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Recently, we leveraged the FORMED repository made up of 116 687 synthesizeable molecules to deploy
fragment-based high-throughput virtual screening (HTVS) and genetic algorithm (GA) searches of singlet
fission (SF) molecular candidates. With these approaches, both prototypical (e.g., acenes, boron-
dipyrromethane (BODIPY)) and unreported (e.g., heteroatom-rich mesoionic) classes of chromophore
candidates fulfilling specific SF energetic requirements were identified. Yet, the reliance on predefined
fragments limits chemical space exploration and, thus, the discovery of truly unforeseen molecular
cores. Here, we exploit FORMED to train a generative learning framework driven by reinforcement
learning and property predictions. The generative model rediscovers a diverse range of previously
reported SF chromophore classes, including polyenes, benzofurans, fulvenoids and quinoidal systems,
but also suggests an unexpected scaffold absent from the training data, neocoumarin (2-benzopyran-3-

one), characterized by two endocyclic double bonds in an ortho arrangement and capped by a lactone

iizzgfe% ?;r?gaxuzgouzs? 2025 group. An in-depth investigation reveals a diradicaloid behavior over the conjugated core comparable to
2-benzofuran, a widely known SF compound. This work highlights the potential of using both generative

DOI: 10.1039/d55c03184b and property prediction models to discover candidates beyond derivatives of known chemistry for
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1 Introduction

1-4

The singlet fission (SF) process’™ refers to the spin-allowed
conversion of a singlet excited-state (S;) into two lower-lying
triplet states (T;). This phenomenon has the potential to
improve the power conversion efficiency of silicon single-
junction solar cells by exceeding the Shockley-Queisser ther-
modynamic efficiency limit of 33.7% (ref. 5 and 6) in silicon
single-junction solar cells. However, materials suitable for SF
must satisfy several stringent energy-based criteria: (1) the
energy of S; must be at least twice or greater than that of T, for
the process to be thermodynamically feasible," (2) the energy of
T; must be higher than the conduction band of silicon (~1.12
eV) to ensure triplet energy transfer to a semiconductor’® and
(3) the S; energy must align with the energy of the incoming
photon, typically in the visible or near-visible range (1.5-3.5
eV).? These preliminary requirements make the identification
and design of suitable SF materials a challenging task.
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Extensive experimental and computational work has focused
on designing SF materials, primarily through the screening and
modification of known compounds, leading to tailored design
rules.'®*! In this spirit, some of us previously built the FORMED
dataset by mining the Cambridge Structural Database (Fig. 1a)
and characterizing 116 687 experimentally accessible organic
molecules with time-dependent density functional theory (TD-
DFT).*”> FORMED enabled the construction of over a million
donor-acceptor copolymers by cross-coupling the C(sp?) sites of
selected fragments in silico, which were subsequently screened
using statistical models to identify systems with suited SF
thermodynamics. Although this approach successfully identi-
fied several potential donor-acceptor systems, it relied on
previously defined heuristic rules® to limit the combinatorial
space.

To navigate the chemical space more efficiently, this high-
throughput effort was followed by the development of an
uncertainty-controlled genetic algorithm (GA),** based on
NavicatGA,*>*¢ (Fig. 1b). Upon GA optimization, molecules were
assembled from a FORMED-derived pool of fragments, called
reFORMED, and ensemble machine learning predictive models
trained on FORMED data served to score candidates. This
approach led to the rediscovery of known SF compounds and to
the identification of acceptors, such as heteroatom-rich meso-
ionic compounds, not previously investigated for SF. However,
genetic optimization requires a predefined fragment database

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Overview of molecular design strategies: (a) high-throughput virtual screening (HTVS), which evaluates the properties of compounds in
a virtual library, ranks them, and selects candidate compounds with the top properties. (b) Genetic algorithm, where the property space is

explored using predefined structure generation rules in the crossover
structure generation rules by encoding chemical structures into a latent

and mutation steps. (c) Data-driven generative models, which learn
space. Structures are generated by sampling the learned latent space.

