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In recent years, Bayesian optimization has gained increasing interest as a tool for reaction optimization.

Here we use Bayesian optimization in a reaction discovery fashion by treating the glycosylation reaction
class as a black box function. This provides access to new areas of the glycosylation reaction space and
leads to the discovery of novel stereoselective glycosylation methodologies, where stereoselectivity can
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be directed by the addition of lithium salts in interplay with other reaction conditions. Black box

functions are inherently difficult to interpret, but we show how partial dependence plots can be used to
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rsc.li/chemical-science approach.

Introduction

Reaction discovery and the development of new synthetic
methodologies are core topics within organic chemistry. A
typical academic workflow for reaction discovery is depicted in
Fig. 1. The lead reaction is often found through sheer seren-
dipity or hypotheses based on chemical rationalization. More
recently, developments in the field of analytic chemistry,
automatization, and artificial intelligence have allowed high-
throughput experimentation (HTE) and machine learning
(ML) to aid in the search for novel reactivity.® Despite
a constant broadening of our understanding of reaction
mechanisms and the influence of various reaction conditions
on these, most proposed mechanisms are highly simplified.
This makes the rationalization and prediction of undiscovered
reactivity challenging and most often mechanisms are therefore
rationalized retrospectively. When a lead reaction is discovered
it is optimized for yield, selectivity, or other desirable parame-
ters. In academia, the most common strategy for reaction
optimization is the one-variable-at-a-time (OVAT) approach,
where statistical strategies like design of experiment (DOE) are
more widespread in industry.” Besides assisting in finding
optimal reaction conditions, the OVAT approach is useful for
understanding the influence of individual reaction parameters.
Since only one reaction parameter is varied at a time, it is easy to
analyze trends and try to give them chemical meaning e.g.
relating a change in the outcome when changing the solvent to
the polarity of the solvent. Recently, Bayesian optimization (BO)
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infer trends from the obtained data in a similar fashion to the commonly used one-variable-at-time

has been successfully applied for the optimization of multiple
reactions.”™ Once the optimal reaction conditions are identi-
fied, the scope of the established methodology is explored by
testing different combinations of substrates. Lastly, the mech-
anism is often discussed based on the findings from the reac-
tion optimization and scope exploration, and in some cases,
additional experiments will be carried out to gain a deeper
mechanistic insight.

New tools for discovering lead reactions for novel method-
ologies are desirable, especially in cases where rational design
can be difficult due to complex mechanisms. An example of
a reaction where our understanding of the fundamental reac-
tion mechanism limits the rational design of new methodolo-
gies is the glycosylation reaction. One of the main challenges
when designing glycosylations is controlling the anomeric
selectivity, which is highly important for biological function.™*¢

Mechanistic understanding of the glycosylations reaction
can help predict and guide the anomeric selectivity, and
multiple mechanistic studies of glycosylations have been
conducted.”? In the simplest scenario, the glycosylation
reaction is considered an Syl-reaction with formation of
a relatively stable oxocarbenium ion (Fig. 2 top). However, it is
well-known that this is a very simplified view of the reaction
mechanism, and a lot of work has gone into understanding the
influence of different reaction conditions and substrate
effects.®® Much work has also gone into trying to identify
intermediates, both covalent adducts and ion pairs, formed
during the reaction.'”'%>*=>

Despite many detailed investigations, the general under-
standing of the glycosylation reaction is limited, and advanced
mechanistic scenarios are only described for specific activator/
leaving group systems.'”>° As seen from Fig. 2 (advanced
mechanism), the mechanism gets increasingly complicated

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 A typical workflow for reaction discovery. First, a lead reaction is discovered, and then the reaction conditions are optimized to maximize
yield, selectivity, etc. Next, the reaction scope for the methodology is explored, and the mechanism is rationalized in hindsight.
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Fig. 2 Top: A simple commonly accepted mechanism for the glyco-
sylation reaction displayed. Below is a more advanced mechanism
depicted, which more closely resembles the true reaction path with
multiple species involved and all in dynamic equilibria. Both solvent
and counter ions (Cls) can participate in the formation of intermedi-
ates. However, it is still a simplification and understanding the rela-
tionship between these equilibria is extremely difficult. The
glycosylation reaction can therefore be viewed as a black box problem,
or more aptly, a black flask problem.

