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Photostable triphenylmethyl-based diradicals with
a degenerate singlet-triplet ground state and
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We present a new class of luminescent diradicals based on tris(trichlorophenyl)methyl (TTM) cores
symmetrically bridged by indolocarbazole donors. These diradicals exhibit pure diradical character yo and
unprecedented photoluminescence quantum yields ¢ of up to 18%, addressing key challenges in the
development of stable, emissive organic diradicals. Light emitting diradicals represent a formidable
challenge for synthetic chemists; for applications as molecular color centers in quantum sensing and as
emitters in optoelectronics. Unlike conventional approaches that require the conversion of closed-shell

precursors, we directly couple brominated TTM radicals via Buchwald—Hartwig coupling. The magnetic
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Accepted 6th July 2025 and optical properties of the resulting molecules are comprehensively characterized by electron
paramagnetic resonance EPR, UV-vis absorption, and photoluminescence spectroscopy. This work

DOI: 10.1039/d55c036732 unites the robust photophysics of discrete TTM radicals with the electronic versatility of donor-bridged
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Introduction

Quantum sensing offers unparalleled sensitivity compared to
conventional sensors, enabling more precise detection of
motion, as well as electric- and magnetic fields.** This break-
through promises transformative improvements in how we
measure, navigate, observe, and interact with the world around
us. Among quantum sensors, nitrogen-vacancy (NV) color
centers in diamond stand out due to their luminescent spin-
triplet manifold, which allows spin state initialization and
readout using light.>” However, challenges such as precise
positioning, scalability, and purity of NV color centers hinder
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multi-spin systems, offering a promising design strategy for functional open-shell emitters.

their widespread application. By contrast, molecular color
centers have been realized in metal complexes offering precise
structural reproducibility and scalability through synthetic
chemistry.® Also organic molecules, such as triarylmethyl (trityl)
radicals may be employed as viable spin carrying alternatives as
they exhibit an unpaired radical electron. Chlorinated trityl
radicals are exceptionally stable, owing to electronic effects and
steric protection of the radical electron in their p-orbital.>*
Functionalization with electron-donating groups - for example
carbazole (Cz) - can render these monoradicals (with spin
S = 1/2) highly fluorescent, achieving photoluminescence
quantum yields ¢ as high as = 90% (see Fig. 1, TTM-Cz)."**
However, organic color centers can only be realized in mole-
cules with spin S > 1/2. Trityl radicals can be linked to form
diradicals, wherein two unpaired electrons in degenerate
orbitals couple through dipolar and exchange interactions.'>*
These diradicals are categorized as Kekulé or non-Kekulé
hydrocarbons. Formally, Kekulé diradicals exhibit an equilib-
rium between a closed-shell quinoidal and an open-shell dir-
adical structure (with y, representing the diradical character)
with a singlet ground state (GS) and overall S = 0 (see Fig. 1,
TIM-TTM, PTM-PTM)."**** By contrast, non-Kekulé dir-
adicals, such as Schlenk-Brauns radicals, exhibit a triplet
ground state (S = 1), due to meta-positioning of the methine
groups with their unpaired electrons via a central phenyl ring
(see Fig. 1, m-PTH).?»* Diradicals with a triplet ground state
mimic the electronic structure of NV centers, making them
promising candidates for quantum sensing and related

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Previously established stable organic radicals, TTM-Cz with doublet GS and ¢ = 88%, Kekulé diradicals PTM-PTM and TTM—-TTM with their
respective yq and singlet GS, and non-Kekulé meta-coupled m-PTH with triplet GS and 5,7-1Cz-TTM, with ¢ = 18% and degenerated singlet-

triplet GS.

technologies.>* Although trityl-based diradicals with accessible
triplet states can generate ground-state polarization after
optical excitation — an essential step toward enabling optically
detected magnetic sensing - these molecules currently lack
sufficient photoluminescence.''®*>*® This limitation restricts
their application to ensemble measurements, precluding
single-molecule readout, which is crucial for achieving the
highest sensitivity and resolution. Developing fluorescent dir-
adicals could bridge this gap, offering the reproducibility and
scalability of synthetic chemistry alongside the functionality of
molecular color centers.

