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Hierarchical hollow nanospheres of imine-based
covalent organic frameworks with built-in Ag sites
for fast-charging lithium metal batteries
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Lithium metal is deemed to be the ultimate anode material for high-energy-density and fast-charging
lithium batteries. However, issues of dendritic deposition and frangible solid electrolyte interphases must
be resolved for lithium metal anodes. Herein, a hybrid interfacial layer, hierarchical hollow nanospheres
assembled from lithiophilic imine-based covalent organic frameworks and built-in Ag sites (Ag@ICOFs),
has been applied to regulate the interfacial lithium ion flux and enhance the anode stability for effectively
inhibiting dendrite formation. The hollow ICOFs play important roles in enhancing electrolyte infiltration
caused by ordered porous channels and promoting uniform lithium distribution due to the superior
lithiophilic ability of binding sites (C=N groups and benzene rings). Moreover, the filling of Ag can
induce internal deposition in hollow Ag@lCOFs nanospheres when lithium metal tends to grow vertically.

The dendrite-free lithium development is further verified by in situ electrochemical electrode
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Accepted 25th August 2025 measurements and theoretical calculation. As a result, a synergistic enhancement in electrochemical
performance is realized through stable long-term 1000 cycles and excellent capacity retention (87.3%) at

DOI: 10.1039/d55c03645¢ a quick charge/discharge of 5C in a full cell paired with a LiFePO,4 cathode. This work provides a fresh
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Introduction

Lithium metal batteries (LMBs) boast an ultra-high theoretical
capacity of 3860 mAh g7, a relatively low mass density of 0.534
g cm ™, and a low electrode potential of —3.04 V versus the
standard hydrogen electrode and are therefore widely recog-
nized as some of the most promising rechargeable energy
storage devices."” However, the efficiency and lifespan of LMBs
are substantially depressed due to side reactions between the
highly active lithium metal and the electrolyte and the growth of
lithium dendrites during successive lithium plating/stripping
processes.*™® To make matters worse, these dendrites can
eventually penetrate the separator, which can cause serious
safety issues if these side effects turn more fatal.™ Many studies
have been conducted to solve the aforementioned problems,
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exploration of constructing functional nanomaterials with hierarchical structures for energy storage.

including building multi-dimension frameworks,””™ opti-

mizing electrolyte recipes,'**® and inventing functional sepa-
rators.>" It is a feasible approach to architect an artificial solid-
state electrolyte interphase (ASEI) on the surface of lithium
metal to achieve synergistic benefits such as rapid lithium ion
transport, electrolyte-lithium isolation, and prevention of
lithium dendrite growth and electrode volume expansion to
boost the properties of LMBs.*® Currently, inorganic-dominated
ASEIs have been broadly employed to modulate lithium-metal
interfacial properties, including Li alloys,”>** metal oxides,****
carbon-based materials,>?” and so on. Lithiophilic metal
decoration tends to guide planar Li deposition and develop-
ment on electrode interfaces.”®*® In particular, the Ag compo-
nent shows superior lithiophilicity and better improvement
capability in achieving dendrite-free lithium growth.**-*> Unlike
inorganic-dominated ASEIs, organic polymers provide func-
tional and structural flexibility to optimally tune lithium-ion
migration and mechanical strength, thereby inhibiting the
growth of lithium dendrites.

Significantly, covalent organic frameworks (COFs) and their
derivatives, with their constant porosity, well-defined nano-
channels, and functional backbones, have greatly motivated the
fabrication of ionic “sieve plates”.**** Due to the high
mechanical modulus, COF decoration layers play a role in
suppressing the tip growth of deposited Li.***” Moreover,
relying on their molecular design versatility, well-defined one-
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Scheme 1 Lithium deposition evolution on Li foil decorated with Ag@ICOFs.

dimensional channels, and formidable physicochemical
stability, layered 2D COFs are endowed with the ability to
facilitate uniform lithium transport, adjust lithium deposition,
and suppress dendrite formation in ASEI films.?***° However, the
most commonly implemented COF electrodes have a two-
dimensional structure and a tightly stacked morphology, which
would inadequately expose the active sites and impede the Li*
transport performance.*® Furthermore, managing the growth of
COFs by template methods to fulfill the unusual hollow
spherical forms has been evidenced as another effective method
to obtain stable structures and homogeneous morphologies of
COFs, but only a few investigations have been conducted on it
so far. Regrettably, enhanced hybrid SEIs combining inorganic
lithium alloys and organic hollow spherical covalent organic
frameworks have not been reported to date.