© 2025 The Author(s). Published by the Royal Society of Chemistry

when including more possible intermediates. In red is high-
lighted the “classic” glycosylation mechanism, where the
glycosylation reaction is viewed as a nucleophilic substituent
reaction proceeding through either a more Sy1-like mechanism,
a more Sy2-like mechanism, or both in competition. Figuring
out where on the Sy1/Sy2-spectrum a specific glycosylation
belongs is in itself challenging, and this will be dependent on
both the substrates and conditions.?**® In green, the formation
of intermediates through reaction with a counter ion of the
activator is also considered, here drawn as covalent adducts, but
ion pairs are also known to be involved. Examples of such
intermediates include glycosyl chlorides® and glycosyl tri-
flates.” In blue, intermediates formed by reaction with the
solvent are included, further complicating the mechanism. The
advanced mechanism shown in Fig. 1 is still a simplified picture
and does for instance not consider pathways with anchimeric
assistance or contact ion pairs. To rationalize the outcome of
glycosylations we would have to determine the relationship
between all of these equilibria, but as of now, we do not have
any way for assessing their individual contribution and co-
dependence. Thus, a holistic understanding of the glycosyla-
tion mechanism might be impossible given our current tools.
The glycosylation reaction can therefore be described as a black
box/flask function (Fig. 2), that is, if we put in x (substrates and
reaction condition) we get an outcome, f{x) (yield and stereo-
selectivity), but our understanding of how x becomes f(x) is
highly limited. We therefore chose to treat the glycosylation
reaction and its mechanism as a “black flask” problem and
carry out a multiobjective optimization of the glycosylation
reaction class by utilizing BO to try to discover new stereo-
selective glycosylation methodologies. As mentioned earlier, BO
has in recent years been extensively applied to the reaction
optimization part of the reaction discovery pipeline and also
recently using a more discovery-driven approach for designing
new materials®®**® and new catalysts.**~** BO efficiently explores
complex, high-dimensional spaces with limited and noisy data,
making it an ideal strategy for advanced chemical systems. We
envisioned BO could help in designing new glycosylation
methodologies, thus shifting the application of BO from pure
reaction optimization towards lead discovery in Fig. 2 by iden-
tifying new glycosylation strategies. Additionally, we show how
trends for specific reaction parameters can be inferred and
analyzed from the BO campaign data in a similar fashion to the
analyses of OVAT data. This is done using partial dependence
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plots, thereby overcoming one of the obstacles of using BO
compared to OVAT.

Results and discussion
Design of experimental setup

The reaction discovery campaigns were run using a human-in-
the-loop setup. A modified version of the Bayesian optimiza-
tion algorithm ProcessOptimizer**” was used to suggest the
experiments. This algorithm has previously been used for
reaction optimization® and can take both continuous and
discrete variables as input. The algorithm has been modified to
incorporate variable constraints for multiobjective optimiza-
tions. As the GlycoOptimizer is inherently a minimizer, the
objectives have been modified accordingly i.e. 100 - objective in
percentage. This modified algorithm will in the following be
referred to as the GlycoOptimizer. Experiments and workup
were carried out by hand (details can be found in ESI Section
2.31). The objectives, i.e. yield and anomeric selectivity, were
evaluated by NMR analysis using an internal standard. The
experimental setup is illustrated in Fig. 3A. The campaign was
initiated by a batch of 10 random experiments suggested by the
GlycoOptimizer. The results from these were fed to the Glyco-
Optimizer which then proposed a batch of 5 new experiments.
The experiments were proposed either using an estimated
Pareto Front*® (exploitation) or Steinerberger-sampling®
(exploration), with a chance of Steinerberger-sampling being
used of 25%. The results inferred from NMR for the proposed
experiments were fed back to the optimizer, which suggested 5
new experiments and so forth. It should be noted that due to
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Initial random experiments

i

(cc)

View Article Online

Edge Article

measurement limitations, the conditions under which the
experiments were carried out were not always an exact match for
the conditions proposed by the GlycoOptimizer with regards to
equivalents and concentration and the conditions being fed
back to the optimizer were the actual conditions the experi-
ments had been carried out under.

