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Journal Name

Predicting Competitive Anion Electrosorption on Late
Transition Metals†

Bolton Tran,∗ and Bryan R. Goldsmith

Investigating competitive anion electrosorption on transition metal surfaces is experimentally chal-
lenging but critical for advancing electrocatalytic and electrochemical engineering. Here, we present
a rigorous computational framework for predicting anion adsorption as a function of the applied
potential by combining grand canonical density functional theory (GC-DFT) with thermodynamic
cycles. This approach is validated against experimental voltammograms on Pt(111) and applied to
a diverse set of anions on late transition metals. Using multiple linear regression with feature impor-
tance analysis, we identify physical descriptors governing electrosorption including anion properties
such as formal charge and dipole moment, and metal properties such as d-band center and atomic
polarizability. We then develop a potential-dependent Langmuir adsorption model to predict com-
petitive anion coverages under realistic electrochemical conditions. Case studies using the Langmuir
model demonstrate the impact of electrolyte composition and pH on anion electrosorption trends
relevant to electrocatalytic reactions such as nitrate, oxygen, and carbon dioxide reduction. Overall,
this study provides a systematic and predictive framework for understanding anion electrosorption
phenomena, offering insights for electrode/catalyst and electrolyte design in electrochemistry and
electrocatalysis.

1 Introduction
Realistic electrochemical and electrocatalytic systems often in-
volve multiple anions in the electrolyte. First, supporting anions
are commonly used. Weakly adsorbing anions such as F– and
ClO –

4 are used in impedance spectroscopic measurements of the
electrochemical double layer.1–4 Buffering anions such as HCO –

3 ,
HSO –

4 , and H2PO –
4 (and their acid-base conjugates) are used to

mitigate pH change during reactions.5–8 Second, anions can be
purposefully introduced to influence the activity and selectivity
of electrocatalytic reactions, such as halides in CO2 electroreduc-
tion.9–11 Third, contaminating anions are often present such as in
electrocatalytic treatment of nitrate-laden water, which involve
NO –

3 electroreduction in the presence of Cl– , SO 2 –
4 , HCO –

3 ,
PO 3 –

4 as co-contaminants.12–17 Lastly, anion formation is ubiqui-
tous during acid-base reactions (e.g., OH– is spontaneously pro-
duced from water dissociation in alkaline aqueous electrolytes).

Anions can competitively electrosorb—i.e., specifically adsorb
with electron transfer—to the electrode surface, affecting sur-
face chemistry and catalysis. Adsorbed anions can directly in-
fluence charge-transfer kinetics,18 modulate the co-adsorption of

University of Michigan, Ann Arbor, MI 48109, USA. E-mail: hoangtra@umich.edu
† Supplementary Information available: GC-DFT calculation details; model sensi-
tivity tests; derivation of thermodynamic cycles; extraction of experimental data;
dataset and feature details; symbolic regression model; additional MLR model re-
sults; and Langmuir model derivation. See DOI: 00.0000/00000000.

reaction intermediates,9,10 or block catalytic active sites.13–17 Be-
cause anions adsorb with electron transfer, the applied potentials
affect their adsorption free energies. Therefore, knowledge of an-
ion electrosorption varying with applied potential is critical for
electrochemical and electrocatalytic engineering.

Detecting multiple anions electrosorbing competitively is ex-
perimentally difficult. Electroanalytical voltammetry can infer
anion electrosorption from electrical currents measured at cer-
tain potential windows where the anions adsorb and transfer
electrons.19–30 Challenges with identifying electrosorbed anions
arise if the anion has multiple conjugates that co-exist (e.g.,
H2PO –

4 and HPO 2 –
4 ),24,26 or if the potential windows for ad-

sorption overlap with those of other anions or charge-transfer re-
actions.27,29 In some cases, in-situ spectroscopic techniques can
aid in species identification given discernible vibrational signals
from the adsorbed anion,5,7,31 which is not applicable for many
anions such as halides.

Density Functional Theory (DFT) calculations have been used
to fill some knowledge gaps in specific anion electrosorption.
DFT modeling helped identify which anion conjugates domi-
nantly electrosorb on Pt(111) such as H2PO –

4 versus HPO 2 –
4 ,

or HSO –
4 versus SO 2 –

4 .32–34 DFT calculations of halides elec-
trosorbing on Ag(111) at different coverages reproduced the
broad features of experimental voltammograms.35 DFT also pre-
dicted the active-site blocking effects of ClO –

4 , NO –
3 , and

HSO –
4 /SO 2 –

4 on the activity of oxygen oxidation/reduction on
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Pt(111).36 However, past computational studies lacked the sys-
tematic and quantitative validation with experiments, as well as
the identification of physical descriptors for anion electrosorption
across transition metal surfaces.

In addition, many DFT studies used outdated methodolo-
gies for computing anion electrosorption free energies. First,
the widely used Computational Hydrogen Electrode (CHE)
method37,38 is an incomplete physical model of electrosorption.
The model assumes that anions always fully transfer their elec-
trons upon adsorption, that is, the electrosorption valency equals
to the formal charge of the anions. For example, a CHE com-
putation of SO 2 –

4 adsorbing on Pt(111) automatically yields an
electrosorption valency of −2.0 e.36 Yet, experimental voltamme-
try suggests the value to be around −1.8 e.24 That means SO 2 –

4
does not fully transfer its excess electrons but retains about 0.20
e upon adsorption to Pt(111). There are corrections to the CHE
model in the form of higher-order expansions within a grand-
canonical thermodynamic formalism, as well as incorporation of
solvation and double-layer electrostatics.39,40 These corrections
are important to correctly describe anion adsorption free energies
as a function of the applied potential.