Differing from these studies, mainly focusing on the opti-
mization of dendrite formation in the initial stage and ignoring
the dendrite issue once the vertical Li tendency occurs, in this
work, a hybrid interfacial layer, lithiophilic hollow nanospheres
assembled from imine-based covalent organic framework
(ICOF) layers and built-in Ag sites (Ag@ICOFs), is constructed
and proved to be capable of guiding dendrite-free lithium
deposition (Scheme 1). On the one hand, hollow ICOF nano-
spheres actualize enough exposure of lithiophilic functional
groups such as C=N linkages and aromatic rings, which can
bind lithium ions and promote uniform distribution on the
electrode surface, effectively avoiding the locally concentrated
lithium growth. On the other hand, the internal decoration of
Ag nanoseeds helps improve the conductivity, achieving rapid
electron migration in Ag@ICOFs. More importantly, once
deposited, lithium shows protrusion development, and lithio-
philic Ag can guide directional nucleation and break vertical
growth, further alleviating the dendrite formation. By con-
ducting in/ex situ measurements, the superior capabilities of
guiding homogenous and flat Li deposition and reducing the
side reaction of electrolyte loss have been proved, positively
verifying the rational protection design for lithium metal
anodes. Depending on these positive effects, the Ag@ICOFs
covered electrode exhibits an improved coulombic efficiency
(CE) of 99.4% for 400 cycles and a long lifespan of 1900 h for

a symmetric cell at 0.5 mA cm > Moreover, the full cells

17726 | Chem. Sci,, 2025, 16, 17725-17735

comprising Ag@ICOFs covered lithium anodes and LiFePO,
cathodes can obtain an ultrahigh capacity of 101.8 mAh g *
(capacity retention ratio: 87.3%) after 1000 cycles at 5C. This
work offers a promising insight into the exploitation of novel
composite ASEI layers.

Results and discussion

The brief fabrication process and optical photographs of the
corresponding powders for producing various materials are
shown in Fig. 1. Specifically, mesoporous silica dioxide (SiO,)
spheres are synthesized by the solvothermal method and then
used as the initial template. Meanwhile, AgNO; is also selected
as the precursor for preparing Ag nanoseeds by mild-tempera-
ture chemical reduction. Compared to other metals, Ag deco-
ration not only exhibits excellent lithiophilicity in inducing Li
deposition, but also helps promote rapid electron migration in
Ag@ICOFs because of its better conductivity. Afterwards, it is
necessary to decorate the amino group on the SiO,@Ag surface
for promoting the subsequent amino-aldehyde condensation
and enhancing decoration uniformity. Therefore, the outside
growth of imine-based covalent organic frameworks (ICOFs)
can be achieved by adding p-phthalaldehyde (TA) and a 1,3,5-
tris(4-aminophenyl)benzene (TAPB) monomer. At last, the
diluted NaOH solution (1 M) is employed to remove the SiO,
template during the fabrication of hollow Ag@ICOFs. In
particular, the sample has changed from white to yellow after
the functional decoration of ICOFs, further indicating the
preparation of Ag@ICOFs.

Fig. 2a-c show scanning electron microscopy (SEM) images
of Si0,, Si0,@Ag@ICOFs and hollow Ag@ICOFs samples, from
which the spherical morphology and uniform sizes of ~600 nm
in diameter can be well maintained despite the addition of Ag
nanoseeds and ICOF growth. Moreover, as displayed in related
transmission electron microscopy (TEM) images (Fig. 2d-g),
SiO, with a single structure, core-shell SiO,@Ag@ICOFs and
hollow Ag@ICOFs have been successfully constructed. Specifi-
cally, due to the necessary consumption of amino groups
binding with Ag, the additional amino decoration on SiO,
nanospheres could be beneficial for improving the amino-
aldehyde condensation (Fig. S1). For as-prepared