Design of model reaction and reaction space

Fig. 3B shows the model reaction and reaction space. The
reactants are perbenzylated glucosyl trichloroacetimidate (TCA)
and r-menthol as the glycosyl donor and glycosyl acceptor,
respectively. A perbenzylated glycosyl donor was chosen to avoid
neighboring group participation (NGP) and remote participa-
tion as we were interested in developing a method where the
stereoselectivity is reagent-controlled rather than substrate-
dependent. The glycosyl donor was chosen to be a TCA as
TCAs are easy and cheap to synthesize from the hemiacetal,
trichloroacetonitrile, and base catalyst.***' Additionally they are
relatively stable and each anomer can be selectively synthesized
by the choice of base.*” .-Menthol is a commonly used glycosyl
acceptor in model glycosylation reactions,””** as it shares
similarities with free secondary alcohol on a monosaccharide.

When selecting the reaction space, we aimed to include as
many parameters as possible that influence glycosylation
outcomes. In total 11 parameters were chosen as shown in
Fig. 3B. All the parameters are either represented as integers or
continuous variables.

The TCA-donor configuration, o or B, was included to take
into account that glycosylations can be stereospecific.**™*” TCAs
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Fig. 3

(A) Anillustration of the experimental optimization loop and initiation. The first batch consists of 10 randomly suggested experiments, and

the results are fed to the optimizer which proposes a batch of five new experiments using a Bayesian optimization algorithm. The results
(anomeric selectivity and yield) are obtained by NMR analysis. (B) Illustration of model reaction and reaction space available for the Glyco-
Optimizer. The values and the representation of the reaction parameters are indicated.
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are most commonly activated by acid catalysis, often using
strong acids, but milder acids have also been shown to be
sufficient.*>**** We chose to include acids with pK,s in the range
of 4.8 to 0.2 represented as integers assigned according to
acidity, and also with the option of no acid. We avoided stronger
acids as we wanted the conditions to be as mild as possible,
improving the possibility for upscale and reproducibility by
non-experts.

It has been shown that the counterion of the acid can play
a role in the outcome of glycosylations with regard to yield and
selectivity.'”*>** To mimick the counterion effect this a lithium
salt was added, and the salts were assigned an integer according
to a principle component analysis (PCA). Details on the PCA can
be found in ESI (Section 3).} Both concentration,*** tempera-
ture,*>** and solvent*»*"** are also known to be important and
were included as input parameters. The most well-known
solvent effects within carbohydrate chemistry are the ether
effect™ and the nitrile effect.”* Thus we chose a three-part
solvent system to take these into account, with both part Et,O
and part MeCN being input variables with the sum of these
constrained to equal to or less than 1. If the sum is less than
one, the remaining part solvent will be DCM, thus part DCM is
included as an indirect variable. Temperature is included in the
reaction space as a discrete variable and not a continuous
variable since each temperature requires a separate reaction
station. The reactions were either carried out at 25 °C or in
a fridge with a temperature of 0 °C, which are the most common
reaction temperatures.*® The presence and the size of molecular
sieves have also been shown to affect the outcome of
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glycosylations,™ and were therefore also added as an input
parameter as integers according to size.

Yield and stereoselectivity optimization campaigns

The first campaign aimed to optimize the yield and B-selectivity
of the glycosylation through multiobjective optimization. In
total 10 loops were carried out including the initiation batch
with 10 random experiments. The results from each batch are
shown in Fig. 4A as the total hypervolume and each experi-
ment's hypervolume contribution. Hypervolumes are a way of
evaluating multiobjective optimizations,* and a hypervolume
contribution of 100% corresponds to 100% yield and 100%
stereoselectivity.

It is seen from Fig. 4A that after batch 3 only minor
improvements to the total hypervolume are observed. In
general, the experiments selected using the exploitative algo-
rithm seem to have the highest hypervolume contributions,
while the experiments selected using the more explorative
algorithm are more scattered.