Second, the computation of anion adsorption free energies re-
quires additional thermodynamic treatment to avoid systematic
DFT errors for the anion aqueous-phase free energies. This treat-
ment entails using a neutral gas-phase species as the free energy
reference state by establishing a thermodynamic cycle.14,41 Nev-
ertheless, many recent studies still used DFT-computed energies
of aqueous-phase anions as the reference states, which greatly
overestimates the adsorption free energies.42–44

Herein, we seek to 1) improve the rigor of DFT atomistic mod-
eling for anion electrosorption; 2) solidify existing physical un-
derstanding of anion electrosorption on transition metals; 3) de-
velop a screening tool for the potential-dependent coverages of
adsorbed anions on metal surfaces.

This work is organized accordingly. Section 2 outlines the com-
putational approach using grand canonical DFT (GC-DFT) with
thermodynamic cycles for predicting anion electrosorption, val-
idated against experimental voltammograms on Pt(111). Sec-
tion 3 presents a data-driven method to identify physical descrip-
tors for anion electrosorption on transition metals. Section 4
demonstrates the prediction of anion surface coverages through a
potential-dependent Langmuir model with case studies.

2 GC-DFT and Thermodynamic Cycles
The GC-DFT approach is used to compute the potential-
dependent adsorption grand free energies of anions. At a target
applied potential U (set in the SHE scales throughout this work),
GC-DFT computes the grand free energy Ω from the Helmholtz
free energy at some excess number of electrons ne that satisfy a
target Fermi energy εF of the electrode surface (Eqn. 1).45–47

Ω = E0 +EZPE −T Svib − εF ×ne (1)

The Helmholtz free energy is approximated as the ground-state
energy E0 plus vibrational zero-point energy (EZPE) and entropic
corrections (T Svib). The CANDLE implicit electrolyte model was

Fig. 1 Thermodynamic cycles for computing anion adsorption free en-
ergy ∆Ωad(U).
(A) Protonation path: A−/HA is an acid-base conjugate pair. For ex-
ample, A− is CH3COO– and HA is CH3COOH. ∆G1 is computed from
experimental pKa and Henry’s constant.
(B) Redox path example: A−/B is a redox conjugate pair. For example,
A− is HSO –

4 and B is SO2. ∆Ω3(U) is computed at varying U from the
standard redox potential.
∆Ω2(U) and ∆Ω4(U) are computed with GC-DFT at varying applied po-
tential U . The proton-electron pair is referenced to hydrogen gas at SHE
potential scales.

used to solvate the surface and provide counter-charges.48 Spe-
cific DFT details are given in section S1.1 and Fig. S1 in the ESI†.
To avoid erroneous DFT-computed free energy of aqueous-phase
anions, thermodynamic cycles were employed.

The thermodynamic cycles establish equilibria between aque-
ous anions with neutral gas-phase species through a protonation
path or a redox path (Fig. 1). The protonation path applies
when the anions have neutral acid conjugates with known ex-
perimental values of standard Gibbs free energy of acid dissocia-
tion (i.e., pKa) and Gibbs free energy of hydration (i.e., Henry’s
constant), which add up to ∆G1 in Fig. 1A. Applicable anions
for the protonation path include NO –

3 , RCOO– , HCO –
3 /CO 2 –

3 ,
HSO –

3 /SO 2 –
3 , and ClO –

4 . This thermodynamic path was previ-
ously applied for NO –

3 electrosorption.14,49

When anions have no stable neutral acid conjugate, a re-
dox path could be applicable if they instead have stable re-
duced/oxidized conjugates in the gas phase. This is the case
for F– /Cl– /Br– (halides) which have F2/Cl2/Br2 (halogens),
HSO –

4 /SO 2 –
4 which have SO2, and H2PO –

4 /HPO 2 –
4 /PO 3 –

4
which have PH3. Tabulated experimental standard redox poten-
tials for those redox pairs50 are used to compute ∆Ω3 in Fig. 1B
at a given applied potential U . This path was previously applied
for halides and SO 2 –

4 electrosorption.41

Since aqueous electrochemical systems inevitably involve the
electrosorption of protons, we also compute the potential-
dependent adsorption free energy of H+. The thermodynamic cy-
cle for proton electrosorption follow the classic CHE model, which
involves a redox path from H+ to H2.

2 | 1–9Journal Name, [year], [vol.],
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Fig. 2 Adsorption grand free energy (∆Ωad) versus applied potential (U
in SHE scale) for SO 2–

4 , HCO –
3 , and CH3COO– adsorbed on Pt(111).

The labeled slopes and x-intercept of fitted linear lines represent γ (unit
e) and U0 (unit V ), respectively.

The thermodynamic cycles-derived formulas for potential-
dependent adsorption free energies ∆Ωad(U) differ in complex-
ity across anions. We dedicated section S1.2 and Fig. S2-S6 in
the ESI† detailing the thermodynamic derivation for each anion
considered in this work.