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1

SiO,@Ag@ICOFs, layer-assembled ICOFs were produced and
small Ag nanoparticles were distributed on the outer walls of
SiO, and within the ICOF layer. Notably, accumulated Ag
nanoparticles have been changed into dispersed nanoseeds
after removing the SiO, template in Ag@ICOFs, which may be
caused by weak binding between particles. Dispersed Ag sites
can definitely promote more nucleation sites for lithium metal.
Moreover, abundant void space can alleviate the volume
expansion. As presented in the HRTEM image of Ag nanoseeds
(Fig. 2h), the planar spacing of the subject lattice stripes is 0.23
nm, which corresponds to the (111) plane of the face-centered
cubic Ag. The dark-field scanning TEM images of the Ag@ICOFs
composite reveal that granular Ag is randomly dispersed inside
ICOFs without agglomeration (Fig. 2i). The EDS spectra of
Ag@ICOFs (Fig. 2j-1) also illustrate the even distribution of C, N
and Ag elements in the void structure.

The powder X-ray diffraction (PXRD) patterns of SiO,@Ag,
pristine ICOFs and the Ag@ICOFs material are shown in
Fig. 3a. The related PXRD patterns of ICOFs and Ag@ICOFS
show an evident intense diffraction peak at ~3.0°, which is
clearly related to the (100) crystalline plane of the ICOF
structure and consistent with other studies.** Specifically, two
further diffraction peaks at 38.2° (corresponding to the (111)
plane) and 44.4° (corresponding to the (200) plane) that are
attributed to the face-centered cubic Ag (JCPDS card no. 4-783)
are discovered after the modification of Ag nanoparticles.**
Furthermore, the Fourier-transform infrared spectroscopy
(FT-IR, Fig. 3b) results manifest that the specific peaks
attributed to the C=N bond (1618 cm ') are discernible for
Ag@ICOFs. Besides, the unreacted sites of aldehyde (-HC=0)
and amino (-NH,) groups at the borders of the ICOF layered
structure can be attributed to the tiny peaks at approximately

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(@) Schematic illustration of the synthesis route for Ag@lCOFs. (b) Optical photographs of products at various stages.

1696 and 3365 cm™".** In addition, Ag@ICOFs products can
maintain good thermal stability up to 450 °C which can be
verified from the thermogravimetric analysis (TGA, Fig. 3c)
results. Furthermore, the weight ratio of Ag sites in Ag@ICOFs
was determined at approximately 38.2 wt% after complete
decomposition at 800 °C under air conditions, indicating that
moderate Ag loading is necessary, which meets the demand
for inducing the dispersed and internal nucleation of plated
Li. The nitrogen adsorption-desorption isotherm reveals that
Ag@ICOFs (Fig. 3d) has a mesoporous structure with a BET
surface area of 289.5 m® g '. The deviation between the
adsorption and desorption isotherms, especially in the low
relative pressure region, is caused by hysteresis behavior,
which is a common phenomenon observed in nitrogen sorp-
tion measurements for COF materials.**** A larger BJH pore
size of 2.6 nm can promote the diffusion of Li ions (Fig. S2). X-
ray photoelectron spectroscopy (XPS) characterization was
further performed to reveal the detailed composition and
elemental states of Ag@ICOFs. As shown in Fig. 3e, C, N and
Ag elements can be clearly detected in the hollow Ag@ICOFs
material. Peaks at 286.5, 285.2, 284.3 and 283.4 eV in the high-
resolution C 1s spectra are attributed to C-N, C-C, C=C and
C=N, respectively (Fig. 3f).*** The high-resolution N 1s
spectrum (Fig. 3g) displays two nitrogen species: N-C and N=
C at 400.6 and 399.2 eV, respectively.**> Two distinct peaks at
374.8 and 368.3 eV, corresponding to Ag 3d;,, and Ag 3d5,,, are
visible in the Ag 3d spectrum of Ag@ICOFs (Fig. 3h).>*** As
a result, the functional Ag@ICOFs materials with multi-li-
thiophilic groups have been reasonably and successfully
prepared. Moreover, the contact angles of an ether-based
electrolyte (1 M LiTFSI dissolved in DOL/DME (1: 1, v/v) and
0.2 M LiNO;z) with ICOFs and Ag@ICOFs layers were