Here, we report the synthesis and characterization of a new
type of fluorescent diradical with high ¢ of 18%. The diradicals
are derived from the tris(trichlorophenyl)methyl radical (TTM)
motif but they differ from the typical Kekulé or Schlenk-Brauns
geometry. Instead, we employ indolocarbazoles (ICz) as electron
donating bridges, to which we attach two TTM radicals yielding
stable diradicals with y, = 1. We study the influence of the
relative orientation of the TTM radicals (with respect to the
donor and each other) on the charge transfer (CT) character of
the excited state (ES) and the ¢. Moreover, the molecular
arrangement of these diradicals influences the coupling
between the radical electrons. The new donor-bridged dir-
adicals introduced here represent a new approach and
a successful realization of light emitting diradicals.

Results and discussion
Synthesis

We synthesize three different indolocarbazole-bridged TTM
diradicals by making use of the Buchwald-Hartwig cross-
coupling reaction (see Fig. 2). Because the individual donor
strength has crucial impact on how easily the methine group of
the trityl moiety can be deprotonated and oxidized, the
conversion of the closed-shell precursor is often challenging in
donor-functionalized trityl radicals.>*”*®* Therefore, we first
convert the triarylmethane precursor to the radical and couple
the radicals directly to the indolocarbazole donors. The radicals
remain intact during the Pd-catalyzed Buchwald-Hartwig cross-

© 2025 The Author(s). Published by the Royal Society of Chemistry

coupling reaction (vide infra EPR discussion).> To improve the
selectivity, we employ a novel para-bromine-functionalized TTM
(Br-TTM) derivative (see Fig. 2). The closed-shell Br-HTTM
precursor is obtained after a three-step synthesis in an overall
high yield.**** The Br-TTM radical is obtained by following the
most widely established protocol for TTM radical conversion,
via deprotonation using KO'Bu, followed by mild oxidation
using p-chloranil. The three diradicals are obtained after
Buchwald-Hartwig coupling reactions of the Br-TTM to the
different indolocarbazoles. While the yields are moderate, the
diradicals are obtained pure and without the otherwise required
deprotonation and oxidation steps in several repetitions.'*?*%*>

The diradicals are characterized by electron paramagnetic
resonance (EPR) spectroscopy. Since the radical electrons typi-
cally deshield the nuclear spins in the molecules, we cannot
perform NMR-spectroscopy on the open-shell molecules. That
is why we also synthesize the closed-shell compounds, on which
we perform 'H-NMR spectroscopy (see Experimental section
and Fig. $39-S51 in the ESIt). The successful synthesis of the six
molecules is also confirmed by mass spectrometry (see Fig. S33-
S38 in the ESI}).

Molecular geometry and inter-spin distance

Diradical 5,7-ICz-TTM, has been successfully crystallized by
solvent diffusion of "hexane into a solution of 5,7-ICz-TTM, in
toluene. Single crystal XRay diffraction of 5,7-ICz-TTM, allows
its categorization into the centrosymmetric P1 space group (see
Fig. 2). The central triphenylmethyl-carbon atom exhibits sp>
hybridization with a bond length of 1.43 to 1.44 A to the three
connected di- or trichlorophenyl rings, substantiating the pure
diradical character (y, = 1) of 5,7-ICz-TTM, (see Table 1).
Moreover, from the crystal structure, an inter-spin distance of
d = 7.99 A is obtained. Interestingly, the two p-orbitals of the
TTM radicals are oriented in an almost perpendicular fashion,
which will minimize magnetic dipole coupling between the two
radical electrons in the crystal.

Unfortunately, we were unable to crystallize the other two
diradicals 5,8-ICz-TTM, and 5,11-ICz-TTM,, which is why we
perform DFT calculations for the three diradicals to investigate

Chem. Sci., 2025, 16, 14616-14624 | 14617
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Fig. 2 (a) Synthesis of indolocarbazole-bridged diradicals. Bromine-functionalized TTM is attached to the different indolocarbazoles by
Buchwald—Hartwig coupling. The radical character is retained during the cross-coupling reaction. (b) Solid state structure of 5,7-1Cz-TTM,, as
determined by single-crystal XRay crystallography (diffusion of "hexane into toluene, crystal system: triclinic, space group: P1) (c) DFT-calculated
structures of 5,7-1Cz-TTM,, 5,8-1Cz-TTM,, and 5,11-ICz-TTM, indicating the inter-spin distance and the relative orientation of the methine
groups (level of theory: MO6-L-GD3/def2-SVP with a CPCM solvation model to simulate a cyclohexane environment.33-3¢).