After the first 10 batches, it seemed that the optimization was
near convergence, but we still envisioned that minor improve-
ments might be possible. However, we were also interested in
running a yield and a-selectivity optimization campaign, to see
if we could also find a stereoselective procedure for obtaining
the more challenging 1,2-cis-glycoside. We, therefore, decided
to run a dual optimization campaign still with batches of 5
experiments, but with only two experiments proposed by the
yield and B-selectivity optimizer. The last three experiments
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Fig. 4 (A) Results from yield and B-selectivity optimization campaign. The first batch consists of 10 random experiments, and the other batches
consist of 5 experiments suggested by the GlycoOptimizer based on the previous experiments either by estimating the Pareto Front (exploitation)
or Steinberger sampling (exploration). The blue line shows the total hypervolume for all experiments and the dots indicate the hypervolume
contribution for each experiment. (B) Left: convergence plot for yield and B-selectivity optimization with total hypervolume after each batch.
Right: convergence plot for yield and a-selectivity optimization with total hypervolume after each batch and the first batch being all the
experiments from the 10 first batches from the B-selectivity campaign. (C) The objectives for both campaigns are plotted against each other with
the estimated Pareto front highlighted.
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Table1l Conditions and results for the experiments carried out during the first optimization campaign optimizing for yield and B-selectivity. Each

batch consists of five experiments. Each experiments hypervolume contribution (HV contr.) is given