To simplify and standardize the description of potential-
dependent adsorption across many anions and metals, we ex-
tracted two key parameters for each anion-metal pair: the elec-
trosorption valency γ and the standard equilibrium adsorption
potential U0. The parameters were extracted from linear fitting
∆Ωad(U) at three discrete applied potentials. We picked +0.8,
+0.4, and 0.0 V potentials to span the common working range
of electrocatalytic experiments. We intentionally omit more neg-
ative potentials which incur weak anion binding, and more pos-
itive potentials which incur surface oxidation. The electrosorp-
tion valency—signifying the partial electron transfer as anion
adsorbs—is not assumed to be an integer as in the CHE model,
i.e., not strictly equal to the anion formal charges. Instead, it was
computed explicitly as the slope of ∆Ωad versus U (Fig. 2). The
standard equilibrium adsorption potential is the potential where
∆Ωad(U) is zero, i.e., where equilibrium is established between
adsorbed anions at some coverage with solution-phase anions at
a standard concentration of 1 M. The coverage of adsorbed anions
is approximated by a Langmuir model, where adsorption sites are
identical and lateral interaction is omitted. The 1 M standard
concentration follows the electrochemical series convention.50

Fig. 2 shows examples of ∆Ωad(U) computed for three anions,
and the extracted γ and U0 values. The goodness of linear fitting
for ∆Ωad(U) is presented in Table S2 in the ESI†.

To validate our theoretical calculations, we compared U0 and
γ with experimental voltammograms of different anions (and of
proton) electrosorbing on Pt(111) single crystals.20,22–25,27,28,30

Details of experimental data extraction for each anion are pre-
sented in section S2 and Table S3 in the ESI†. Fig. 3 shows good
agreement between our theoretical calculations and the experi-
mental values, with root mean squared error (RMSE) of 0.12 V
for U0 and 0.21 e for γ.

Fig. 3 Parity plots of (A) U0 and (B) γ extracted from experimental
voltammograms on Pt(111) surfaces versus obtained from GC-DFT the-
oretical calculations.

The validation result is sensitive to the employed DFT func-
tional, implicit electrolyte parameters, and inclusion of micro-
solvation. Sensitivity analysis (section S1.3.5 and Fig. S10 in
the ESI†) revealed that the PBE-D3 functional51,52 agreed much
better (lower RMSE) with experimental data compared to the
RPBE functional53. The computed U0 and γ are not as sensitive
to the dielectric constant used in the implicit electrolyte. Micro-
solvation54 may affect U0 based on the exact placement of the
explicit water molecule (Fig. S11 in the ESI†).

This experimental validation essentially assumes a coverage-
independent adsorption of anions. Specifically, we modeled anion
coverages at 1/9, 2/9, or 3/9 fractional monolayer (unit mono-
layer corresponds to fully covered sites) for anions occupying one,
two, or three Pt(111) atop sites, respectively. In voltammetry
experiments, the coverages of anion on Pt(111) vary across the
potential range where electrosorption occurs. Therefore, the ex-
perimental coverages at the equilibrium potential are specific to
the anion, and likely at odds with the coverages used in our DFT
model. This assumption is carried on to the Langmuir adsorption
model used in Section 4, and partially justified at low coverages
(see section S1.3.3 and Fig. S8 in the ESI†).
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Fig. 4 (A) Sequential forward selection applied to the γ−MLR model, yielding four as the optimal number of features (dotted vertical line) where
RMSE and R2 no longer improves significantly with more features. (B) Histograms to count the most occurring features from 50 iterations of training
the γ−MLR model with four features on different 80:20 train-test splits. (C) Parity plot for the final γ−MLR model trained on the four most occurring
features. 5-fold cross validation metrics (RMSE and R2) are shown as averages with standard errors in brackets. (D) Dataset matrix with electrosorption
valency (γ) values computed from GC-DFT (solid fill) or from the optimized γ−MLR model (diagonal hatch). The matrix is ordered by increasing µz
for the anions and εd for the metals, following the arrow directions.

3 Physical Descriptors for Anion Electrosorption

Following the validation of our GC-DFT and thermodynamic
model, we seek to identify the physical descriptors of anion elec-
trosorption on late transition metal surfaces using a data-driven
approach. Past computational work examined a limited set of an-
ions and metal surfaces32–36,41 because in experiments, only a
few transition metals (e.g., Pt, Cu, Ag, and Au) could possibly
retain metallic forms under oxidizing potentials where anions ad-
sorb favorably. Here, we ignore electrochemical stability or direct
comparison with experiments, and instead sample as many tran-
sition metals and anions as we could to search for the descriptors
that encode anion electrosorption (i.e., U0 and γ). That means
expanding our dataset beyond electrochemically stable metals to
include metals like Ni, Co, and Ir—known to electrochemically
form oxides spontaneously.55–57 We model only the (111) facet,
which effectively omit contributions from surface morphology.

Our dataset labels include the values of U0 and γ—computed
using GC-DFT and thermodynamic cycles—for n = 107 combina-
tions of 27 anions on 9 late transition metals. Since Pt is still
the most widely used metal in controlled electrochemical exper-

iments, the dataset is skewed toward Pt, which have data for all
27 anions. The other 8 metals (Co, Ni, Cu, Rh, Pd, Ag, Ir, and Au)
only have data for 11 anions each, selected to include each of the
different anion types (i.e., phosphate, sulfate, carbonate, nitrate,
carboxylate, and halide).