their structure and inter-spin distances. We optimize the
molecules in their GS geometry at the M06-L-GD3/def2-SVP level
of theory with a CPCM solvation model to simulate a cyclo-
hexane environment.**>*° Single-point calculations are per-
formed on the optimized structures employing PBE0-GD3/def2-
TZVP.**%7 All three molecules exhibit a diradical character of y,
=~ 1, indicating that the torsion around the TTM-N bond,
effectively breaks conjugation and therefore making it irrele-
vant whether the nitrogens in the different ICz isomers are
oriented towards each other in para- or meta-position (cf. Table
1 and Fig. 2). This is in stark contrast to Kekulé or Schlenk-
Brauns diradicals, where the respective connectivity determines

the singlet or triplet character of the GS. The calculated inter-
spin distances increase from d = 8.02 A for 5,7-ICz-TTM, to
13.47 A for 5,8-ICz-TTM, and 15.59 A for diradical 5,11-ICz-
TTM, (see Table 1). The calculated d of 5,7-ICz-TTM, is in
excellent agreement with the inter-spin distance observed
experimentally in the crystal, whereas the perpendicular
orientation of the radical p-orbitals is not reproduced in the
DFT calculations, indicating that in solution the trityl units may
have some degree of rotational freedom with respect to the ICz
donor unit (see Fig. 2).

Within the crystal, the TTM propellers adapt a P,M-configu-
ration with opposite helical chirality of the two TTM groups. We

Table1 Photophysical and magnetic properties of the diradicals. Absorption (1,ps) and emission (Aep) Maxima, molar absorption coefficients for
the GS — ES transition (¢ (GS-ES)), photoluminescence quantum yields ¢, and photoluminescence lifetimes t were measured in cyclohexane
solutions (10~* M). Values of the axial dipolar coupling, dip.y, Were obtained from simulations of the EPR measurements performed in frozen
toluene solutions at 80 K. The inter-spin distance d as well as yg (for the (P, M) diastereomer) were obtained from DFT calculations. The inter-spin
distance d has also been estimated from EPR data for comparison

dabs/ & (GS-ES)/ Aem/ @1 Tl ki kel Yo |AEg:|/ dip.y/  dl dj
Compound nm 10°M ' em ™! nm % ns 105! 10571 (P, M)* kJ mol™* MHz A (DFT) A (EPR)
5,7-1Cz-TTM,, 641 6.00 680 18 15 12 55 0.98 0.052 83.4 8.02 8.5
5,8-ICz-TTM, 661 8.49 716 2 3 8 357 0.99 — 22.3 13.47 13.3
5,11-1Cz-TTM, 674 4.13 720 2 3 8 357 0.97 — 17.5 15.59 14.4

14618 | Chem. Sci, 2025, 16, 14616-14624 © 2025 The Author(s). Published by the Royal Society of Chemistry
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calculate the P,P- and P,M-configurations for 5,7-ICz-TTM, as
the diastereomers may have different physical properties. We
do not calculate the molecule in the M,M- and M,P-configura-
tions as they will behave analogously to their respective enan-
tiomers. For small distances between the TTM moieties as in
5,7-ICz-TTM,, their relative orientation can induce strain and
affect the total energy of the molecular system. Indeed, the P,M-
configuration is stabilized by 7.6 k] mol " with respect to the
P,P-diastereomer. However, this small energy difference renders
both isomers accessible in solution at room temperature.

