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etitive anion electrosorption on
late transition metals

Bolton Tran * and Bryan R. Goldsmith

Investigating competitive anion electrosorption on transition metal surfaces is experimentally challenging

but critical for advancing electrocatalytic and electrochemical engineering. Here, we present a rigorous

computational framework for predicting anion adsorption as a function of the applied potential by

combining grand canonical density functional theory (GC-DFT) with thermodynamic cycles. This

approach is validated against experimental voltammograms on Pt(111) and applied to a diverse set of

anions on late transition metals. Using multiple linear regression with feature importance analysis, we

identify physical descriptors governing electrosorption including anion properties such as formal charge

and dipole moment, and metal properties such as d-band center and atomic polarizability. We then

develop a potential-dependent Langmuir adsorption model to predict competitive anion coverages

under realistic electrochemical conditions. Case studies using the Langmuir model demonstrate the

impact of electrolyte composition and pH on anion electrosorption trends relevant to electrocatalytic

reactions such as nitrate, oxygen, and carbon dioxide reduction. Overall, this study provides a systematic

and predictive framework for understanding anion electrosorption phenomena, offering insights for

electrode/catalyst and electrolyte design in electrochemistry and electrocatalysis.
1 Introduction

Realistic electrochemical and electrocatalytic systems oen
involve multiple anions in the electrolyte. First, supporting
anions are commonly used. Weakly adsorbing anions such as
F− and ClO4

− are used in impedance spectroscopic measure-
ments of the electrochemical double layer.1–4 Buffering anions
such as HCO3

−, HSO4
−, and H2PO4

− (and their acid–base
conjugates) are used to mitigate pH change during reactions.5–8

Second, anions can be purposefully introduced to inuence the
activity and selectivity of electrocatalytic reactions, such as
halides in CO2 electroreduction.9–11 Third, contaminating
anions are oen present such as in electrocatalytic treatment of
nitrate-laden water, which involve NO3

− electroreduction in the
presence of Cl−, SO4

2−, HCO3
−, PO4

3− as co-contaminants.12–17

Lastly, anion formation is ubiquitous during acid–base reac-
tions (e.g., OH− is spontaneously produced from water disso-
ciation in alkaline aqueous electrolytes).

Anions can competitively electrosorb—i.e., specically
adsorb with electron transfer—to the electrode surface,
affecting surface chemistry and catalysis. Adsorbed anions can
directly inuence charge-transfer kinetics,18 modulate the co-
adsorption of reaction intermediates,9,10 or block catalytic
active sites.13–17 Because anions adsorb with electron transfer,
the applied potentials affect their adsorption free energies.
Therefore, knowledge of anion electrosorption varying with
9, USA. E-mail: hoangtra@umich.edu

the Royal Society of Chemistry
applied potential is critical for electrochemical and electro-
catalytic engineering.

Detecting multiple anions electrosorbing competitively is
experimentally difficult. Electroanalytical voltammetry can infer
anion electrosorption from electrical currents measured at
certain potential windows where the anions adsorb and transfer
electrons.19–30 Challenges with identifying electrosorbed anions
arise if the anion has multiple conjugates that co-exist (e.g.,
H2PO4

− and HPO4
2−),24,26 or if the potential windows for

adsorption overlap with those of other anions or charge-transfer
reactions.27,29 In some cases, in situ spectroscopic techniques
can aid in species identication given discernible vibrational
signals from the adsorbed anion,5,7,31 which is not applicable for
many anions such as halides.