We employed a multiple linear regression (MLR) model58—
i.e., a weighted linear combination of the feature values plus a
bias—trained on the physical features of anions and metals. This
relatively simple model allows for easy identification and inter-
pretation of important features. A symbolic regression model
SISSO59, while having greater model complexity by including
non-linear operators (×÷), showed no appreciable improvement
in prediction accuracy and interpretability to the MLR model (see
section S4 and Fig. S12 in the ESI†). Two separate MLR mod-
els were trained, one for predicting the electrosorption valency
(γ−MLR) and one for predicting the standard equilibrium adsorp-
tion potential (U0−MLR).

From an initial set of 11 anion features and 11 metal features
(Table S4†), we used feature correlation matrix (Fig. S11†) to
remove highly correlated features. Specifically, we removed any
feature that have an R2 higher than 0.8 with another feature. We
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Table 1 Symbols, coefficient signs (+/−), and description of the identified descriptors for predicting γ and U0 with MLR models.

Target Anion/Metal Symbol (+/−) Feature description

γ

Anion
z (+) Anion formal charge

µz (+) Surface-normal dipole moment in adsorbed state

Metal
εF (+) Fermi energy of (111) slab in implicit electrolyte

εd (−) d-band center

U0

Anion

Ea0
HOMO (−) HOMO energy of anion in radical form

Ea1
EA (+) Electron affinity to create −1 charge

∆Edis
H (+) Energy of homolytic proton dissociation

Metal

Em
EA (+) Atomic electron affinity

α
1/3
m (−) Cubic root of atomic polarizability

rvdw (+) Atomic VdW radius

prioritized retaining features that are more physically/chemically
interpretable (e.g., HOMO energy of anion in radical form over
that in protonated form, because anion adsorbs in radical form)
and more accessible (e.g., tabulated metal atomic van der Waals
radius over the DFT-computed d-band width). After this step, six
anion features and six metal features remained.

Next, we performed sequential forward selection (SFS) to fur-
ther optimize the number of features while avoiding overfitting.
The SFS algorithm starts by looping through the features to find
one that yields the lowest RMSE when evaluated on the test
set of an 80:20 train-test split. The algorithm then adds to the
model a second feature that yields the lowest RMSE, and keeps
sequentially adding more features using similar criteria after-
wards. Fig. 4A shows the RMSE going down and the R2 for label-
prediction parity going up as the number of features increases
for the γ−MLR model. The dataset was bootstrapped over 50
iterations of different 80:20 train-test splits to obtain small sta-
tistical error bars in Fig. 4A . While no overfitting is apparent
(when training RMSE goes down while test RMSE goes up with
the number of features), we selected four as the optimal num-
ber of features for the γ−MLR model, since the RMSE and R2 no
longer improve significantly with more features.

Bootstrapping data in the SFS algorithm furthermore allows for
counting the top occurring features for the γ−MLR model (Fig.
4B). We picked the four most occurring features to be the de-
scriptors that encode the electrosorption valency γ. A final 5-fold
cross validation was performed on the γ−MLR model with these
four top-occurring features (Fig. 4C), yielding test-set RMSE of
0.12 ± 0.01 e and R2 of 0.90 ± 0.02.

The same SFS workflow was applied to a separate U0−MLR
model for predicting the standard equilibrium adsorption poten-
tial (Fig. S13 in the ESI†). The optimal number of features for
predicting U0 was six. A 5-fold cross validation performed on the
final Uo−MLR model yielded test-set RMSE of 0.21 ± 0.02 V and
R2 of 0.75 ± 0.05.

Table 1 layouts the identified descriptors for γ and U0. Co-
incidentally, the descriptors for γ and U0 do not overlap, and

there are equal numbers of anion descriptors and metal descrip-
tors for each quantity. The coefficient signs +/− indicate corre-
lation/anticorrelation between the features and the labels. The
final MLR equations for γ and U0 are shown in section S5.3 in
the ESI†. Next, we briefly discuss how the identified descriptors
physically associate with γ and U0.

The descriptors of electrosorption valency γ are related to the
electron transfer when anion adsorb. First, γ positively correlates
with anions’ formal charges z and molecular dipole in adsorbed
state µz. This indicates that more electron transfer (more neg-
ative γ) corresponds with anions having more negative formal
charges (e.g., SO 2 –

4 over HSO –
4 ) and smaller molecular dipoles

in the adsorbed state (Fig. 4D). The relationship between adsor-
bate dipole moment and charge-transfer has been established in
past work.60–64 Second, γ positively correlates with the Fermi en-
ergy εF of the metal, indicating that metals with more stable elec-
trons (more negative εF ) allow for more electrons transferring
from the adsorbed anions (more negative γ). Third, γ negatively
correlates with the d-band center εd of the metal, suggesting less
filled d-bands (more positive εd) accept more electrons from the
adsorbed anions (more negative γ).64

By partitioning γ with respect to the anion formal charges z
(Fig. S14†), we also observed that anions with more negative z re-
tain more negative partial charges when they adsorb. Specifically,
mono-, di-, and tri-valent anions retain on average 0e, −0.5e, and
−1e partial charges, respectively. Therefore, the CHE model as-
sumption that anions transfer all of its excess electrons upon ad-
sorption would be especially wrong for divalent/trivalent anions.