Electron paramagnetic resonance spectroscopy

To characterize their magnetic properties, we perform electron
paramagnetic resonance (EPR) spectroscopy of the three dir-
adicals at the X- and Q-band in frozen toluene solution at T'= 80
K (see Fig. 3a-c). Details on the setup and experimental
parameters are given in the ESL{ A field-swept phase-inverted
echo-amplitude detected nutation (PEANUT) experiment is
carried out for 5,7-ICz-TTM, (see Fig. 3f).*® The Fourier trans-
form yields the nutation frequency of the spin species with the
applied microwave pulse. A nutation frequency of /2w, is ex-
pected for a triplet spin species, with w, being a pure spin 1/2
(see Fig. 3f). The observed minor S = 1/2 contribution in 5,7-
ICz-TTM, at 347.7 mT is attributed to residual monoradical
impurity (ca. 2.5% according to the simulated EPR spectrum),
which we use as a reference (vide infra cw-EPR discussion). By
this evaluation, the main signal of 5,7-ICz-TTM, can be clearly
attributed to a triplet spin species. The obtained spectra of 5,7-
ICz-TTM, are thus simulated as a spin triplet (S = 1), yielding an
anisotropic g-tensor (g = 2.0026, 2.0042, 2.0037) and zero-field
splitting parameters |DI = 125.2 MHz and |El = 5.5 MHz.
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To estimate the coupling strength for the three diradical
compounds, the experimental spectra are simulated using
a coupled spin system of two spin S = 1/2 (see ESI Fig. S29 and
Table S37). The axial dipolar coupling dip,, increases from 5,11-
ICz-TTM, over 5,8-ICz-TTM, to 5,7-ICz-TTM,, due to the
decreased inter-spin distance (see Table 1). The dipolar
coupling analysis can be used to obtain an experimental esti-
mate of the inter-spin distance in the diradicals (see ESI{ for
details). These inter-spin distances closely match the distances
between the radical centers determined using DFT, supporting
the validity of the results and the suitability of our quantum
chemical methods (see Table 1).

For 5,7-ICz-TTM,, we observe the formally forbidden half-field
transition of the triplet spin state, confirming our assignment
and the accessibility of the triplet state (see Fig. 3d). We further
conduct variable-temperature (VI) EPR experiments between 4.6
and 80 K and plot the doubly-integrated signal intensities of the
half-field transition against the temperature (see Fig. 3d and e).
The Bleaney-Bowers fit reveals anti-ferromagnetic coupling
indicating a slight stabilization of the singlet state versus the
triplet state (see Section 6.3 in the ESIT for details).**** However,
the energetic separation of singlet and triplet states |AEgy| is as
low as 0.052 kJ mol " (0.012 kcal mol "), indicating near-
degeneracy of the two states. Due to the increased distance, the
inter-spin coupling is reduced for 5,8-ICz-TTM, and 5,11-ICz-
TTM,, and |AEsy| is expected to be even smaller (see Table 1). For
5,8-1Cz-TTM,, the intensity of the half-field transition is found to
be reduced considerably as compared to 5,7-ICz-TTM,, while no
half-field transition is observed for 5,11-ICz-TTM,, indicating that
the two unpaired spins behave as isolated doublets rather than
a coupled triplet state. These findings correlate well with the spin
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(a) Experimental cw-EPR X-band spectrum (left) and electron spin echo (ESE) detected Q-band EPR spectrum (right) of 5,7-ICz-TTM,

(turquoise) in frozen toluene solution (T = 80 K) with simulated spectra (black) using a triplet spin species. The central signal (dashed gray line)
observed for 5,7-1Cz-TTM, corresponds to contamination with monoradical. Experimental cw-EPR X-band spectra of (b), 5,8-1Cz-TTM,
(orange), and (c) 5,11-1Cz-TTM; (purple) measured for frozen toluene solutions of the diradicals at T = 80 K and simulated spectra (black) using
a coupled doublet—doublet spin species. (d) Half-field transition (Ams = +2) spectra of 5,7-1Cz-TTM, in frozen toluene for different temperatures
(left) and temperature-dependent signal intensity of the half-field transition, obtained from numerical double integration, and (e) Bleaney—
Bowers fit of the VT-EPR data. (f) Fourier transform of the field-swept PEANUT data of 5,7-1Cz-TTM, referenced to the monoradical impurity
signal at 347.7 mT (left) and the corresponding ESE spectra for wg and /2w, (right), with the nutation frequency w and the reference.

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci,, 2025, 16, 14616-14624 | 14619


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc03673a

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 07 July 2025. Downloaded on 2/14/2026 10:24:01 AM.

(cc)

Chemical Science

density maps, where we see that the unpaired electrons are
mainly situated at the central methine carbon and slightly delo-
calized across the attached phenyl rings (see Fig. S27 in the ESIT).