Chem. Sci., 2025, 16, 17725-17735 | 17727
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Fig. 2 SEM images of (a) SiO,, (b) SiO,@Ag@ICOFs and (c) Ag@ICOFs. TEM images of (d) SiO,, (e) SiO,@Ag and (f and g) Ag@lCOFs. (h) High-
resolution TEM image displaying lattice fringes of the Ag nanoparticles. (i) Three-dimensional image. Dark-field scanning TEM image of
Ag@ICOFs. (j-1) Elemental mapping images of C, N, and Ag in Ag@ICOFs.

measured, which can be observed in Fig. 3i. The contact angle
of Ag@ICOFs is determined to be 25.6°, which is slightly
smaller than that of ICOFs (51.4°), implying that the Ag@I-
COFs layer shows better electrolyte wettability. Therefore,
more dispersed distribution of Li* flux and Li deposition on
the electrode surface will be favored.

To examine the impact of Ag@ICOFs on Li deposition,
a galvanostatic discharge test was conducted at 0.5 mA cm ™2 in
asymmetric cells that contained Li foil and either pristine Cu or
ICOFs and an Ag@ICOFs covered Cu electrode. As demon-
strated in Fig. 4a, S3 and S4, a low nucleation overpotential of
9.6 mV is exhibited by Ag@ICOFs, which is smaller than those
of ICOFs (25.2 mV) and bare Cu (47.0 mV), demonstrating the
improved lithiophilicity of Ag and ICOF decoration. SEM
images were also obtained to explore the morphology change in
the Ag@ICOFs covered electrode deposited with different
capacities of Li metal. Specifically, Ag@ICOFs can still maintain
a smooth surface at a plating time of 2 h, similar to the pristine
conditions (Fig. 4b). Afterwards, observable voids are gradually

17728 | Chem. Sci., 2025, 16, 17725-17735

filled with Li as Li plating time increases to 6 h, obviously
indicating the inducing effect provided by lithiophilic sites
(Fig. 4c). Fig. 4d shows uniform Li growth and a non-dendritic
situation in Ag@ICOFs as loading capacity reaches 5 mAh cm 2.
Nevertheless, after Li plating for 6 h and 10 h, metallic Li would
be coarsely deposited on the bare Cu surface (Fig. S5a), and
continuous Li deposition encountered dendritic development
that may increase the risk of short circuit (Fig. S5b). It can be
assumed that hierarchical lithiophilic sites in Ag@ICOFs,
including exposed C=N groups, benzene rings, and internal Ag
nanoparticles, play a crucial role in homogenizing the interfa-
cial Li ion flux and guiding directional lithium deposition. The
abundant lithiophilic sites in the ICOF framework first facilitate
the dispersion of Li ions, preventing local concentration and
promoting uniform Li distribution on the electrode surface.
More importantly, when lithium tends to form protrusions, the
lithiophilic Ag sites guide directional nucleation and inhibit
vertical growth, thereby preventing dendrite formation. This
combined action of the ICOFs and Ag nanoparticles contributes

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) XRD patterns of SiO,@Ag, ICOFS, and Ag@lCOFs. (b) FT-IR spectra of Ag@ICOFs. (c) TGA analyses of Ag@lCOFs in the air. (d) Nitrogen

adsorption—desorption isotherms of Ag@ICOFs. (e) XPS full patterns of Ag@lCOFs. High-resolution (f) C 1s, (g) N 1s and (h) Ag 3d XPS spectra. (i)

Contact angle measurement of ICOFs and Ag@ICOFs.

to the uniform deposition and enhanced stability of the lithium
metal anode.