Acceptor  Conc. Temp Yield Ratio HV contr.
Exp. no. Conf. Lisalt Lisalteq. Acid eq. (M) Part EtO, Part MeCN M.S. (°C) (%) B %) (%)
1 o LiPFg 3.4 Oxalic 1.7 0.18 0.51 0.05 3A 25 87 69 60
2 B Lil 1.5 Acetic 1.3 0.3 0.29 0.06 4A 25 96 13 12
3 B Lil 3.5 TFA 2.8 0.26 0.51 0.08 3A 0 69 11 8
4 o Lil 1.6 None 1.9 0.27 0.11 0.41 3A 25 13 36 5
5 o LiClO,4 1.7 Acetic 1.4 0.25 0.11 0.81 3A 0 64 78 50
6 B LiNTf, 2.2 Oxalic 1.7 0.19 0.41 0.08 3A 0 61 63 38
7 B LiClO,4 1.7 None 1.8 0.18 0.19 0.11 None 0 59 48 28
8 B LiClO,4 3 Acetic 2.2 0.25 0.56 0.16 4A 25 74 47 35
9 o LiBF, 2.6 Oxalic 3 0.22 0.75 0.18 4A 25 69 73 51
10 o LiB(CeFs); 1 Acetic 2.1 0.24  0.65 0.28 5A 25 10 0 0
11 o LiPFg 2.8 Oxalic 1.5 0.17 0.33 0.04 None 25 97 18 18
12 B LiOTf 1.5 Formic 3 0.09 0.44 0.15 None 25 81 49 40
13 B LiNTf, 3.2 Formic 0.8 0.11  0.15 0.6 4A 0 28 86 24
14 o LiOTf 4.6 Oxalic 1.9 0.13 0.05 0.9 4A 25 97 64 62
15 B LiPF¢ 4.1 Acetic 2.2 0.12 0.8 0.12 3A 25 98 65 64
16 o LiNTf, 4.8 TFA 1.2 0.12 0.69 0.28 4A 0 84 78 66
17 o LiPF¢ 5 Oxalic 2.5 0.03 0.09 0.87 5A 25 93 81 75
18 o LiClO,4 5 Formic 1.2 0.28 0.86 0.12 3A 25 71 52 37
19 o LiBF, 4.1 Acetic 2.4 0.1 0.98 0.01 5A 0 58 59 34
20 o LiNTf, 1.8 None 2.8 0.07 0.31 0.15 3A 0 51 86 44
21 o LiBF, 0.5 Formic 1.1 0.18 0.17 0.53 3A 25 82 80 66
22 o LiBF, 2.1 Formic 2.3 0.06 0.82 0.04 3A 0 62 64 40
23 B LiOTf 4 TFA 2.5 0.21 0.38 0.49 5A 0 76 65 49
24 o LiPF¢ 4.2 Acetic 2.6 0.15 0.05 0.44 None 0 92 72 66
25 o LiOTf 3.1 Formic 1.7 0.05 0.13 0.23 5A 25 74 61 45
26 B LiB(CeFs)s 2.5 TFA 1.3 0.08 0.1 0.7 5A 25 0 0 0
27 B LiOTf 3.3 Oxalic 1 0.07 0.52 0.12 4A 25 81 49 40
28 B LiB(CeFs), 1.5 Formic 2.4 0.16 0.55 0.34 4A 0 0 0 0
29 B LiBF, 4.5 Oxalic 1.4 0.26 0.55 0.38 3A 25 94 71 67
30 o LiClO, 3.7 Oxalic 2.3 0.23 0.12 0.56 3A 25 87 79 69
31 B LiClO, 3.2 Oxalic 2.5 0.13 0.63 0.34 None 25 99 45 45
32 B LiNTf, 4.2 Oxalic 2.7 0.28 0.46 0.25 4A 25 13 77 10
33 B LiNTf, 1.2 Oxalic 2.9 0.21 0.04 0.5 4A 0 94 80 75
34 o LiB(C¢Fs), 3 TFA 1 0.19  0.03 0.15 4A 25 12 0 0
35 B LiPFq 4.1 Formic 2.1 0.05 0.57 0.39 5A 25 57 78 45
36 o LiOTf 3.6 Acetic 2.5 0.17 0.28 0.27 3A 0 95 66 62
37 B LiPFq 3.1 Acetic 1.8 0.09 0.4 0.55 4A 0 98 77 76
38 B LiClO,4 2.5 None 1.3 0.14 0.43 0.49 3A 25 3 0 0
39 o LiBF, 2.5 Oxalic 2.2 0.14 0.29 0.63 4A 0 73 80 59
40 o LiB(CeFs); 1.5 Formic 2.1 024  0.87 0.06 4A 0 33 69 23
41 o LiClO, 0.8 Acetic 2.5 0.27 0.13 0.71 4A 25 58 73 42
42 o LiBF, 2.2 Acetic 1 0.27 0.54 0.29 5A 0 68 74 50
43 o LiOTf 1.8 Acetic 1.9 0.16 0.09 0.47 4A 0 30 73 22
44 B LiB(CeFs)s 1.3 None 2.9 0.24 0.21 0.62 5A 0 26 41 11
45 B LiClO, 1.8 Oxalic 1.7 0.31 0.7 0.27 4A 25 85 50 42
46 B LiPFg 2.7 Formic 2.5 0.2 0.13 0.48 None 25 99 41 41
47 o LiBF, 0.8 TFA 1.4 0.09 0.38 0.06 3A 25 58 74 43
48 o LiBF, 3.5 Acetic 1.4 0.21 0.11 0.73 4A 25 85 77 66
49 B LiClO, 5 Formic 1.5 0.18 0.53 0.21 5A 25 100 36 36
50 o LiNTf, 3.2 Formic 1 0.22 0.33 0.31 3A 25 44 81 36
51 o LiPFg 2.7 Acetic 2.3 0.03 0 0.99 5A 0 50 80 40
52 o LiPF¢ 1.3 Formic 1.2 0.11 0.03 0.11 3A 0 63 80 51
53 B LiClO,4 0.8 Acetic 2.4 0.1 0.45 0.43 3A 0 56 74 41
54 o LiBF, 3.2 Formic 2.8 0.14 0.57 0.29 3A 0 78 76 59
55 o LiBF, 1.1 TFA 2.5 0.06 0.02 0.36 4A 0 73 80 58

were proposed by a new yield and a-selectivity optimizer, and
after each loop, the results from all 5 experiments were fed to
both optimizers. The yield and a-selectivity optimization was
initiated using all the data obtained from the first campaign. All

15060 | Chem. Sci, 2025, 16, 15056-15065

5 experiments in each batch were chosen using Pareto front
sampling. From Fig. 4B it is seen that the total hypervolume for
the yield and B-selectivity does not improve after the initial 10
batches i.e. does not improve during the second dual campaign.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Conditions and results for the experiments carried out during the second dual optimization campaign. Each batch consists of five
experiments. The objectives for the first two experiments in each batch are yield and B-selectivty, whereas the objectives for the remaining three

experiments (shaded) are yield and a-selectivty

Acceptor Conc.

