precision but reduces recall. Similarly, raising T2 increases
precision, but its effect plateaus before recall drops rapidly.
Optimal threshold values depend on sample characteristics,
including the number of peptides in the mixture, the ratio of
peptides with identiable molecular ions to unidentied
signals, and the overall presence of noise and contaminants.
For example, in high-noise samples, setting higher T2 values
helps lter interference and increase precision without signi-
cantly sacricing recall.

Threshold selection also depends on the goal of the experi-
ment. For targeted studies using database matching, precision
should be prioritized over recall due to the inherent specicity
of 2D MS/MS data. Preliminary surveys therefore can be con-
ducted to determine the minimum recall needed to accurately
retrieve the peptide sequence, thereby maximizing precision. In
contrast, for de novo sequencing of unknown/novel structures,
balancing precision and recall is necessary as more information
is required to improve the accuracy of structural assignment.
Incorrect node assignments can oen be eliminated based on
the chemist's expertise, which can in turn be incorporated into
the de novo sequencing program, allowing for lower precision to
be tolerated (Fig. S17).
3.3. De novo peptide sequencing using 2D MS/MS data

Construction of the fragmentation tree provides an opportunity
for de novo sequencing, which is advantageous over database
searches for analysis of unknown or novel peptide structures.
Many traditional de novo sequencing algorithms rely implicitly
on graph theory, where fragmentation pathways are constructed
by connecting m/z values (nodes) when their mass difference
corresponds to an amino acid residue.13,25,26,67,68 As these
connections are presumed from the observed mass differences,
the method is vulnerable to isobaric interference and thus
heavily dependent on mass resolution. Handling PTMs, espe-
cially unknown PTMs, is especially challenging as these expo-
nentially expand the database size and search space.69,70 This
oen requires the user to dene expected modications to
constrain the search space and reduce computation time. By
© 2025 The Author(s). Published by the Royal Society of Chemistry
leveraging “true” neutral loss values, traditional methods can
be improved to enable the recovery of PTMs information
without the need for preexisting databases. By placing
constraints on the size of neutral loss values, one can freely
incorporate PTM information without exponential expansion of
the fragment library. As PTM information is dened by mass
difference, unknown PTMs can be identied by adding theo-
retical mass differences and rerunning the sequencing algo-
rithm, thus facilitating discovery of unknown PTMs.

Fig. 2 presents an example of automated sequencing of
a peptide with three different modications using unit-
resolution 2D MS/MS data and following the three-step
sequencing algorithm described earlier. In this case, only one
pathway (bolded in Fig. 2A) was needed to successfully retrieve
the original peptide sequence. Note that certain isobaric ions
inherent to unit mass resolution, such as differentiating I vs. L
or K vs. Q, persist in the absence of further distinguishing
fragments. Another example, examining the step-by-step
sequencing of YGGFL, which requires multiple MSn pathways,
can be found in the SI, Fig. S5–S7.

The proposed sequencing algorithm is especially useful for
applications involving the exploration of novel peptide struc-
tures, as it is grounded in fundamental chemical principles of
fragmentation. This approach enables the integration of
chemical knowledge and insights throughout the sequencing
process, allowing chemists to actively engage with and rene
their understanding of the underlying chemistry. In contrast to
“black box” methods, which provide results with little trans-
parency into the decision-making process, this algorithm offers
clarity and fosters a deeper connection to the chemistry driving
the analysis.
3.4. Proof-of-concept experiments

We conducted a series of experiments to further explore the
performance of graph partitioning on simple mixtures of short-
chain peptides and the capabilities of the sequencing algorithm
in elucidating peptide structures fromMSn information. The 2D
MS/MS spectrum of each mixture was generated by combining
multiple spectra collected using different IS-CID energies and
scan parameters. This approach is crucial for graph partition-
ing, as recovering the direct relationship between lower mass
ions and the molecular ion allows more accurate assignment of
the low mass ions to the intact molecule.

3.4.1 Mixtures of structurally related peptides. One of the
challenges in studying peptide mixtures is examining peptides
with similar core structures but differing modications,
resulting in convoluted MS/MS proles, which oen contain
a relatively high percentage of fragments generated from
multiple species. To illustrate, we examined a sample derived
from the phosphorylation of a pentapeptide, Ac-IYGEF-NH2

(Fig. S8A). Two molecular ions were readily identied, each
accompanied by loss of a neutral of 17 Da. This was particularly
evident for the ion at m/z 749, accompanied by m/z 732. Both
ions exhibited almost identical product ion proles, except for
a few fragments such as m/z 350. This suggests the presence of
a terminal modication, causing the two species to share the
Chem. Sci.
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same b-ion series but differing in their y-ions, or vice versa.
Additionally, the relatively low intensity of the m/z 669 and m/z
652 pair indicates that the phosphorylation process was
incomplete. Signal extraction followed by the use of the graph
partitioning algorithm was applied to the spectrum (Fig. S8B),
resulting in three subsets of nodes, those that belong to either
peptide and those that belong to both peptides (Fig. S8D).
Fragmentation trees of each peptide were constructed
(Fig. S4C), and the peptide of m/z 749 was sequenced using the
sequencing algorithm as previously shown in Fig. 2. Presum-
ably, without prior knowledge of the mixture, the structure ofm/
z 669 could be easily inferred from the structure of m/z 749
based on the presence of MSn pathways in the former's frag-
mentation tree that are similar but 80 Da apart from those
found in the latter. Alternatively, the structure of m/z 669 could
be quickly elucidated using the sequencing algorithm as well
(Fig. S9A).