An in situ optical micrograph test was also performed to
observe the evolution of Li deposition on the electrode using the
Ag@ICOFs layer. As shown in Fig. 4e-g, the Li metal electrode
equipped with Ag@ICOFs achieves a relatively smooth surface
morphology without any dendrites during the plating process,
which is consistent with the aforementioned SEM observation.
In contrast, the cross-sectional images of two symmetric cells
with bare Li and Li@ICOFs, which were subjected to the same
current density of 1 mA cm™? at different time intervals, reveal
that the surfaces of the two electrodes were smooth in their
initial state (Fig. S6). However, dendrite formation could be
observed after Li plating for 1 h, followed by the appearance of
some mossy dendrites on the surface. On extending the plating
time (beyond 60 minutes), more observable dendrites appeared,
potentially causing short circuits from several large dendrites
and presenting substantial safety hazards for LMBs. As exhibi-
ted in Fig. S7-S9, theoretical calculation was conducted to
better explore the observable difference of Li plating on various
substrates. In particular, more intensive electron accumulation
can be noticed at C=N groups and benzene rings, promoting
the preferential attraction and dispersed distribution of Li ions.
Moreover, the obtained results about adsorption energy of li-
thiophilic sites with Li ions further demonstrate the superior

© 2025 The Author(s). Published by the Royal Society of Chemistry

directional inducement of ICOFs, from which high adsorption
energies of —1.53 and —1.45 eV can be obtained by the C=N
group and benzene ring respectively. Subsequently, compared
to pristine ICOFs, the reduced band gap is shown by Ag@ICOFs
(Fig. S9), thereby modulating the electron distribution on the
surface, which is definitely beneficial for facilitating more
homogeneous and rapid Li" transference.

Fig. 4h illustrates the positive synergistic effect of hollow
Ag@ICOFs loaded dual-lithiophilic sites, inorganic Ag and
organic outer layers, in circumventing the critical problem of
dendritic growth. On the one hand, the ordered and regular
channels and lithiophilic groups (C=N groups and benzene
rings) can guide the initially homogeneous distribution of
immigrated Li ions on the electrode surface, reduce the nucle-
ation barrier, and then promote stable deposition and growth.
On the other hand, built-in Ag nanoseeds can adjust the
direction by attracting Li ions and then guiding internal depo-
sition when Li growth encounters the vertical development. In
sharp contrast, uneven ion dispersion on the electrode interface
will cause locally concentrated Li nucleation and uncontrollable
evolution, thereby inducing fatal dendrite generation and
increasing the safety risk (Fig. 4i).

Coulombic efficiency (CE) is a crucial indicator for exploring
the plating and stripping behaviors, which is determined by the
capacity ratio of Li stripping to plating in each cycle.*® As shown

Chem. Sci., 2025, 16, 17725-17735 | 17729
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electrode after being plated with (b) 1 mAh cm™2, (c) 3 mAh cm™2, and (d) 5 mAh cm™2 of Li. The corresponding in situ optical microscopy

observations of the Li-deposition process on Ag@lCOFs for (e) 1 mAh cm™

Ag@ICOFs and (i) bare Li at various states.

in Fig. 5a, the electrode with Ag@ICOFs exhibits a highly stable
and exceptionally high CE value of 98.8% over 430 cycles at 0.5
mA cm > This performance is significantly better than that of
the ICOF decorated electrode (147 cycles). As demonstrated in
Fig. 5b, CE performances were also conducted at 1 mA cm™> to
emphasize the superiority of the Ag@ICOFs decoration layer. It
is evident that ICOFs encounter a rapid CE decay with signifi-
cant cycling fluctuations (98 cycles), while Ag@ICOFs provides
a stable plot for almost 340 cycles. The notable lifespan differ-
ence demonstrates the enhanced capability of achieving
uniform Li deposition/exfoliation and reducing interface resi-
dues for Ag@ICOFs. The SEM images in Fig. S10 further show
the absence of dendrites on the Ag@ICOFs electrodes after 50
and 100 cycles, indicating the avoidance of concentrated Li
deposition and sufficient exfoliation during these operations. In

17730 | Chem. Sci., 2025, 16, 17725-17735

2, () 3 mAh cm~2 and (g) 5 mAh cm 2. A diagram of Li plating in (n)

sharp contrast, some irregular dendrites appeared on the ICOF
protected Cu electrode (Fig. S11). An optical image of the cycled
electrode directly shows that the protective layer is still tightly
adhered on Li metal (Fig. S12). In addition, related FT-IR anal-
ysis and XRD patterns are also provided in Fig. S13, from which
typical characteristic peaks of ICOFs are detected at ~3° (cor-
responding to the (100) plane) and 1690 cm ™" (imine bonds (-
C=N-)) respectively. Additionally, the Young's modulus distri-
bution map of the Ag@ICOFs electrode after 100 cycles is
provided in Fig. S14, and the measured high modulus value of
6.8 GPa shows that the Ag@ICOFs layer can still suppress
dendrites, implying that the layer is stable.