Density Functional Theory (DFT) calculations have been
used to ll some knowledge gaps in specic anion electro-
sorption. DFTmodeling helped identify which anion conjugates
dominantly electrosorb on Pt(111) such as H2PO4

− versus
HPO4

2−, or HSO4
− versus SO4

2−.32–34 DFT calculations of halides
electrosorbing on Ag(111) at different coverages reproduced the
broad features of experimental voltammograms.35 DFT also
predicted the active-site blocking effects of ClO4

−, NO3
−, and

HSO4
−/SO4

2− on the activity of oxygen oxidation/reduction on
Pt(111).36 However, past computational studies lacked the
systematic and quantitative validation with experiments, as well
as the identication of physical descriptors for anion electro-
sorption across transition metal surfaces.
Chem. Sci., 2025, 16, 17325–17333 | 17325
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In addition, many DFT studies used outdated methodologies
for computing anion electrosorption free energies. First, the
widely used Computational Hydrogen Electrode (CHE)
method37,38 is an incomplete physical model of electrosorption.
The model assumes that anions always fully transfer their
electrons upon adsorption, that is, the electrosorption valency
equals to the formal charge of the anions. For example, a CHE
computation of SO4

2− adsorbing on Pt(111) automatically yields
an electrosorption valency of −2.0e.36 Yet, experimental vol-
tammetry suggests the value to be around −1.8e.24 That means
SO4

2− does not fully transfer its excess electrons but retains
about 0.20e upon adsorption to Pt(111). There are corrections to
the CHE model in the form of higher-order expansions within
a grand-canonical thermodynamic formalism, as well as incor-
poration of solvation and double-layer electrostatics.39,40 These
corrections are important to correctly describe anion adsorp-
tion free energies as a function of the applied potential.

Second, the computation of anion adsorption free energies
requires additional thermodynamic treatment to avoid
systematic DFT errors for the anion aqueous-phase free ener-
gies. This treatment entails using a neutral gas-phase species as
the free energy reference state by establishing a thermodynamic
cycle.14,41 Nevertheless, many recent studies still used DFT-
computed energies of aqueous-phase anions as the reference
states, which greatly overestimates the adsorption free
energies.42–44

Herein, we seek to (1) improve the rigor of DFT atomistic
modeling for anion electrosorption; (2) solidify existing physical
understanding of anion electrosorption on transition metals;
and (3) develop a screening tool for the potential-dependent
coverages of adsorbed anions on metal surfaces.

This work is organized accordingly. Section 2 outlines the
computational approach using grand canonical DFT (GC-DFT)
with thermodynamic cycles for predicting anion electro-
sorption, validated against experimental voltammograms on
Pt(111). Section 3 presents a data-driven method to identify
physical descriptors for anion electrosorption on transition
metals. Section 4 demonstrates the prediction of anion surface
coverages through a potential-dependent Langmuir model with
case studies.
Fig. 1 Thermodynamic cycles for computing anion adsorption free
energy DUad (U). (A) Protonation path: A−/HA is an acid–base conju-
gate pair. For example, A− is CH3COO− and HA is CH3COOH. DG1 is
computed from experimental pKa and Henry's constant. (B) Redox
path example: A−/B is a redox conjugate pair. For example, A− is
HSO4

− and B is SO2. DU3 (U) is computed at varying U from the
standard redox potential. DU2 (U) and DU4 (U) are computed with GC-
DFT at varying applied potential U. The proton–electron pair is refer-
enced to hydrogen gas on the SHE scale.
2 GC-DFT and thermodynamic cycles

The GC-DFT approach is used to compute the potential-
dependent adsorption grand free energies of anions. At
a target applied potential U (set on the SHE scale throughout
this work), GC-DFT computes the grand free energy U from the
Helmholtz free energy at some excess number of electrons ne
that satisfy a target Fermi energy 3F of the electrode surface
(eqn (1)).45–47

U = E0 + EZPE − TSvib − 3F × ne (1)

The Helmholtz free energy is approximated as the ground-
state energy E0 plus vibrational zero-point energy (EZPE) and
entropic corrections (TSvib). The CANDLE implicit electrolyte
model was used to solvate the surface and provide counter-
17326 | Chem. Sci., 2025, 16, 17325–17333
charges.48 Specic DFT details are given in Section S1.1 and
Fig. S1 in the SI. To avoid erroneous DFT-computed free energy
of aqueous-phase anions, thermodynamic cycles were
employed.