Optical characterization

The new diradicals are also investigated using UV-vis absorp-
tion and photoluminescence spectroscopy. We employ cyclo-
hexane as a non-polar solvent to prevent strong solvent-solute
interactions. We observe absorption features in the UV region
that can be related to the indolocarbazole donors in addition to
an intense absorption peak in the UV and a rather weak
absorption band in the visible region, as is typical for TTM-
derived radicals (see Fig. 4).'4*443

TD-DFT calculations on the previously optimized structures
employing PBE0-GD3/def2-TZVP with a SMD solvent model
yield calculated absorption spectra that are in excellent agree-
ment with the experiment (see Fig. S24-S26 and Table S3 in the
ESIT)."* We observe similar excitation energies for both triplet
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Fig. 4 Absorption (solid lines) and emission (solid lines with symbols)
spectra of the novel diradicals (5,7-1Cz-TTM, (turquoise, 1), 5,8-1Cz-
TTM, (orange, A), 511-ICz-TTM; (purple, O)) measured in cyclo-
hexane solutions (10~* M).
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and broken-symmetry singlet states (see Fig. S24 & S26 in the
ESIt). The P,M-configuration of 5,7-ICz-TTM, is closer to the
experiment than the P,P-configuration, which is in line with the
slightly smaller energy of the former, favoring the formation of
the mixed chirality diastereomer. Presumably, the experimental
spectrum results from a mixture of both diastereomers. When
we dissolve the crystals of diastereomerically pure 5,7-1Cz-TTM,
in cyclohexane, we observed the same optical behavior as prior
to crystallization, indicating that the TTM propellers can invert
quickly at room temperature in solution (see Fig. S117).

The natural transition orbitals (NTOs) confirm the nature of
the electron donating ICz, yielding a clear CT excited state with
the hole residing on the ICz moiety, whereas the electron is
residing on the trityl units for both (singlet and triplet) spin
states (see Fig. 5).

For the triplet state, electron density migrates from the ICz
site to both singly occupied molecular orbitals (SOMOs) located
on the TTM units (see Fig. 5). For the singlet state, the lowest ES
is reflected by a linear combination of configurations resulting
from charge migration from the highest doubly occupied
molecular orbital (HDMO) to a single SOMO. Thus, the CT
character of this mixed configurational exciton for the singlet is
the same as observed for the triplet state (see Fig. 5). This
behavior is similar for all three diradicals and in agreement
with experimental and theoretical observations for the ES in
related monoradicals."*'** In other words, in the GS, the
HDMO is located on the ICz, while the SOMOs reside on the
TTM units. Thus, the excitation energy is determined by the
electron donating capability of the ICz donor. We compare the
energies of the highest occupied molecular orbital (HOMO) of
the isolated ICz groups as a measure for their donor strength.
When we calculate the isolated donors, we find a HOMO energy,
which is 0.1 eV lower for 5,7-ICz than for 5,8-ICz and 5,11-ICz
(see ESIt). Thus, their higher HOMO energy renders 5,8- and
5,11-ICz stronger electron donors than 5,7-ICz. As such, the ICz
bridged TTM diradicals clearly behave similar to the TTM-Cz
monoradicals, with their strong and solvent-dependent photo-
luminescence."*® Interestingly, the CT related bands in the
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Fig. 5 Natural transition orbitals (NTOs) for the GS—ES transition in (a) 5,7-1Cz-TTM,, (b) 5,8-1Cz-TTM,, and (c) 5,11-ICz-TTM; in their GS

geometry for triplet T (left) and broken-symmetry singlet S, (right).
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visible spectrum appear at lower energy for 5,8-ICz-TTM, and
5,11-ICz-TTM,, compared to 5,7-ICz-TTM, (see Fig. 4 and Table
1). These characteristics correlate well with the above-described
TD-DFT results and calculated HOMO energies and absorption
spectra. The larger energy gap of diradical 5,7-ICz-TTM, is also
reflected in the photoluminescence spectra, where 5,7-ICz-
TTM, exhibits a maximum at 680 nm, whereas 5,8-ICz-TTM,
and 5,11-ICz-TTM, show maxima in the NIR spectrum at 716
and 720 nm, respectively (see Fig. 4 and Table 1).

We determine ¢ for all three diradicals in cyclohexane
solutions. Because of the high donor strength of 5,8-ICz and
5,11-ICz the quantum yield of the respective diradicals is ¢ =
2%, similar to monoradicals functionalized with donors of
similar strength (see Table 1).'* By contrast, the emission of 5,7-
ICz-TTM, is considerably enhanced with a quantum yield of ¢ =
18%. We attribute this increased ¢ to the clear CT state upon
excitation evoked by the 5,7-ICz of lower and therefore more
appropriate donor strength than 5,8-ICz and 5,11-ICz in 5,8-ICz-
TTM, and 5,11-ICz-TTM,. When changing the solvent from
cyclohexane to the slightly more polar toluene, all the three
diradicals are rendered dark, further substantiating our
conclusion that the ES exhibits a pronounced CT character.