The descriptors for standard equilibrium adsorption potential
U0 encode the binding strength of anions to the metal surfaces.
The most intuitive anion descriptor is the energy of homolytic pro-
ton dissociation, where a more negative ∆Edis

H —harder to break
the anion-proton bond—correlates with a more negative U0—
more negative bias needed to desorb the anion from the sur-
face, both suggesting anions’ strong tendency to form covalent
bonds.30,34 For metals, the atomic VdW radii and atomic polariz-
ability may encode the short-range repulsion and dispersion.65,66
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Fig. 5 Potential-dependent Langmuir isotherms for four case studies:
(A) Pt(111), pH 1, 100 mM ClO –

4 , 10 mM NO –
3 (left) or 10 mM NO –

2 (right).
(B) Cu(111), pH 1, 100 mM ClO –

4 , 50 mM NO –
3 (left) or 50 mM NO –

3 & 10 mM Cl– (right).
(C) Pt(111), 100 mM SO 2–

4 /HSO –
4 , pH 1 (left) or pH 5 (right).

(D) pH 8.3, 100mM CO 2–
3 /HCO –

3 on Cu(111) (left) or 500mM CO 2–
3 /HCO –

3 on Au(111) (right).

4 Potential-Dependent Langmuir Isotherms
To quickly inform the electrode/electrolyte/pH design in elec-
trocatalytic experiments, we constructed a potential-dependent
Langmuir model to predict the competitive anion adsorption on
metal surfaces at different applied potentials. The idea is that for
any given set of anions with defined bulk concentrations, solution
pH, and transition metal electrode, the model could predict the
relative coverages of electrosorbed anions (and the protons) at
varying applied potentials.

The model establishes adsorption equilibria at each applied po-
tential between solution-phase anions and adsorbed anions, and
acid-base equilibria between solution-phase anions and their con-
jugates, but not redox equilibria between redox pairs. That is,
this Langmuir model predicts the surface coverages of anions at a
timescale where redox kinetics (i.e., charge-transfer reaction) are
much slower than adsorption kinetics and acid-base kinetics.67,68

In brief, the Langmuir isotherms are computed by solving two
systems of equations. The first linear equations system solves
the acid-base equilibria for the solution-phase concentration of
each conjugate, which require pH and total acid concentration as
input constants. The second non-linear equation system solves
the potential-dependent Langmuir adsorption equilibria for the
surface coverage of each anion, which require the γ and U0 val-
ues for each anion-metal pair as computed using the GC-DFT and
thermodynamic cycle method. A full derivation for this potential-
dependent Langmuir model is outlined in section S6 of the ESI†.

A Langmuir adsorption model makes inherent assumptions.
First, it assumes no adsorbate-adsorbate interactions. Second, it
uses a mean-field approximation of adsorption sites, which means
the absolute coverages can be up to 1.0, i.e., all the sites are fully
covered. A molecular picture of anion adsorption on (111) facets

does not quite allow for a fully covered surface for many anions.
Therefore, the coverages should be interpreted in relative terms
between the adsorbed species.

Fig. 5 presents the potential-dependent Langmuir isotherms
(i.e., surface coverage θi of anion i vs. applied potential U in
SHE scales) for four case studies. While containing no infor-
mation about reaction mechanisms and kinetics, these isotherms
can indirectly inform about the feasibility of surface reactions
through observing the adsorption of poisoning anions, or the co-
adsorption of reactants at certain potential windows.

In the first case study (Fig. 5A), we corroborate experimen-
tal results for the electrocatalytic reduction of NO –

3 and NO –
2

on Pt. At an onset potential of 0.2 V on a Pt(111) catalyst, da
Silva and co-workers observed the reductive current of NO –

2 to
be almost an order of magnitude larger than that of NO –

3 .29 Our
Langmuir isotherms at the same experimental conditions (pH and
anion concentrations) predict the coverage of NO –

3 (Fig. 5A left)
to drop at a more positive potential than that of NO –

2 (Fig. 5A
right). Furthermore, only the adsorption of NO –

2 greatly over-
laps with the adsorption of protons (H+) near 0.2 V, where reduc-
tive current onsets. The co-adsorption of H+ with NO –

2 (which
is absent for NO –

3 ) potentially facilitates hydrogenation elemen-
tary steps involved in the catalytic reduction mechanism.14,29

The poor catalytic performance of Pt for NO –
3 reduction (NRR)

relative to other metal catalysts (e.g., Cu or Rh) is generally
known and attributed to the weaker binding of NO –

3 on Pt.14,69

From the identified descriptors (Table 1), one may partially ex-
plain this adsorption and catalysis trend by seeing that Pt has a
higher atomic VdW radius (2.14 Å) than Cu (1.96 Å) and Rh (2.10
Å), leading to stronger repulsion against adsorbed NO –

3 .

In the second case study (Fig. 5B), we examine the poisoning
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effect of Cl– on Cu-catalyzed NRR. Butcher and Gewirth observed
an onset potential for NRR on Cu(111) at about 0.2 V, which then
shifted to −0.2 V in the presence of Cl– anion.70 They attributed
this to Cl– competitively adsorbing and poisoning adsorption sites
for NO –

3 . The Langmuir isotherms at the same experimental con-
ditions show co-adsorption of NO –

3 and H+ near the NRR onset
potential of 0.2 V (Fig. 5B left), at which adsorbed Cl– would
then effectively poison the active sites (Fig. 5B right). However,
the model fails to explain how NRR still takes place at −0.2 V,
where it predicts that proton H+ completely displaces adsorbed
Cl– and no NO –

3 adsorbs. One possible explanation is that some
form of non-Langmuir adsorption might have taken place (e.g.,
co-adsorbates interact and form clusters/islands), allowing for
NO –

3 to still adsorb and reduce at −0.2 V where Cl– poison has
been alleviated.