The thermodynamic cycles establish equilibria between
aqueous anions with neutral gas-phase species through
a protonation path or a redox path (Fig. 1). The protonation
path applies when the anions have neutral acid conjugates with
known experimental values of standard Gibbs free energy of
acid dissociation (i.e., pKa) and Gibbs free energy of hydration
(i.e., Henry's constant), which add up to DG1 in Fig. 1A. Appli-
cable anions for the protonation path include NO3

−, RCOO−,
HCO3

−/CO3
2−, HSO3

−/SO3
2−, and ClO4

−. This thermodynamic
path was previously applied for NO3

− electrosorption.14,49

When anions have no stable neutral acid conjugate, a redox
path could be applicable if they instead have stable reduced/
oxidized conjugates in the gas phase. This is the case for F−/
Cl−/Br− (halides) which have F2/Cl2/Br2 (halogens), HSO4

−/
SO4

2− which have SO2, and H2PO4
−/HPO4

2−/PO4
3− which have

PH3. Tabulated experimental standard redox potentials for
those redox pairs50 are used to compute DU3 in Fig. 1B at a given
applied potential U. This path was previously applied for halides
and SO4

2− electrosorption.41

Since aqueous electrochemical systems inevitably involve the
electrosorption of protons, we also compute the potential-
dependent adsorption free energy of H+. The thermodynamic
cycle for proton electrosorption follows the classic CHE model,
which involves a redox path from H+ to H2.

The thermodynamic cycles-derived formulas for potential-
dependent adsorption free energies DUad (U) differ in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Parity plots of (A) U0 and (B) g extracted from experimental
voltammograms on Pt(111) surfaces versus obtained from GC-DFT
theoretical calculations.
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complexity across anions. We dedicated Section S1.2 and
Fig. S2–S6 in the SI detailing the thermodynamic derivation for
each anion considered in this work.

To simplify and standardize the description of potential-
dependent adsorption across many anions and metals, we
extracted two key parameters for each anion-metal pair: the
electrosorption valency g and the standard equilibrium
adsorption potential U0. The parameters were extracted from
linear tting DUad (U) at three discrete applied potentials. We
picked +0.8, +0.4, and 0.0 V potentials to span the common
working range of electrocatalytic experiments. We intentionally
omit more negative potentials which incur weak anion binding,
andmore positive potentials which incur surface oxidation. The
electrosorption valency—signifying the partial electron transfer
as anion adsorbs—is not assumed to be an integer as in the
CHE model, i.e., not strictly equal to the anion formal charges.
Instead, it was computed explicitly as the slope of DUad versus U
(Fig. 2). The standard equilibrium adsorption potential is the
potential where DUad (U) is zero, i.e., where equilibrium is
established between adsorbed anions at some coverage with
solution-phase anions at a standard concentration of 1 M. The
coverage of adsorbed anions is approximated by a Langmuir
model, where adsorption sites are identical and lateral inter-
action is omitted. The 1 M standard concentration follows the
electrochemical series convention.50

Fig. 2 shows examples of DUad (U) computed for three
anions, and the extracted g and U0 values. The goodness of
linear tting for DUad (U) is presented in Table S2 in the SI.

To validate our theoretical calculations, we compared U0 and
g with experimental voltammograms of different anions (and of
proton) electrosorbing on Pt(111) single crystals.20,22–25,27,28,30

Details of experimental data extraction for each anion are pre-
sented in Section S2 and Table S3 in the SI. Fig. 3 shows good
agreement between our theoretical calculations and the exper-
imental values, with root mean squared error (RMSE) of 0.12 V
for U0 and 0.21 e for g.
Fig. 2 Adsorption grand free energy (DUad) versus applied potential (U
on the SHE scale) for SO4

2−, HCO3
−, and CH3COO− adsorbed on

Pt(111). The labeled slopes and x-intercept of fitted linear lines repre-
sent g (unit e) and U0 (unit V), respectively.