In order to validate the improved effects of Ag@ICOFs in
promoting the dispersed distribution of Li ions and stabilizing
Li growth, the electrochemical performance of symmetric cells

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2 with an areal capacity of 1.0 mAh cm~2 and
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using LI@Ag@ICOFs and Li@ICOFs was examined in a range of
current densities. Fig. 5c shows that the Li@Ag@ICOFs-based
symmetric cell displays a superior lifetime of more than 1900 h
(0.5 mA cm ™2, 1 mAh em™?) and a low overpotential of 12.0 mV,
extremely longer than that of the cells assembled with ICOF
protected electrodes. The described phenomenon would
become even more apparent when the current density is
increased. Fig. 5d illustrates the obtained results at 5 mA cm ™2,
from which the symmetric cell with Li@Ag@ICOFs delivers an
ultra-stable performance of 1100 h, which far exceeds that of the
Li@ICOFs cell (~410 h). A voltage hysteresis comparison of the
two symmetric cells is depicted in Fig. 5e, where the low
potential hysteresis (~57.2 mV) of the LI@Ag@ICOFs cell can be
well maintained, manifesting the stable mass transfer process
and uniformly dispersed Li plating/stripping. As depicted in
Fig. S15, the Ag@ICOFs-based symmetrical cell exhibits a stable
voltage hysteresis when worked at different current densities (1,
2, 3,5, and 8 mA cm™?), thereby confirming its excellent rate
performance. Actually, Li deposition and growth show concen-
trated and dendritic development at high current densities.
Specifically, the presence of Ag nanoparticles enhances elec-
tronic conductivity and facilitates electron transport, enabling
selective Li deposition in Ag@ICOFs and reducing dendrite
generation.

The interface protection layer can avoid the direct contact
between the ether-electrolyte and effectively reduce electrolyte
consumption due to the SEI formation.”*™® In situ FT-IR

© 2025 The Author(s). Published by the Royal Society of Chemistry

measurements were conducted to verify the practical effect of
Ag@ICOFs in eliminating the unnecessary electrolyte loss at
different deposition/dissolution stages. Remarkably, a continu-
ously decreased FT-IR signal of TFSI™ in the range of 886 cm ™"
can be observed for the ICOF protected electrode, which can be
attributed to TFSI™ decomposition for the breaking of the
fragile SEI and additional chemical reactions.* Nevertheless, an
irreversible increment in the C-O, C-F, and S=O bands at
1079-1057 cm ™}, 1184 cm ™! and 1332-1353 cm ™! also indicates
that the ether-based electrolyte undergoes an inevitable deple-
tion (Fig. S16 and 5f).®° In comparison, during the whole charge/
discharge process, no discernible FT-IR peaks of additional SEI
generation are detected for Ag@ICOFs under the same condi-
tions, which means that stable surface passivation on the
electrode can be significantly supported by the robust Ag@I-
COFs layer (Fig. S17 and 5g). The ion transference number was
also determined for the two decoration layers to study the
interface conditions. As displayed in Fig. 5h and i, a larger ion
transference number of 0.82 can be obtained using the Ag@I-
COFs layer, compared to pristine ICOFs (0.70). The slow ion
movement may encounter uneven Li growth and degeneration
and then cause the local accumulation and residue of Li metal,
easily inducing the breaking of protection layers and fresh SEI
production during the continuous Li plating/stripping.