In the third case study (Fig. 5C), we demonstrate how increases
in pH can potentially alleviate SO 2 –

4 poisoning for Pt-catalyzed
oxygen reduction reaction (ORR). Experiments by Kamat and co-
workers found that SO 2 –

4 decreases the ORR current density on
a Pt disk at a pH of 1 below the onset potential at about 0.8-0.9
V.36 They attributed the lowered activity to SO 2 –

4 adsorb com-
petitively with OH– , which is a reaction intermediate for ORR. At
the same pH of 1, the model consistently predicts SO 2 –

4 to dom-
inate the adsorption sites below 0.8 V (Fig. 5C left). A higher
solution pH of 5 increases the abundance of solution-phase OH–

anion, at which the model predicts OH– to out-competes and dis-
places SO 2 –

4 on the surface (Fig. 5C right).

In the fourth and final case study (Fig. 5D), we examine the
adsorption of HCO –

3 and CO 2 –
3 during CO2 reduction reaction

(CO2RR) on Cu and Au catalysts. On Cu, Zhu and co-workers
found vibrational signals of adsorbed HCO –

3 /CO 2 –
3 (1544-1517

cm−1) disappearing while scanning applied potentials from 0.6
V to 0.1 V.7 On Au, Dunwell and co-workers found the same vi-
brational modes (∼1460 cm−1) disappearing while scanning po-
tentials from 1.5 V to 0.8 V.5 They respectively observed slight
blue-shifts in frequency at 0.3 V on Cu and 1.0 V on Au, which
earlier work attributed to adsorbed HCO –

3 displacing adsorbed
CO 2 –

3 .28 Consistent with above spectroscopic evidences, our
isotherms predict the coverage of HCO –

3 increases as coverage
of CO 2 –

3 decreases at about 0.3 V on Cu(111) (Fig. 5D left) and
0.9 V on Au(111) (Fig. 5D right).

In the catalytic context of CO2RR, the isotherms are also consis-
tent with the different product selectivity on Cu and Au. It is well
known that Cu reduces CO2 to hydrogenated products (e.g., CH4,
CH3OH) while Au reduces CO2 to CO.71,72 Furthermore, Zhu and
Dunwell found vibrational signals of CO intermediate appearing
at potentials coinciding with when HCO –

3 desorbs, i.e., below
0.0 V on Cu, and below 0.8 V on Au.5,7 On Cu, the isotherms
predict protons to adsorb at about 0.0 V (Fig. 5D left). Under
the assumption that CO indeed adsorbs on Cu also at 0.0 V, the
overlap in coverages of protons and CO is conducive to the hydro-
genation of CO. Conversely on Au, the isotherms predict protons
to only adsorb at potentials well below where CO adsorbs suppos-
edly at 0.8 V (Fig. 5D left), which is consistent with the lack of
hydrogenated products.

5 Conclusion

While inferring competitive anion electrosorption is challenging
in experiments, DFT can provide helpful predictions given rig-
orous model construction and validation. We presented here a
grand-canonical DFT approach used in conjunction with ther-
modynamic cycles to account for the applied potentials and the
free energy of solution-phase anions. We validated the model
against experimental voltammograms of Pt(111) with different
electrolytic anions. This computational approach can be trans-
ferrable to study anion electrosorption on more complex elec-
trodes/catalysts such as oxides, alloys, and single-atom catalysts.

We applied the multiple linear regression (MLR) models on
a diverse dataset of anions electrosorbing on transition metal
(111) surfaces to identify physical descriptors encoding the elec-
trosorption valency and the standard equilibrium adsorption po-
tential. We recovered the association of adsorbate dipole mo-
ment and metal d-band with the electrosorption valency, as well
as adsorbate-metal covalent binding strength with the standard
equilibrium adsorption potential. Furthermore, our dataset of
(111) facets of late transition metals and small anions provides
a controlled benchmark to explore for similar/deviating physical
descriptors for electrosorption on more complex catalyst materi-
als, surface facets, or with bulky organic anions and cations elec-
trosorbing.

We constructed a potential-dependent Langmuir model and
showcased how information about the (in)feasibility of electro-
catalytic reactions could be derived through case studies. This
adsorption model can be further expanded to electrocatalytic ma-
terials more complex than single-crystal transition metals by ac-
counting for multiple sites (facets, reconstructed/oxidized sur-
faces) and coverage-dependent adsorption.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data supporting this article have been included as
part of the Electronic Supplementary Information†. Opti-
mized structures, DFT files, data tables, and Python codes
for analysis are available in an open-access repository at
https://doi.org/10.5281/zenodo.16619520.