Ratio (8

Exp. no. Conf. Li salt Li salt eq. Acid eq. (M)  Part EtO, Part MeCN M.S. Temp (°C) Yield (%) %) HV* contr. (%)
56 o LiPFq 4.1 Formic 2.5 0.03 0.01 0.27 None 25 74 33 24 (50)
57 o LiB(CeFs); 2.6 Oxalic 1.4 01 026 0.22 5A 25 0 0 0 (0)
58 B LiClO, 2.9 Oxalic 2.3 0.28 0.06 0.06 3A 25 99 57 56 (43)
59 B Lil 45 Formic 1.4 0.08 0.31 0.31 4A 0 75 15 11 (64)
60 B LiNTf, 4.8 Oxalic 1.6 0.05 0.09 0.47 3A 25 101 79 80 (21)
61 o LiNTf, 1 TFA 2 0.17 0.22 0.31 4A 0 53 84 44 (8)
62 o LiClO, 3.6 TFA 0.9 0.06 0.73 0.2 None 0 53 40 21 (32)
63 o LiB(CeFs); 1.6 Oxalic 1.1 0.23  0.48 0.19 4A 25 0 0 0 (0)
64 o LiOTf 3.9 TFA 1.9 0.3 0.24 0.66 3A 25 80 66 53 (27)
65 B LiOTf 4 None 2 0.2 0.4 0.15 4A 0 48 46 22 (26)
66 o LiPFq 4.5 Acetic 2.1 0.13  0.58 0.1 4A 25 85 73 63 (23)
67 B LiPF, 3 Acetic 2.7 0.18  0.59 0.2 3A 0 98 67 65 (32)
68 B Lil 1.8 Formic 1 0.18 0.3 0.12 4A 25 76 7 6 (71)
69 B LiOTf 43 Oxalic 1.1 0.05  0.01 0.59 5A 25 12 68 8 (4)
70 o LiPFq 2.2 TFA 1.5 0.11  0.35 0.14 4A 25 74 79 58 (16)
71 o LiPF, 3.2 Oxalic 1.9 0.06 0.05 0.63 4A 25 9 82 78 (17)
72 B LiBF, 4.6 Formic 2.7 0.28 0.33 0.11 3A 0 99 60 60 (17)
73 o LiPF, 1.3 Formic 2.4 0.23  0.36 0.63 None 25 80 65 52 (40)
74 o LiClO,4 4.1 Oxalic 1.1 0.17  0.24 0.66 5A 25 29 64 18 (10)
75 B LiPF 5 Acetic 1.5 03 044 0.15 3A 0 97 63 62 (36)

“ a-Selectivity and yield hypervolume contribution in parenthesis.

As seen from Fig. 4B the total hypervolume for the yield and
a-selectivity optimization is ~89% at the beginning of the
optimization, that is only with the experiments from the initial
yield and B-selectivity campaign. The dual optimization
campaign is terminated once no improvement is observed for
yield and B-selectivity nor yield and a-selectivity.

In Fig. 4C are the yield of all glycosylation plotted against the
B-selectivity (left) and the a-selectivity (right), and the estimated
Pareto fronts are highlighted. For the B-selective glycosylations,
it seems that the limiting objective is the stereoselectivity,
whereas for the a-selective glycosylation a more classical Pareto
front is observed, consisting of a set of non-dominated
solutions.

The advantage of using BO instead of the OVAT approach is
that it increases the chance of finding the optimal conditions
significantly.**” However, a disadvantage is that it is more
difficult to infer trends from the data, as multiple reaction
parameters are being varied at the time, hence making it diffi-
cult to pinpoint the effect of changing a specific parameter.
Tables 1 and 2 show the experimental conditions and results
from optimization campaigns 1 and 2, respectively. Despite
multiple parameters being varied across the experiments, it is
possible to infer some general trends. For instance, all glyco-
sylation with LiBF, and LiNTf, are B-selective, and all glycosyl-
ations with Lil are a-selective, whereas some of the
glycosylations with LiPF, are B-selective (Exp. no. 1, 17, 24) and
some are a-selective (Exp. no. 11, 56). Interestingly, the presence
of molecular sieves seems to be an important factor for the
stereoselectivity in some cases. Experiments 1 and 11 are
carried out under very similar conditions except for the addition
of 3 A MS to Experiment 1, but a significant difference in