© 2025 The Author(s). Published by the Royal Society of Chemistry
The validation result is sensitive to the employed DFT
functional, implicit electrolyte parameters, and inclusion of
micro-solvation. Sensitivity analysis (Section S1.3.5 and Fig. S10
in the SI) revealed that the PBE-D3 functional51,52 agreed much
better (lower RMSE) with experimental data compared to the
RPBE functional.53 The computed U0 and g are not as sensitive
to the dielectric constant used in the implicit electrolyte. Micro-
solvation54 may affect U0 based on the exact placement of the
explicit water molecule (Fig. S11 in the SI).

This experimental validation essentially assumes a coverage-
independent adsorption of anions. Specically, we modeled
anion coverages at 1/9, 2/9, or 3/9 fractional monolayer (unit
monolayer corresponds to fully covered sites) for anions occu-
pying one, two, or three Pt(111) atop sites, respectively. In vol-
tammetry experiments, the coverages of anion on Pt(111) vary
across the potential range where electrosorption occurs.
Therefore, the experimental coverages at the equilibrium
potential are specic to the anion, and likely at odds with the
coverages used in our DFTmodel. This assumption is carried on
to the Langmuir adsorption model used in Section 4, and
partially justied at low coverages (see Section S1.3.3 and Fig. S8
in the SI).
Chem. Sci., 2025, 16, 17325–17333 | 17327
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3 Physical descriptors for anion
electrosorption

Following the validation of our GC-DFT and thermodynamic
model, we seek to identify the physical descriptors of anion
electrosorption on late transition metal surfaces using a data-
driven approach. Past computational work examined a limited
set of anions and metal surfaces32–36,41 because in experiments,
only a few transition metals (e.g., Pt, Cu, Ag, and Au) could
possibly retain metallic forms under oxidizing potentials where
anions adsorb favorably. Here, we ignore electrochemical
stability or direct comparison with experiments, and instead
sample as many transition metals and anions as we could to
search for the descriptors that encode anion electrosorption
(i.e., U0 and g). That means expanding our dataset beyond
electrochemically stable metals to include metals like Ni, Co,
and Ir—known to electrochemically form oxides
spontaneously.55–57 We model only the (111) facet, which effec-
tively omit contributions from surface morphology.
Fig. 4 (A) Sequential forward selection applied to the g –MLRmodel, yie
RMSE and R2 no longer improves significantly with more features. (B) H
training the g – MLR model with four features on different 80 : 20 train-t
most occurring features. 5-Fold cross validationmetrics (RMSE and R2) ar
with electrosorption valency (g) values computed from GC-DFT (solid fil
ordered by increasing mz for the anions and 3d for the metals, following

17328 | Chem. Sci., 2025, 16, 17325–17333
Our dataset labels include the values of U0 and g—computed
using GC-DFT and thermodynamic cycles—for n = 107 combi-
nations of 27 anions on 9 late transition metals. Since Pt is still
the most widely used metal in controlled electrochemical
experiments, the dataset is skewed toward Pt, which have data
for all 27 anions. The other 8 metals (Co, Ni, Cu, Rh, Pd, Ag, Ir,
and Au) only have data for 11 anions each, selected to include
each of the different anion types (i.e., phosphate, sulfate,
carbonate, nitrate, carboxylate, and halide).

We employed a multiple linear regression (MLR) model58—
i.e., a weighted linear combination of the feature values plus
a bias—trained on the physical features of anions and metals.
This relatively simple model allows for easy identication and
interpretation of important features. A symbolic regression
model SISSO,59 while having greater model complexity by
including non-linear operators (×O), showed no appreciable
improvement in prediction accuracy and interpretability to the
MLR model (see Section S4 and Fig. S12 in the SI). Two separate
MLR models were trained, one for predicting the electro-
sorption valency (g – MLR) and one for predicting the standard
equilibrium adsorption potential (U0 – MLR).
lding four as the optimal number of features (dotted vertical line) where
istograms to count the most occurring features from 50 iterations of
est splits. (C) Parity plot for the final g – MLR model trained on the four
e shown as averages with standard errors in brackets. (D) Dataset matrix
l) or from the optimized g – MLR model (diagonal hatch). The matrix is
the arrow directions.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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From an initial set of 11 anion features and 11 metal features
(Table S4), we used feature correlationmatrix (Fig. S11) to remove
highly correlated features. Specically, we removed any feature
that have an R2 higher than 0.8 with another feature. We priori-
tized retaining features that are more physically/chemically
interpretable (e.g., HOMO energy of anion in radical form over
that in protonated form, because anion adsorbs in radical form)
and more accessible (e.g., tabulated metal atomic van der Waals
radius over the DFT-computed d-band width). Aer this step, six
anion features and six metal features remained.