Excited state dynamics and photostability

The excited state kinetics of the diradicals are investigated to
rationalize their different emission quantum yields. We employ
photoluminescence lifetime studies to determine the rate
constants for radiative (k;) and non-radiative (k) relaxation (see
Table 1), using the following well-known relations:

ke
ke + ko

PpL =

1
ke + ks

T =

We find £;'s of the same order of magnitude for all three
compounds, while the radiative rate constant is slightly higher
for 5,7-ICz-TTM,. By contrast, k,, is almost one order of
magnitude smaller for 5,7-ICz-TTM, compared to 5,8-1Cz-TTM,
and 5,11-ICz-TTM,. Thus, the suppression of non-radiative
relaxation is identified as the main reason for the improved ¢.
For related monoradicals, we have demonstrated that low-lying
CT excited states can be deactivated efficiently through conical
intersections with the potential energy surface of the GS.“
Therefore, ¢ drops in a series of carbazole-functionalized radi-
cals with increased CT character of the ES. Simultaneously, the
energy of the ES and thus the emission correlates with ¢. Low-
energy emission, as observed for 5,8-ICz-TTM, and 5,11-ICz-
TTM, is typically connected to poor emission efficiency.*® Thus,
we conclude that the difference in the ES energy between 5,7-
ICz-TTM,, as compared to 5,8-ICz-TTM, and 5,11-ICz-TTM,,
results in its superior value of ¢.

To investigate the photostability of the diradicals, we irra-
diate cyclohexane solutions with UV-light (A = 395 nm, see
Section 4 in the ESIt for details) and use TTM and TTM-Cz as
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references. Since the luminescent monoradical is a possible
degradation product of our diradicals, we refrain from deter-
mining the photostability by photoluminescence and we use
UV-vis spectroscopy instead (see Section 4 in the ESI} for
details). Both reference compounds degrade completely within
3 seconds and 1 minute, respectively. By contrast, the diradicals
have superior photostability. For 5,7-ICz-TTM, we extract a half-
life ¢, = 19 min (5,8-ICz-TTM,: t;, = 34 min and 5,11-ICz-
TTM,: ¢, > 60 min), which indicates that the photostability is
increased by more than two (to three) orders of magnitude
compared to TTM-Cz and TTM monoradicals, respectively (see
Section 4.4 of the ESIY). This highly improved photostability is
likely related to the pronounced CT character of the ES. Superior
stability has previously been reported for TTM-Cz derived
radicals with red-shifted absorption and emission.*

Conclusions

We have introduced a novel class of TTM-based diradicals
employing indolocarbazole as a linker. In the series of investi-
gated compounds, the inter-spin distance is systematically
increased from 8 to 16 A by choosing three different constitu-
tional isomers bridging the trityl moieties. We observe a weak
dipolar interaction between the unpaired electron spins leading
to a degenerate singlet-triplet GS. For 5,7-ICz-TTM, with its
short radical-radical distance and clear CT excited state, the
diradical exhibits an emission peaking at 680 nm with ¢ = 18%,
which is one of the highest reported values for TTM-derived
diradicals (see Table S2 in ESIt). When the TTM groups are
attached to 5,8-ICz and 5,11-ICz of higher donor strength, the
emission is shifted to the near-infrared region. We find the 5,7-
ICz derivative to be at least 2-3 orders of magnitude more
photostable, than related monoradicals. These findings on
emission wavelength, quantum yield, and photostability are
essential for the design of future fluorescent diradicals. While
the spin-spin interaction in the investigated diradicals is too
weak to lift the degeneracy of the GS, the N-donor-bridged dir-
adicals serve as model systems to understand the emission
properties of future related compounds. A triplet ground state
might be achieved by further decreasing the inter-spin distance
while retaining the optical properties, whereas higher ¢ may be
achieved when using bridges with slightly decreased donor
strength. In the future, such structures could be developed to
serve as molecular qubits with optical read-out of the spin-state.
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