© 2025 The Author(s). Published by the Royal Society of Chemistry

selectivity is observed, 31:69 for Experiment 1 and 82:18 for
Experiment 11. However, the a-selectivity cannot be ascribed to
the presence of LiPF¢ and the absence of molecular sieves alone
since experiment 24 also is B-selective (28 : 72). Experiment 24
also does not have any additives, but the major solvent is MeCN
and the acid catalyst is acetic acid, rather than Et,0 and oxalic
acid as for Experiments 1 and 11. This suggests that some of the
variables are interdependent. For the experiments without any
acid catalyst (4, 7, 20, 38, 44, 65) the yields are low to moderate,
ranging from 3-59%, indicating that lithium-salts can activate
the TCA-donor without any additional catalyst, albeit longer
reaction times are required for full conversion. This is in
accordance with previous studies.**®

Partial dependence plots analysis

To get a more systematic understanding of the influence of each
parameter we turned to partial dependence plots, which is a way
of visualizing the relationship between selected parameters and
the predicted outcome, as the plots show the effect of each
parameter on each objective when averaging out all other
parameters.>>® The estimated effect of each parameter on yield,
B-selectivity, and a-selectivity are shown in Fig. 5. It should be
noted that the partial dependence of the discrete parameters is
illustrated as a continuous function, thus some parts of these
graphs do not carry physical meaning. Starting from the top left,
it is seen that the anomeric configuration of the glycosyl donor
does not influence the yield. However, an inversely correlated
effect is seen on the stereoselectivities, indicating that some of
the reactions might be stereospecific. For the lithium salts, the
identity of the salt influences both the yield and the selectivity.

Chem. Sci., 2025, 16, 15056-15065 | 15061
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Fig.5 Partial dependence plot for all features and all objectives. The plot shows how each feature influences the yield, percentage f-anomer, or
percentage a-anomer, while averaging out the effects of all other features. Note that the objective function is approximated as a continuous

function even in the case of discrete parameters.

The B-selectivity plot shows the highest -selectivities for salt 2,
5, and 6, which are LiBF,, LiNTf,, and LiPFg, respectively. The o-
selectivity plot shows a maximum at lithium salt 1 (LiI). These
trends are in line with the observations from the raw data dis-
cussed earlier. Interestingly, a close to linear response between
the lithium salt PCA integer assignment and the a-selectivity is
observed, indicating that the descriptors used for the PCA are
a good measure for o-selectivity.

The amount of lithium salt does not seem to have an influ-
ence on any of the objectives. The acid plots suggest that the
stronger the acid, the higher the yield, which might be due to
faster reaction times and the absence of rebound product
between the glycosyl donor and conjugate base of the acid.”
The acid also seems to have an impact on the a-selectivity but
with no clear trend, while the influence on the B-selectivity is
minor. A higher amount of acceptor results in a higher yield,

15062 | Chem. Sci, 2025, 16, 15056-15065

which might also be related to faster reaction times. On the top
right, the influence of the concentration is shown, which only
seems to have a minor impact on all the objectives. The amount

OBn LiPFg OBn
o )' Oxalic acid \-/
BnO: + BnO O o A
BnO HO' Et,0/MeCN/DCM BnO
BnOG  cc, (5:63:32) OBn
a-donor [ 19eq. 0.06M, 25°C 96 %
NH 4AMS, 18h o:f (18:82)
OBn ) Lil OBn
t,, Formic acid lo)
Bno/ég/o NH + — > BnoO ~-
BroA—ph EuOMecNDeM B0
CCly HO (30:12:58) O+
B-donor 1.0 eq. 0.18M, 25°C 86 %
4A MS, 18h a:p (93:7)

Fig. 6 Picked lead reactions for stereoselective lithium salt directed
glycosylations. The top reaction depicts Experiment 71 in Table 2 and
the bottom reaction depicts Experiment 68 in Table 2.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of ether solvent improves the o-selectivity in agreement with
known solvent effects. However, interestingly the effect of
increasing the amount of acetonitrile in the solvent only shows
a very minor increase in B-selectivity, though, this is in agree-
ment with previous observations showing that the presence of
other additives diminishes the acetonitrile effect.®> The partial
dependence plot indicates a slight increase in B-selectivity is
observed at lower temperatures.