Next, we performed sequential forward selection (SFS) to
further optimize the number of features while avoiding over-
tting. The SFS algorithm starts by looping through the features
to nd one that yields the lowest RMSE when evaluated on the
test set of an 80 : 20 train-test split. The algorithm then adds to
the model a second feature that yields the lowest RMSE, and
keeps sequentially adding more features using similar criteria
aerwards. Fig. 4A shows the RMSE going down and the R2 for
label-prediction parity going up as the number of features
increases for the g –MLR model. The dataset was bootstrapped
over 50 iterations of different 80 : 20 train-test splits to obtain
small statistical error bars in Fig. 4A. While no overtting is
apparent (when training RMSE goes down while test RMSE goes
up with the number of features), we selected four as the optimal
number of features for the g –MLR model, since the RMSE and
R2 no longer improve signicantly with more features.

Bootstrapping data in the SFS algorithm furthermore allows
for counting the top occurring features for the g – MLR model
(Fig. 4B). We picked the four most occurring features to be the
descriptors that encode the electrosorption valency g. A nal 5-
fold cross validation was performed on the g –MLR model with
these four top-occurring features (Fig. 4C), yielding test-set
RMSE of 0.12 ± 0.01e and R2 of 0.90 ± 0.02.

The same SFS workow was applied to a separate U0 – MLR
model for predicting the standard equilibrium adsorption
potential (Fig. S13 in the SI). The optimal number of features for
predicting U0 was six. A 5-fold cross validation performed on the
nal U0 –MLRmodel yielded test-set RMSE of 0.21± 0.02 V and
R2 of 0.75 ± 0.05.

Table 1 layouts the identied descriptors for g and U0.
Coincidentally, the descriptors for g and U0 do not overlap, and
there are equal numbers of anion descriptors and metal
descriptors for each quantity. The coefficient signs +/− indicate
Table 1 Symbols, coefficient signs (+/−), and description of the identifie

Target Anion/Metal Symbol (+/−

g Anion z (+)
mz (+)

Metal 3F (+)
3d (−)

U0 Anion Ea0HOMO (−)
Ea1EA (+)
DEdisH (+)

Metal EmEA (+)
am

1/3 (−)
rvdw (+)

© 2025 The Author(s). Published by the Royal Society of Chemistry
correlation/anticorrelation between the features and the labels.
The nal MLR equations for g and U0 are shown in Section S5.3
in the SI. Next, we briey discuss how the identied descriptors
physically associate with g and U0.

The descriptors of electrosorption valency g are related to the
electron transfer when the anion adsorbs. First, g positively
correlates with anions' formal charges z andmolecular dipole in
adsorbed state mz. This indicates that more electron transfer
(more negative g) corresponds with anions having more nega-
tive formal charges (e.g., SO4

2− over HSO4
−) and smaller

molecular dipoles in the adsorbed state (Fig. 4D). The rela-
tionship between adsorbate dipole moment and charge-transfer
has been established in past work.60–64 Second, g positively
correlates with the Fermi energy 3F of the metal, indicating that
metals with more stable electrons (more negative 3F) allow for
more electrons transferring from the adsorbed anions (more
negative g). Third, g negatively correlates with the d-band
center 3d of the metal, suggesting less lled d-bands (more
positive 3d) accept more electrons from the adsorbed anions
(more negative g).64

By partitioning g with respect to the anion formal charges z
(Fig. S14), we also observed that anions with more negative z
retain more negative partial charges when they adsorb. Specif-
ically, mono-, di-, and tri-valent anions retain on average 0e,
−0.5e, and−1e partial charges, respectively. Therefore, the CHE
model assumption that anions transfer all of its excess electrons
upon adsorption would be especially wrong for divalent/
trivalent anions.