To test the viability of the Ag@ICOFs protective layer, full
cells were assembled with LiFePO, as the cathode (Fig. 6a).
When tested at a fast-charging current density of 5C (Fig. 6b),
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(a) Schematic diagram of a full battery. Electrochemical performance of Li@Ag@ICOFs|LFP and bare Li|LFP full cells at (b) 5C and (c)

different rates. (d) Electrochemical impedance spectra of full cells after 100 cycles. (e) Charge—discharge profiles of Li@Ag@lCOFs|LFP full cells at
different cycling numbers and (f) enlarged profiles. (g) Charge—discharge profiles of bare Li|LFP full cells and (h) enlarged profiles.

the full cell using Li@Ag@ICOFs exhibits a stable cycling
tendency. In particular, an initial discharge capacity of 113.6
mAh g~ (after the activation of 5 cycles at 1C) with a high CE of
83.4% can be delivered, and then a slight capacity decrease to
99.2 mAh g ' occurs after 1000 cycles, corresponding to
a capacity retention of 87.3%. However, for the cell with bare Li,
there is a continuous rapid capacity decay and extremely low
capacity delivery close to 0 mAh g~ can be noticed after 400
cycles. Similarly, another cathode material (Ni-rich NCM) was
also applied to explore the practical utilization of the functional
anode. In Fig. S18, the obtained performances of full cells using
NCM are provided, from which a high capacity delivery of 147.5
mAh g~ and capacity retention of 84% can be achieved after 50
cycles at 5C, demonstrating the excellent adaptability of NCM
and Li@Ag@ICOFs. As demonstrated in Table S1, compared to
similar COF materials used in LMBs, Ag@ICOFs shows excep-
tional electrochemical performances. In addition, as depicted
in Fig. 6¢, the full cell with Li@Ag@ICOFs demonstrates better
rate performances and the advantage of using the Ag@ICOFs
layer is particularly evident at a high rate (5C). Moreover, the cell
delivers capacities of 159.0 and 115.8 mAh g ' at current
densities of 0.2C and 5C, respectively. The electrochemical
impedance spectra (EIS) of these two full cells after 200 cycles
are shown in Fig. 6d. The interfacial charge transfer resistance
of the cell with Li@Ag@ICOFs is determined to be 30.0 Q,
indicating more stable and faster diffusion of ions and elec-
trons compared to another cell (65.7 Q). Additionally, as
exhibited in Fig. 6e, the Li@Ag@ICOFs cell can display a stable

17732 | Chem. Sci., 2025, 16, 17725-17735

voltage plateau and excellent retention during the long-term
cycling, incrementally increasing from 12.7 mV in the initial
400th cycle to 13.2 mV in the 1000th cycle (Fig. 6f), which is
mainly attributed to the stable interface of the Li@Ag@ICOFs
anode that maintains rapid ion diffusion and charge transfer
kinetics. On the other hand, as shown in Fig. 6g and h, the
voltage polarization of the cell using bare Li dramatically
increases from 765.6 mV in the 50th cycle to 1574.4 mV in the
350th cycle. This is possibly due to an excessive build-up of the
SEI from unchecked Li dendrites, which obstructs electron
transfer and increases charge transfer resistance.

Conclusions

In summary, a functional material of hollow nanospheres
assembled from imine-based covalent organic frameworks and
built-in Ag sites (Ag@ICOFs) has been constructed and used as
an interfacial layer for stabilizing and improving the Li metal
anode. Hierarchical lithiophilic sites in Ag@ICOFs (exposed
C=N groups and benzene rings and internal Ag nanoparticles)
can homogenize the interfacial Li ion flux and induce direc-
tional deposition. Specifically, abundant lithiophilic sites in
ICOFs play important roles in the first stage of dispersing Li
ions and avoiding local concentration, thereby promoting
uniform Li distribution. Subsequently, during gradual Li
development, Ag sites can guide internal Li injection and
inhibit the vertical growth tendency, further inhibiting dendrite
formation. The superior capability of promoting dendrite-free

© 2025 The Author(s). Published by the Royal Society of Chemistry
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behavior and effectively reducing electrolyte consumption has
also been verified using in situ optical microscopes and in situ
FT-IR. As a result, superior electrochemical performances can
be achieved, such as a long-term cycling lifespan of 1900 h, high
CE values of 99.3% and a low capacity decay of 5.3% after 1000
cycles in a full battery. The artificial SEI of the organic-inor-
ganic composite proposed in this work can provide a new idea
for inhibiting Li dendrites.
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