To further examine the capability of the graph partitioning
algorithm in separating heavily convoluted signals, we analyzed
a mixture of three enkephalin analogs using IS-CID 2D MS/MS
(Fig. 4). Given their highly similar sequences, with only one or
two differing amino acids, considerable overlap among the
fragmentation trees of each peptide was anticipated. Speci-
cally, this includes shared “nodes” resulting from overlapping
structures, and both fully and partially overlapping pathways.
Fig. 4 (A) 2D MS/MS spectrum of a three-peptide mixture containing d
deconvolute the signals and reconstruct fragmentation trees for the indi
patterns. Due to overlapping structures, multiple fully and partially share
main fragmentation pathways of YGGFL: (1) M + H+ /b4 / a4 / b3
immonium ion. Purple and blue colored patterns represent the partially d
and position of the differing amino acid of YAGFL and YGGFM in comparis
from the results of applying graph partitioning algorithms to the 2DMS/M
of m/z 556, (C) YAGFL with molecular ion of m/z 570, and (D) YGGFM w
generated by all three peptides are correctly assigned to all three fragme
bolded in red, shared by YGGFL and YGGFM, can be extracted from bot
line, can be found in both YGGFL's and YAGFL's and partially in YGGFM'

Chem. Sci.
For example, YGGFM differs from YGGFL by an N-terminal
residue, meaning they share b-ion fragments, while pathways
involving y-ion fragments are offset by 18 Da. Similarly, YAGFL
and YGGFL, would share b-ion pathways up to the b2 ion, and y-
ion pathways from y3 ions onward. This example illustrates that
the partitioning algorithm can effectively manage samples with
a high degree of shared nodes among the component peptides.
Finally, we applied the graph partitioning algorithm to recover
fragmentation trees for each peptide (Fig. 4B). The results
indicate that all expected shared nodes and pathways were
accurately assigned to the fragmentation trees. Partially shared
pathways were reconstructed from the trees and color-coded as
shown in Fig. 4B and D.

3.4.2 Complex peptide mixtures. A mixture of three
peptides with overlapping stairstep patterns, arising from both
isobaric ions and shared partial structures, was re-processed
(Fig. S10) using the PageRank-based method described above.
Individual stairstep patterns recovered from known fragmen-
tation pathways of each component peptide could be recon-
structed using only their molecular mass as inputs. In addition,
m/z values belonging exclusively to one peptide, two peptides, or
all three peptides could be correctly identied (Fig. S9).

The IS-CID 2D-MS/MS spectrum of a ve-peptide mixture was
recorded (Fig. 5), and the graph partitioning algorithmwas used
to recover fragmentation trees for each of the ve components
ifferent enkephalin analogs. Graph partitioning algorithm was used to
vidual peptides, from which pathways were extracted to map stairstep
d pathways are observed. Orange stairstep patterns represent the two
/ b2 / iminium ion and (2) M + H+ / y3 / y3 + b4 / y3 + a4 /
iverged patterns from the orange pathways due to the mass difference
on to YGGFL. Fragmentation trees of each peptide were reconstructed
S of the three enkephalin analogmixture: (B) YGGFL with molecular ion
ith molecular ion of m/z 574. Nodes representing m/z values of ions