The descriptors for standard equilibrium adsorption potential
U0 encode the binding strength of anions to the metal surfaces.
The most intuitive anion descriptor is the energy of homolytic
proton dissociation, where a more negative DEdisH —harder to
break the anion-proton bond—correlates with a more negative
U0—more negative bias needed to desorb the anion from the
surface, both suggesting anions' strong tendency to form covalent
bonds.30,34 For metals, the atomic VdW radii and atomic polariz-
ability may encode the short-range repulsion and dispersion.65,66

4 Potential-dependent Langmuir
isotherms

To quickly inform the electrode/electrolyte/pH design in
electrocatalytic experiments, we constructed a potential-
d descriptors for predicting g and U0 with MLR models

) Feature description

Anion formal charge
Surface-normal dipole moment in adsorbed state
Fermi energy of (111) slab in implicit electrolyte
d-Band center
HOMO energy of anion in radical form
Electron affinity to create −1 charge
Energy of homolytic proton dissociation
Atomic electron affinity
Cubic root of atomic polarizability
Atomic VdW radius

Chem. Sci., 2025, 16, 17325–17333 | 17329
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dependent Langmuir model to predict the competitive anion
adsorption on metal surfaces at different applied potentials.
The idea is that for any given set of anions with dened bulk
concentrations, solution pH, and transitionmetal electrode, the
model could predict the relative coverages of electrosorbed
anions (and the protons) at varying applied potentials.

The model establishes adsorption equilibria at each applied
potential between solution-phase anions and adsorbed anions,
and acid–base equilibria between solution-phase anions and
their conjugates, but not redox equilibria between redox pairs.
That is, this Langmuir model predicts the surface coverages of
anions at a timescale where redox kinetics (i.e., charge-transfer
reaction) are much slower than adsorption kinetics and acid–
base kinetics.67,68

In brief, the Langmuir isotherms are computed by solving
two systems of equations. The rst linear equations system
solves the acid–base equilibria for the solution-phase concen-
tration of each conjugate, which require pH and total acid
concentration as input constants. The second non-linear
equation system solves the potential-dependent Langmuir
adsorption equilibria for the surface coverage of each anion,
which require the g and U0 values for each anion-metal pair as
computed using the GC-DFT and thermodynamic cycle method.
A full derivation for this potential-dependent Langmuir model
is outlined in Section S6 of the SI.

A Langmuir adsorption model makes inherent assumptions.
First, it assumes no adsorbate–adsorbate interactions. Second,
it uses a mean-eld approximation of adsorption sites, which
means the absolute coverages can be up to 1.0, i.e., all the sites
are fully covered. A molecular picture of anion adsorption on
(111) facets does not quite allow for a fully covered surface for
many anions. Therefore, the coverages should be interpreted in
relative terms between the adsorbed species.
Fig. 5 Potential-dependent Langmuir isotherms for four case studies: (A)
(B) Cu(111), pH 1, 100 mM ClO4

−, 50 mM NO3
− (left) or 50 mM NO3

− & 1
(right). (D) pH 8.3, 100 mM CO3

2−/HCO3
− on Cu(111) (left) or 500 mM C

17330 | Chem. Sci., 2025, 16, 17325–17333
Fig. 5 presents the potential-dependent Langmuir isotherms
(i.e., surface coverage qi of anion i vs. applied potential U in SHE
scales) for four case studies. While containing no information
about reaction mechanisms and kinetics, these isotherms can
indirectly inform about the feasibility of surface reactions
through observing the adsorption of poisoning anions, or the
co-adsorption of reactants at certain potential windows.