With reinforcement learning, the generative process is biased toward molecules with tailored properties.

and fixed rules for their recombination, which inherently limits
the potential of genetic approaches to identify structural motifs
completely outside the box.>”">°

This limitation is potentially overcome by deep learning-
based generative models,**?*” which implicitly learn the rules
for generating chemical structures. These models, trained on
molecules, uncover the underlying structural patterns and
relationships among them, encoding this information into
a continuous latent space, a compressed representation of
molecules. By sampling from this latent space, generative
models create molecules that reside within the learned chem-
ical domain. Free from the constraints of manually predefined
recombination rules and fragment libraries, generative models
enable a broader, unbiased chemical space exploration, with
the potential of discovering compounds that traditional
approaches would have missed.

Once the generative models have learned to create mole-
cules, multiple conditioning strategies are devised to steer the
generative process toward desirable properties, thereby
enabling the inverse design process.**** There are several
approaches to direct the generation to the target molecules,
such as gradient optimization in the latent space,* gradient-
based guidance diffusion,’® and classifier-free guidance

© 2025 The Author(s). Published by the Royal Society of Chemistry

diffusion.***” Among these, reinforcement learning (RL)**** is
the optimization method that iteratively refines the model to
meet target objectives. In each RL iteration, the model generates
a batch of candidate molecules, which are then evaluated using
a scoring function that quantifies how closely the generated
molecules align with the desired properties. Based on the
evaluation, the model parameters are updated through a feed-
back loop that improves its ability to generate higher-scoring
molecules in subsequent iterations. Over multiple iterations,
the generative model's outputs are refined toward compounds
that satisfy the expected properties. Li and Tabor** demon-
strated the potential of this approach by integrating a generative
model with RL to identify SF candidates. Because their meth-
odology relied on semi-empirical computations to evaluate
excited-state energies during each RL iteration and because
their model was trained on a ChEMBL database* containing
only small drug-like molecules, the exploration of the chemical
space remained limited, leading to the identification of thio-
phene and acene derivatives primarily. Replacing these expen-
sive computations with machine learning models as scoring
functions and leveraging a chemically diverse database to train
the models offers an efficient alternative, enabling scalable and
broader chemical space exploration.

Chem. Sci., 2025, 16, 17956-17969 | 17957
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Here, we develop a data-driven design platform in which
both structure generation and structure-property estimation
are accomplished via machine learning. We leverage the
FORMED database to train both the generative and property
prediction models (Fig. 1c). By combining a generative model
capable of creating diverse molecules with a robust predictive
model that estimates excited-state properties with minimal
expense, our approach offers an efficient means for discovering
unexpected molecular scaffolds fulfilling the energetic criteria
of SF materials. Our approach specifically discovers a hitherto
unknown cyclic ester core, neocoumarin not present in
FORMED, that has been previously synthesized. This class of
molecules follows the well-known diradical design principle
elaborated by Michl and coworkers,” while overcoming some of
the limitations of the 2-benzofuran core. Importantly, the
approach also rediscovered most other known or predicted
classes of SF molecules, including acenes, polyenes, and
benzofurans.

2 Methodology

The proposed generative design workflow involves both
a generative and a property prediction model (blue boxes,
Fig. 2). Both models utilize SMILES strings as the molecular
representation. The pre-RL generative model is first trained to
generate chemically valid molecules without specific property
constraints, while the property prediction model evaluates the
excited-state properties of these molecules. This pre-RL gener-
ative model is then coupled with the prediction property model
through Reinforcement Learning, a training framework that
iteratively updates the generative model's parameters to
increase the likelihood of generating desirable molecules. We
implement RL in two stages, following a curriculum of
increasing complexity (red boxes, Fig. 2). The resulting
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Fig. 3 Correlation plots of excited-state properties comparing the
predicted values from the Chemprop model with the true values of
molecules in the test set, obtained from a random split of the FORMED
database: (@) Es, e, (0) Et,ve. (C) ET,ve, and (d) S1 exciton size (dZifw)-

optimized post-RL generative model (yellow box) is able to
selectively generate molecules with properties suitable for SF. In
what follows, we briefly describe all three components, while
additional details are provided in the SI.