Acknowledgements

We acknowledge the W. M. Keck Foundation for financial support.
Goldsmith also acknowledges NSF CAREER 2236138 for financial
support. This work used Bridges-2 at the Pittsburgh Supercom-
puting Center through allocation CHM240033 from the Advanced
Cyberinfrastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by National Science Foun-
dation grants #2138259, #2138286, #2138307, #2137603, and
#2138296.
We thank Prof. Ian McCrum for the helpful discussion about ex-
tracting anion adsorption potentials from cyclic voltammetry ex-
periments.

Journal Name, [year], [vol.],1–9 | 7

Page 7 of 10 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/2

9/
20

25
 2

:3
1:

49
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5SC03757C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc03757c


Notes and references

1 D. C. Grahame, Journal of the American Chemical Society,
1954, 76, 4819–4823.

2 G. Valette, Journal of Electroanalytical Chemistry, 1982, 138,
37–54.

3 T. Pajkossy, T. Wandlowski and D. M. Kolb, Journal of Electro-
analytical Chemistry, 1996, 414, 209–220.

4 T. Pajkossy and D. Kolb, Electrochimica Acta, 2001, 46, 3063–
3071.

5 M. Dunwell, Q. Lu, J. M. Heyes, J. Rosen, J. G. Chen, Y. Yan,
F. Jiao and B. Xu, Journal of the American Chemical Society,
2017, 139, 3774–3783.

6 A. Wuttig, Y. Yoon, J. Ryu and Y. Surendranath, Journal of the
American Chemical Society, 2017, 139, 17109–17113.

7 S. Zhu, B. Jiang, W. B. Cai and M. Shao, Journal of the Ameri-
can Chemical Society, 2017, 139, 15664–15667.

8 J. Resasco, Y. Lum, E. Clark, J. Z. Zeledon and A. T. Bell,
ChemElectroChem, 2018, 5, 1064–1072.

9 M. Cho, J. T. Song, S. Back, Y. Jung and J. Oh, ACS Catalysis,
2018, 8, 1178–1185.

10 Y. Huang, C. W. Ong and B. S. Yeo, ChemSusChem, 2018, 11,
3299–3306.

11 W. Chen, L. L. Zhang, Z. Wei, M. K. Zhang, J. Cai and Y. X.
Chen, Physical Chemistry Chemical Physics, 2023, 25, 8317–
8330.

12 C. Su and R. W. Puls, Environmental Science and Technology,
2004, 38, 2715–2720.

13 Y. Wang, J. Qu and H. Liu, Journal of Molecular Catalysis A:
Chemical, 2007, 272, 31–37.

14 D. Richards, S. D. Young, B. R. Goldsmith and N. Singh, Catal-
ysis Science and Technology, 2021, 11, 7331–7346.

15 D. González, J. Baeza, L. Calvo and M. Gilarranz, Journal of
CO2 Utilization, 2023, 72, 102494.

16 N. A. Sacco, F. M. Zoppas, T. F. Beltrame, E. E. Miró and
F. A. Marchesini, Environmental Science and Pollution Re-
search, 2023, 30, 37462–37474.

17 J. Fan, L. K. Arrazolo, J. Du, H. Xu, S. Fang, Y. Liu, Z. Wu,
J. H. Kim and X. Wu, Environmental Science and Technology,
2024, 58, 12823–12845.

18 H. Agarwal, J. Florian, B. R. Goldsmith and N. Singh, Cell
Reports Physical Science, 2021, 2, 100307.

19 E. Herrero, J. Mostany, J. M. Feliu and J. Lipkowski, Journal
of Electroanalytical Chemistry, 2002, 534, 79–89.

20 J. Mostany, E. Herrero, J. M. Feliu and J. Lipkowski, Journal
of Electroanalytical Chemistry, 2003, 558, 19–24.

21 A. Berna, A. Rodes, J. M. Feliu, F. Illas, A. Gil, A. Clotet
and J. M. Ricart, Journal of Physical Chemistry B, 2004, 108,
17928–17939.

22 N. Garcia-Araez, V. Climent, E. Herrero, J. Feliu and J. Lip-
kowski, Journal of Electroanalytical Chemistry, 2005, 576, 33–
41.

23 N. Garcia-Araez, V. Climent, E. Herrero, J. Feliu and J. Lip-
kowski, Journal of Electroanalytical Chemistry, 2006, 591,

149–158.
24 N. Garcia-Araez, V. Climent, P. Rodriguez and J. M. Feliu, Elec-

trochimica Acta, 2008, 53, 6793–6806.
25 J. Mostany, P. Martínez, V. Climent, E. Herrero and J. M. Feliu,

Electrochimica Acta, 2009, 54, 5836–5843.
26 R. Gisbert, G. García and M. T. Koper, Electrochimica Acta,

2010, 55, 7961–7968.
27 G. A. Attard, A. Brew, K. Hunter, J. Sharman and E. Wright,

Physical Chemistry Chemical Physics, 2014, 16, 13689–13698.
28 R. Martínez-Hincapié, A. Berná, A. Rodes, V. Climent and

J. M. Feliu, Journal of Physical Chemistry C, 2016, 120,
16191–16199.

29 K. N. da Silva, G. Soffiati, E. Z. da Silva, M. A. San-Miguel and
E. Sitta, New Journal of Chemistry, 2022, 46, 12132–12138.

30 M. H. Hasan and I. T. McCrum, Angewandte Chemie Interna-
tional Edition, 2024, 63, e202313580.

31 Z. Su, V. Climent, J. Leitch, V. Zamlynny, J. M. Feliu and
J. Lipkowski, Physical Chemistry Chemical Physics, 2010, 12,
15231–15239.