In the rst case study (Fig. 5A), we corroborate experimental
results for the electrocatalytic reduction of NO3

− and NO2
− on

Pt. At an onset potential of 0.2 V on a Pt(111) catalyst, da Silva
and co-workers observed the reductive current of NO2

− to be
almost an order of magnitude larger than that of NO3

−.29 Our
Langmuir isotherms at the same experimental conditions (pH
and anion concentrations) predict the coverage of NO3

− (Fig. 5A
le) to drop at a more positive potential than that of NO2

−

(Fig. 5A right). Furthermore, only the adsorption of NO2
− greatly

overlaps with the adsorption of protons (H+) near 0.2 V, where
reductive current onsets. The co-adsorption of H+ with NO2

−

(which is absent for NO3
−) potentially facilitates hydrogenation

elementary steps involved in the catalytic reduction
mechanism.14,29

The poor catalytic performance of Pt for NO3
− reduction

(NRR) relative to other metal catalysts (e.g., Cu or Rh) is
generally known and attributed to the weaker binding of NO3

−

on Pt.14,69 From the identied descriptors (Table 1), one may
partially explain this adsorption and catalysis trend by seeing
that Pt has a higher atomic VdW radius (2.14 Å) than Cu (1.96 Å)
and Rh (2.10 Å), leading to stronger repulsion against adsorbed
NO3

−.
In the second case study (Fig. 5B), we examine the poisoning

effect of Cl− on Cu-catalyzed NRR. Butcher and Gewirth
observed an onset potential for NRR on Cu(111) at about 0.2 V,
which then shied to −0.2 V in the presence of Cl− anion.70

They attributed this to Cl− competitively adsorbing and
Pt(111), pH 1, 100mMClO4
−, 10 mMNO3

− (left) or 10 mMNO2
− (right).

0 mM Cl− (right). (C) Pt(111), 100 mM SO4
2−/HSO4

−, pH 1 (left) or pH 5
O3

2−/HCO3
− on Au(111) (right).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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poisoning adsorption sites for NO3
−. The Langmuir isotherms

at the same experimental conditions show co-adsorption of
NO3

− and H+ near the NRR onset potential of 0.2 V (Fig. 5B le),
at which adsorbed Cl− would then effectively poison the active
sites (Fig. 5B right). However, the model fails to explain how
NRR still takes place at −0.2 V, where it predicts that proton H+

completely displaces adsorbed Cl− and no NO3
− adsorbs. One

possible explanation is that some form of non-Langmuir
adsorption might have taken place (e.g., co-adsorbates interact
and form clusters/islands), allowing for NO3

− to still adsorb and
reduce at −0.2 V where Cl− poison has been alleviated.

In the third case study (Fig. 5C), we demonstrate how
increases in pH can potentially alleviate SO4

2− poisoning for Pt-
catalyzed oxygen reduction reaction (ORR). Experiments by
Kamat and co-workers found that SO4

2− decreases the ORR
current density on a Pt disk at a pH of 1 below the onset
potential at about 0.8–0.9 V.36 They attributed the lowered
activity to SO4

2− adsorbing competitively with OH−, which is
a reaction intermediate for ORR. At the same pH of 1, the model
consistently predicts SO4

2− to dominate the adsorption sites
below 0.8 V (Fig. 5C le). A higher solution pH of 5 increases the
abundance of solution-phase OH− anion, at which the model
predicts OH− to out-competes and displaces SO4

2− on the
surface (Fig. 5C right).