Lastly, the effect of additives is shown. Noticeably, having no
additives (additives integer equal to 0) increases the a-selec-
tivity, which is also supported by the earlier comparison of
Experiment 1 and 11 (Table 1). To fully understand the effect of
the parameters, the reaction mechanism(s) and evolvement of
all reaction components would have to be elucidated.

Based on the results we propose the conditions from
Experiment 71 in Table 1 as lead for new glycosylation methods
for B-selective lithium salt directed glycosylation, and the
conditions from Experiment 68 (Table 1) as a new glycosylation
method for a-selective lithium salt directed glycosylation. The
lead reactions are depicted in Fig. 6.

From previous studies, it seems plausible that a glycosyl
iodide is formed as an intermediate in the Lil-directed glyco-
sylations, which leads to a-selectivity through Curtin-Hammett
kinetics.® Similar intermediates and stereoselectivity have been
observed for NIS/TfOH-activated glycosylations with thioglyco-
sides.* The high B-selectivity observed for 60 and 71 also aligns
with the formation of either a covalent adduct or a contact ion
pair between the counterion and the putative glycosyl cation.
The highly electronegative counterions would favor the axial
position due to the anomeric effect leading to attack by the
nucleophile on the equatorial position.”® However, all the
counterions are highly electronegative, thus the exact role of the
lithium salts, acids, and molecular sieves remains to be
elucidated.

Glycosylation space

M.S.
Activated
Glycosylations

Li-salt
Activated
Glycoyslations

Li-salt Directed
Glycosylations

Acid Activated Glycosylations

Fig. 7 Depiction of glycosylation space which is a subspace of reac-
tion space. ltis illustrated that since both lithium salt, molecular sieves,
and acid are important for the outcome of lithium salt-directed
glycosylation, these comprise a previously undiscovered part of the
glycosylation space.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Assessing novelty

There is no ubiquitous way of establishing the novelty of
a reaction, and the terms new reaction and novel reaction are
used ambiguously.>**® The demand for a reaction to be novel
ranges from only one component being new to unprecedented
reactivity.>**® To assess the novelty of our discovery we turned
to a definition by Cronin and co-workers,*® who state, that for
a discovery to be novel it has to be repeatable, not observed
previously, and non-predictable. We argue that the discovered
lithium salt-directed glycosylations fulfill all these demands, as
the changes in stereoselectivity based on lithium salts, molec-
ular sieves, etc. are non-obvious and unpredictable. However,
even with this definition, the term novel reaction is still not
entirely unambiguous. The reactions described in this study fall
under the known category glycosylation reactions, which in
terms of reactivity can by itself not be described as a “novel
reaction”, as glycosylation reactions are mostly Sxy1 or Sy2-
reactions i.e. the reactivity is well-known. We therefore chose to
evaluate if our discovery is a novel reaction based on the posi-
tion in reaction space.

It is clear from the partial dependence plot that both the
lithium salt, acid, and additive are important for the outcome of
the reaction. Thus the methodologies cannot be classed into well-
known procedures like acid-activated glycosylations,** acid-
washed molecular sieves activated glycosylation,” or lithium
salt activated.**®*%>”" Instead, the methodology of lithium salt-
directed glycosylation encapsulates a previously unknown part
of the glycosylation reaction space as illustrated in Fig. 7. To the
best of our knowledge, this is the first example of Bayesian
optimization being used for this degree of reaction discovery.

Conclusion

We demonstrate a new workflow for identifying lead reactions
in method development within a broad reaction class. This is
done utilizing Bayesian optimization as a tool for discovering
novel stereoselective glycosylation methodologies. Specifically,
we find that a combination of lithium salt and mild acid
promotes the reaction of a glycosyl TCA with r-menthol,
resulting in high yields. The anomeric selectivity can be directed
by the choice of lithium salt and the additional reaction
conditions. We also show how partial dependence plots can be
used to visualize the influence of each reaction parameter on
the yield and stereoselectivity. From the plots, we can infer
trends and gain mechanistic insights, in a similar manner to
how OVAT data is analyzed.
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