2.1 Prediction of excited-state properties

To predict the excited-state properties of interest, a GNN-based
multi-target property prediction model was trained on the
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Reinforcement
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Fig.2 Workflow of the generative design pipeline, which incorporates three deep learning platforms: REINVENT v3.2 for training the generative
model, Chemprop v1.5.2 for training the property prediction model, and REINVENT v4, which conditions the molecular generation process using
a reinforcement learning curriculum approach, yielding the post-RL generative model that selectively creates molecules that meet the SF
requirements. The reinforcement learning curriculum consists of two stages: the first stage focuses on structural constraints, while the second
stage optimizes excited-state properties for singlet fission.
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FORMED database, which consists of 116 687 molecules, along
with their excited-state properties, using Chemprop v1.5.2.%°
This model predicts four key electronic excited-state proper-
ties—singlet and triplet vertical excitation energies (Eg, ve, Er, ves
and Er,,.) as well as exciton size (dzlf}ﬁ)—from SMILES as
a molecular representation. The Chemprop model architecture
consists of a 3-layer GNN with a hidden size of 300 and
a dropout probability of 0.2. The dataset was randomly split into
training, validation, and test sets with an 80/10/10 ratio. On the
test set, the Chemprop model achieved mean absolute error
(MAE) losses of 0.13 eV for Eg_ v, 0.12 eV for, 0.13 eV for Er .,
and 0.17 A for the exciton size (Fig. 3).

In line with previous work,> we also evaluated the predictive
performance of the Chemprop model on an external test set
derived from the reFORMED database. The trained model
demonstrated acceptable predictive accuracy across all excited-
state energies, with MAE values of 0.22 eV for Eg_ ., 0.20 eV for
Er,ve, and 0.31 A for the exciton size (Fig. S1). As such, we
concluded that the multi-target Chemprop model is able to
predict the excited-state properties of unseen molecules accu-
rately enough for the RL process (vide infra).

2.2 Molecular generative models

Numerous generative deep learning models have been devel-
oped for creating molecules, including variational
autoencoders,”* generative adversarial networks,**** flow-
matching models,**® and diffusion models.*”** Among these,
REINVENT,**** a recurrent neural network (RNN)-based frame-
work designed to learn and generate SMILES strings, has
emerged as one of the most effective tools for molecular design
applications. REINVENT is especially appealing due to its user-
friendly interface. Model training and fine-tuning can be easily
configured via TOML or JSON files. In this work, we adopt
REINVENT v3.2 (ref. 64) to learn canonicalized SMILES strings
from the FORMED database.?” In this framework, a SMILES
string is treated as a sequence of tokens, where each token is
either a single character or a combination of characters. A token
pool is created at the start of the training process, and the
model is trained unconditionally to learn the joint probability
P(7T) of generating a SMILES sequence T of length ¢ with tokens
t1,t, ..., tr. The joint probability is expressed as:

l

P(T) = [[ Ptlticr, tia, .. 1), 1)

i=1

The training involves minimizing the negative log-likelihood
(NLL), which quantifies how well the model predicts the
sequences in the training data. The NLL is defined as:

¢
NLL(T) = —log P(T) = — Zlog P(ti|tir, tiay .o th). (2)

i=1
Once trained, the model generates SMILES strings by
sampling tokens sequentially from the learned probability

distribution P(7). Starting with an initial token (* in our case),
the model predicts the probability distribution for the next

© 2025 The Author(s). Published by the Royal Society of Chemistry
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token based on the conditional probabilities it has learned. The
process is repeated iteratively, with each generated token
influencing the prediction of the subsequent token, until
sequence generation is complete. The sequence is terminated
when a predefined stop token is added ($ in our case).

2.3 Reinforcement learning

The trained generative model (vide supra), is then optimized
with RL using the REINVENT v4 implementation. In the RL
process, molecules sampled from the agent model (that is, the
generative model that undergoes optimization) are evaluated
using a scoring function that quantifies their suitability for SF
based on predicted excited-state properties. The construction of
the scoring function is briefly outlined in the following and is
covered in detail in the SI. Following the policy gradient
approach,®® these score values are used as optimization
signals to adjust the generative process. Specifically, these
scores are used to define the augmented likelihood (Pyy,) for
each SMILES sequence T as

log Paug(T) = log Pprior(T) +aS(7), (3)

where S(T) is the reward value associated with the SMILES
sequence T, o is the hyperparameter used to scale the reward
value, and Pp,i,(T) is the likelihood of the SMILES sequence T'in
the prior model (the initial generative model in our case). Note
that, in the case of invalid SMILES sequences, a reward value of
zero is assigned, although their likelihoods are still taken into
account.