In the fourth and nal case study (Fig. 5D), we examine the
adsorption of HCO3

− and CO3
2− during CO2 reduction reaction

(CO2RR) on Cu and Au catalysts. On Cu, Zhu and co-workers
found vibrational signals of adsorbed HCO3

−/CO3
2− (1544–

1517 cm−1) disappearing while scanning applied potentials
from 0.6 V to 0.1 V.7 On Au, Dunwell and co-workers found the
same vibrational modes (∼1460 cm−1) disappearing while
scanning potentials from 1.5 V to 0.8 V.5 They respectively
observed slight blue-shis in frequency at 0.3 V on Cu and 1.0 V
on Au, which earlier work attributed to adsorbed HCO3

− di-
splacing adsorbed CO3

2−.28 Consistent with above spectroscopic
evidences, our isotherms predict the coverage of HCO3

−

increases as coverage of CO3
2− decreases at about 0.3 V on

Cu(111) (Fig. 5D le) and 0.9 V on Au(111) (Fig. 5D right).
In the catalytic context of CO2RR, the isotherms are also

consistent with the different product selectivity on Cu and Au. It
is well known that Cu reduces CO2 to hydrogenated products
(e.g., CH4, CH3OH) while Au reduces CO2 to CO.71,72 Further-
more, Zhu and Dunwell found vibrational signals of CO inter-
mediate appearing at potentials coinciding with when HCO3

−

desorbs, i.e., below 0.0 V on Cu, and below 0.8 V on Au.5,7 On Cu,
the isotherms predict protons to adsorb at about 0.0 V (Fig. 5D
le). Under the assumption that CO indeed adsorbs on Cu also
at 0.0 V, the overlap in coverages of protons and CO is conducive
to the hydrogenation of CO. Conversely on Au, the isotherms
predict protons to only adsorb at potentials well below where
CO adsorbs supposedly at 0.8 V (Fig. 5D le), which is consis-
tent with the lack of hydrogenated products.

5 Conclusion

While inferring competitive anion electrosorption is chal-
lenging in experiments, DFT can provide helpful predictions
© 2025 The Author(s). Published by the Royal Society of Chemistry
given rigorous model construction and validation. We pre-
sented here a grand-canonical DFT approach used in conjunc-
tion with thermodynamic cycles to account for the applied
potentials and the free energy of solution-phase anions. We
validated the model against experimental voltammograms of
Pt(111) with different electrolytic anions. This computational
approach can be transferrable to study anion electrosorption on
more complex electrodes/catalysts such as oxides, alloys, and
single-atom catalysts.

We applied the multiple linear regression (MLR) models on
a diverse dataset of anions electrosorbing on transition metal
(111) surfaces to identify physical descriptors encoding the
electrosorption valency and the standard equilibrium adsorp-
tion potential. We recovered the association of adsorbate dipole
moment and metal d-band with the electrosorption valency, as
well as adsorbate-metal covalent binding strength with the
standard equilibrium adsorption potential. Furthermore, our
dataset of (111) facets of late transition metals and small anions
provides a controlled benchmark to explore for similar/
deviating physical descriptors for electrosorption on more
complex catalyst materials, surface facets, or with bulky organic
anions and cations electrosorbing.

We constructed a potential-dependent Langmuir model and
showcased how information about the (in)feasibility of
electrocatalytic reactions could be derived through case studies.
This adsorption model can be further expanded to electro-
catalytic materials more complex than single-crystal transition
metals by accounting for multiple sites (facets, reconstructed/
oxidized surfaces) and coverage-dependent adsorption.
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C. Van Alsenoy and P. Geerlings, J. Chem. Phys., 2007, 127,
224105.

67 H. S. Fogler, B. R. Goldsmith, E. Nikolla and N. Singh,
Elements of Chemical Reaction Engineering, Pearson
Education, 7th edn, 2025, ch. 10, p. 447.

68 A. H. Motagamwala and J. A. Dumesic, Chem. Rev., 2021, 121,
1049–1076.

69 M. Shibata, K. Yoshida and N. Furuya, J. Electrochem. Soc.,
1998, 145, 2348.

70 D. P. Butcher and A. A. Gewirth, Nano Energy, 2016, 29, 457–
465.

71 Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim.
Acta, 1994, 39, 1833–1839.

72 A. A. Peterson and J. K. Nørskov, J. Phys. Chem. Lett., 2012, 3,
251–258.
Chem. Sci., 2025, 16, 17325–17333 | 17333

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc03757c

	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals
	Predicting competitive anion electrosorption on late transition metals