ntation trees, such asm/z 136,m/z 120,m/z 205, as circled. Pathway 1,
h fragmentation tree (but not in YAGFL's). Pathway 2, bolded in dotted
s.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (A) 2D MS/MS with annotation of a five-peptide mixture. Stairstep patterns were recovered from the graph partitioning algorithm, while
structures and ion types were labelled with support from the results of de novo sequencing. (B) Precision-recall curve evaluates the performance
of the graph clustering algorithm on a five-peptidemixture with varying T1 and T2 thresholds. Each curve represents a constant T1, with T2 values
varying in intervals of 5 percentile. T2 ranges from 0 percentile (lowest) to T1 – 5 percentile (highest), progressing from right to left along each
curve. Precision and recall are plotted as a function of T2 for T1 values of 90 percentile and 50 percentiles.
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(Fig. S12). Using data from the 2D MS/MS spectrum of indi-
vidual peptides as the ‘ground truth’ (Fig. S11), we plotted the
precision-recall curve for the partitioning as a function of
different thresholds (Fig. 5B) to evaluate the effect of varying T1
and T2 for a relatively simple mixture with low noise. The
precision trend resembles those observed in the simulated data,
specically in the cases where the molecular ions of all peptides
in the mixture are identied (Fig. 3A and C). The recall peaked
at approximately 75% for the näıve method instead of 100%.
This difference can be attributed to signals present in the
individual spectra that are absent in the mixture spectrum,
resulting in the loss of precursor-product relationship infor-
mation among certain pairs of m/z values. Consequently, some
of the m/z values, despite belonging to specic peptides, could
not be linked to the molecular ion. The naive method achieved
an 80% precision, which is relatively high compared to themore
complicated mixtures of longer peptides observed in the
simulation. This observation is consistent with 20–25% of the
signals observed in the spectrum being products of multiple
peptides at once (shared nodes).

The threshold pair of the 50th percentile and 40th percentile
for the rst and second threshold (Fig. 5B), respectively, was
selected for partitioning and fragmentation tree construction,
as it maximizes both precision and recall. Isobaric ion occur-
rences (which increase in frequency for unit-resolution data),
however, cannot be distinguished in the absence of differenti-
ating fragments, a limitation best illustrated in the case of
SLIGKV-NH2 (Fig. S16). This challenge is inherent to CID frag-
mentation and low mass resolution and could be addressed by
combining different fragmentation methods or utilizing data of
higher resolution. Selected stairstep patterns for each peptide
in the mixture are shown and color-coded. These patterns were
© 2025 The Author(s). Published by the Royal Society of Chemistry
identied using the fragmentation trees resulting from the
graph partitioning algorithm (Fig. S12), while the ion type
annotations were determined using the sequencing algorithm
(Fig. S13–S17) and applied to the dataset in Fig. 5. Together with
previously discussed data, these results demonstrate that the
proposed data analysis framework enables the deconvolution of
complex unit-resolution 2D MS/MS spectra of peptide mixtures
and the reconstruction of their individual fragmentation trees.
Supported by the de novo sequencing algorithm, we were able to
recover the sequences of all ve peptides in the mixture using
the fragmentation trees recovered from the partitioning algo-
rithm. This highlights the potential for further development of
sequencing soware capable of elucidating longer and more
complex peptide sequences, with promising applications in
challenging tasks such as identifying and characterizing
unknown PTMs, higher-order structure determinations, as well
as drug-binding studies.
4 Conclusions

We propose a method that leverages the capabilities of 2D MS/
MS to preserve precursor-product ion relationships, along with
a data analysis framework designed to efficiently exploit this
information as an alternative approach to traditional MS-based
biopolymer analysis. In doing so, we demonstrate how certain
challenges associated with conventional 1D MS workows can
be circumvented. Specically, we show how this method can be
applied to structural analysis and de novo sequencing of peptide
mixtures. Our sequencing approach still relies on the ion types
most commonly observed under CID (b-, y-, and to a lesser
extent a-ions). The difference lies in how ion relationships are
established. Conventional de novo sequencing algorithms
Chem. Sci.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc03762j


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/1
6/

20
25

 8
:0

5:
51

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
typically infer connectivity from mass differences alone,
whereas our framework uses the explicit precursor-product
connectivity preserved in 2D MS/MS data. This enables us to
conrm whether two candidate ions are truly linked by a frag-
mentation event, providing an added layer of certainty. In
practice, this should reduce misassignments, mitigates noise
interference, and improve sequencing accuracy—particularly
valuable for unknown peptides that are not represented in
databases.

While 2D MS/MS ion trap instrumentation is still being
optimized to achieve the resolution and processing speed
required for modern proteomics applications, this method
holds signicant promise for studying biopolymer mixtures in
general, particularly for structural analysis tasks in synthesis,
functionalization, and degradation studies. Specically, the
graph-theory-based data analysis framework described here is
agnostic to mass analyzer – if equivalent precursor-product
maps are generated, for example, with FT-ICR 2D MS, data-
dependent acquisition (DDA) or data-independent acquisition
(DIA) with narrow isolation windows, the same graph-
partitioning and sequencing algorithms can be applied. Such
an implementation would extend the benets of high-
resolution methods to the 2D MS/MS framework and poten-
tially open more advanced applications of network analysis,
such as screening for unknown PTMs in terms of both types and
locations, or the automated identication of molecular ions
through graph partitioning algorithms. Furthermore, the core
of the de novo sequencing algorithm can be further enhanced by
integrating established sequencing soware and databases,
which would strengthen the graph partitioning and structural
analysis capabilities of the network analysis framework. This
method therefore provides a novel perspective on handling 2D
MS/MS data and highlights opportunities to rene and enhance
MS-based techniques for broader applications in biopolymer
structural studies.
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