To optimize the agent model, the loss function is defined as

L(T) = (10g Poug(T) — 10g Pogent (7)), (a)

where and P,gen¢(T) is the likelihood of the SMILES sequence T
in the agent model. The presence of Ppyio(T) in Payg(7T) serves as
a regularization mechanism, constraining the agent model to
remain close to the learned chemical space and ensuring the
generation of chemically valid SMILES sequences. The balance
between prioritizing the reward and enforcing the regulariza-
tion agent model's knowledge can be controlled with the
hyperparameter o.

During the optimization loop, the RL tends to overexploit
specific SMILES sequence patterns, corresponding to high
reward value, which leads to the generation of structures with
similar scaffolds within an iteration loop. To promote structural
diversity among the molecules generated from the agent model,
we employed the diversity filter implemented in REINVENT v4.%
This filter penalizes SMILES strings that are too similar to those
already stored in a memory bucket, which keeps track of
previously generated molecules. By discouraging the agent
model from repeatedly generating structurally similar
compounds, the filter ensures greater diversity. In addition, we
used experience replay®®7° to improve the convergence of the RL
process by storing high-scoring molecules generated during
previous iterations and periodically reintroducing them into the
training process.

Chem. Sci., 2025, 16, 17956-17969 | 17959
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The energy score function taken from previous work,* where
a higher score corresponds to a higher reward, was used to
optimize the S;/T; energy levels to satisfy three SF requirements:

(1) Thermodynamic constraint: Eg ye — 2Et ve > —1 €V.

(2) Solar cell semiconductor compatibility: Et, ve > 1.5 €V.

(3) Matching with the solar emission spectrum: Eg y. <
3.8 eV.

A detailed mathematical definition of the energy score is
given in the SI. In addition to optimizing the energy levels of S,
and Ty, our goal was to maximize the exciton size (i.e., the root-
mean square electron-hole separation) to promote delocalized
singlet exciton formation. A larger exciton size is indicative of
charge-transfer or delocalized excited-state character, which are
both beneficial for the triplet-pair formation from the singlet
state. We also consider the energy gap between the vertical
second and first excited triplet states, which is to be maximized
to reduce the likelihood of competing T; to T, upconversion
processes.”* Furthermore, we bias the generative model against
the generation of charged structures by penalizing the score of
charged molecules.

Given the complexity of the score function, which involves
multiple objectives to be optimized simultaneously, we adopted
a two-stage curriculum for the RL optimization process
(Fig. 2).”* In the first stage, we focused on structural constraints
(more details are given in the SI). To avoid overfitting, this first
stage of RL was limited to 20 iterations. In the second stage, we
focus on optimizing the SF-related properties, namely the
energy score, exciton size, and T/T, gap (Et,ve — Er,ve). Split-
ting the RL into two stages focused on different aspects signif-
icantly simplifies the learning. During each stage, the individual

View Article Online
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components of the score function were aggregated using
a weighted geometric mean:

<HS(T))Z (5)

where S,(T) is the individual score component i for the SMILES
sequence T, and w; is the weight assigned to the i-th score
component. Additional details regarding the implementation of

the different objectives and the weighting strategy are given in
Table S1.

At the end of the second stage of each trial, 1280 molecules
were generated using the post-RL generative model, and their
excited-state properties were predicted using the Chemprop
model. Subsequently, the 10 best molecules, ranked according
to their energy scores, were selected for further validation and
optimized with DFT to have their properties evaluated using TD-
DFT computations.

2.4 Computational details

The SMILES strings created with the generative models were
converted into 3D geometries using the distance geometry
approach implemented in RDKit,” followed by refinement of
atomic positions with the MMFF94 force field.”*”® These initial
geometries were optimized at the GFN2-xTB”*”” level, providing
an initial 3D geometry for subsequent gas phase density func-
tional theory (DFT) geometry optimization at the wB97X-D”*/6-
31G(d)”** level. Using the same functional and basis set, TD-
DFT computations with Tamm-Dancoff approximation®* were
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Fig.4 RL optimization curves during stage 2 of the curriculum for (a) energy score, (b) exciton size (dzlw)' and (c) v, ve — E7,ve. Kernel density
histogram plots of Et, ve, ET,ve. and dil_w predicted with Chemprop model for 1280 molecules generated from (d) the pre-RL generative model
and (e) the post-RL generative model 1. The yellow region designates where S; — 2T, conversion is thermodynamically feasible and Et e is
aligned for potential integration into solar cell applications. (f) Property map between Er, e and Ex, e Of the 1280 generated structures from the
post-RL generative model 1 (blue) overlaid on top of the FORMED database (gray). Note that energy values of the generated structures in the map