32 I. S. P. Savizi and M. J. Janik, Electrochimica Acta, 2011, 56,
3996–4006.

33 R. Jinnouchi, T. Hatanaka, Y. Morimoto and M. Osawa, Phys-
ical Chemistry Chemical Physics, 2012, 14, 3208–3217.

34 K. Y. Yeh, N. A. Restaino, M. R. Esopi, J. K. Maranas and M. J.
Janik, Catalysis Today, 2013, 202, 20–35.

35 N. G. Hörmann and K. Reuter, Journal of Chemical Theory and
Computation, 2021, 17, 1782–1794.

36 G. A. Kamat, J. A. Zamora Zeledón, G. T. K. Gunasooriya,
S. M. Dull, J. T. Perryman, J. K. Nørskov, M. B. Stevens and
T. F. Jaramillo, Communications Chemistry, 2022, 5, 1–10.

37 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R.
Kitchin, T. Bligaard and H. Jónsson, Journal of Physical Chem-
istry B, 2004, 108, 17886–17892.

38 K. Chan and J. K. Nørskov, The Journal of Physical Chemistry
Letters, 2015, 6, 2663–2668.

39 N. G. Hörmann, N. Marzari and K. Reuter, npj Computational
Materials, 2020, 6, 136.

40 N. Agrawal, A. J. W. Wong, S. Maheshwari and M. J. Janik,
Journal of Catalysis, 2024, 430, 115360.

41 L. P. Granda-Marulanda, I. T. McCrum and M. T. M. Koper,
Journal of Physics: Condensed Matter, 2021, 33, 204001.

42 H. Jing, J. Long, H. Li, X. Fu and J. Xiao, Chinese Journal of
Catalysis, 2023, 48, 205–213.

43 F. Wang, H. Zhao, G. Zhang, H. Zhang, X. Han and K. Chu,
Advanced Functional Materials, 2024, 34, 2308072.

44 Q. L. Hong, W. Zhong, K. Y. He, B. Sun, X. Ai, X. Xiao, Y. Chen
and B. Yu Xia, Advanced Sustainable Systems, 2024, 2400542,
2–9.

45 R. Sundararaman, W. A. Goddard and T. A. Arias, The Journal
of Chemical Physics, 2017, 146, 114104.

46 N. G. Hörmann, O. Andreussi and N. Marzari, The Journal of
Chemical Physics, 2019, 150, 041730.

47 W. A. Goddard and J. Song, Topics in Catalysis, 2023, 66,
1171–1177.

8 | 1–9Journal Name, [year], [vol.],

Page 8 of 10Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/2

9/
20

25
 2

:3
1:

49
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5SC03757C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc03757c


48 R. Sundararaman and W. A. Goddard, The Journal of Chemical
Physics, 2015, 142, 064107.

49 H. Jing, J. Long, H. Li, X. Fu and J. Xiao, ACS Catalysis, 2023,
48, 9925–9935.

50 S. G. Bratsch, Journal of Physical and Chemical Reference Data,
1989, 18, 1–21.

51 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh and C. Fiolhais, Physical Review B, 1992,
46, 6671–6687.

52 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, Journal of
Chemical Physics, 2010, 132, 154104.

53 B. Hammer, L. B. Hansen and J. K. Nørskov, Physical Review
B - Condensed Matter and Materials Physics, 1999, 59, 7413–
7421.

54 P. Clabaut, B. Schweitzer, A. W. Götz, C. Michel and S. N.
Steinmann, Journal of Chemical Theory and Computation,
2020, 16, 6539–6549.

55 W. A. Badawy, F. M. Al-Kharafi and J. R. Al-Ajmi, Journal of
Applied Electrochemistry, 2000, 30, 693–704.

56 D. S. Hall, C. Bock and B. R. MacDougall, Journal of The Elec-
trochemical Society, 2013, 160, F235–F243.

57 S. Cherevko, S. Geiger, O. Kasian, A. Mingers and K. J.
Mayrhofer, Journal of Electroanalytical Chemistry, 2016, 773,
69–78.

58 J. D. Jobson, Applied Multivariate Data Analysis, Springer,
New York, 1991, ch. 4, pp. 219–398.

59 R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler and L. M.
Ghiringhelli, Physical Review Materials, 2018, 2, 1–11.

60 C. Leung, L. Kao, S. Su, J. Feng and T. Chan, Physical Review
B - Condensed Matter and Materials Physics, 2003, 68, 1–6.

61 P. C. Rusu and G. Brocks, Journal of Physical Chemistry B,
2006, 110, 22628–22634.

62 R. Otero, A. L. Vázquez de Parga and J. M. Gallego, Surface
Science Reports, 2017, 72, 105–145.

63 X. Wang, S. Ye, W. Hu, E. Sharman, R. Liu, Y. Liu, Y. Luo and
J. Jiang, Journal of the American Chemical Society, 2020, 142,
7737–7743.

64 D. M. Sweeney, B. Tran and B. R. Goldsmith, Communications
Chemistry, 2025, 8, 182.

65 I. Adamovic and M. S. Gordon, Molecular Physics, 2005, 103,
379–387.

66 A. Olasz, K. Vanommeslaeghe, A. Krishtal, T. Veszpŕmi,
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