are predicted with the Chemprop model.
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carried out to determine vertical excitation energies and to
perform excited-state geometry optimizations to extract adia-
batic excited-state energy values. The diradicaloid character was
assessed by computing open-shell singlet wavefunctions at the
UHF/6-31G(d) level on the DFT optimized geometries and
extracting the diradical character (y,) and the tetraradical
character (y;) diagnostics as introduced by Nakano and
coworkers.>**>% All electronic structure computations were
performed using the Gaussian16 (ref. 86) (revision A.03) soft-
ware package.

3 Results and discussion
3.1 Exploration of chemical space

To identify potential candidates for SF, we follow the workflow
shown in Fig. 2 and optimize a generative model. In the RL
optimization loop, we rely on the Chemprop property prediction
model for fast and inexpensive scoring. Within 600 iterations,
the overall score, the energy score, and di‘_ _y+ of the generated
molecules reach convergence (Fig. 4a, b and S5). The Er . —
Ex e is also sufficiently high (~1.2 eV) to suppress undesired
triplet-triplet upconversion (Fig. 4c). For simplicity, we narrow
the discussion to the energy score and the singlet and triplet

View Article Online

Chemical Science

excitation energies, which are the most critical factors for SF
propensity. To evaluate the impact of reinforcement learning,
we compare the average excited-state properties of molecules
generated before and after the initial optimization trial.
Specifically, we sample 1280 molecules from both the pre-RL
and post-RL generative models (model 1) and analyze their
chemical structures and predicted excited-state properties.
The pre-RL generative model creates molecules that broadly
span the chemical space of the FORMED database (Fig. S8). The
resulting molecules are chemically diverse, exhibiting an
average Tanimoto similarity score of 0.10 and yielding ~367
unique scaffolds®” from a sample of 1280 generated molecules
(Table S3). Unique scaffolds are defined as a Murcko scaffold
with a Tanimoto similarity below 0.70 relative to other Murcko
scaffolds in the dataset. In terms of their excited-state proper-
ties, the distributions of vertical excitation energies for the
singlet (Er, ve) and triplet (Er, ) states are largely overlapping
(Fig. 4d), suggesting that most generated molecules do not meet
the thermodynamic requirements for SF. Of the 1280 molecules
generated by the pre-RL model, only two are predicted to satisfy
the energetic criteria, a low hit rate at this stage. In contrast,
molecules generated by the post-RL generative model 1 are
confined to a narrow region of chemical space (Fig. 5) and are
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Post-RL 3
Post-RL 2
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Fig. 5 t-SNE plot generated from the Morgan fingerprint representation of the generated structures from the pre-RL and post-RL generative

models.
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(a) Candidate molecules generated by the post-RL generative models from different optimization trial runs. Et, e and Et, . are computed

using TD-DFT. (b) Property map between Ev e and Et, e Of structures in the FORMED database colored by frontier molecular orbital (FMO) gap.
The yellow region designates where S; — 2T, conversion is thermodynamically feasible. The corresponding adiabatic excitation energies and
chemprop-predicted vertical excitation energies of these structures can be found in Fig. S12.
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less diverse, with an average Tanimoto similarity score of 0.35.
These molecules mainly share the same Murcko scaffolds (1-5
unique scaffolds among 1280 generated molecules, Table S3).
However, the distribution of their excited-state energy levels is
well separated (Fig. 4e), with the Et . centered at approximately
half Eg ... Consequently, more than 750 structures of the 1280
molecules created by the post-RL generative model 1 are within
the energetic target region for the desired SF property (Fig. 4f).

Despite improving the excited-state properties, the post-RL
generative model 1 predominantly suggests polyenes (e.g., 1 in
Fig. 5 and 6) and similar molecules with extended m-conjugated
systems that are known SF chromophores. This apparent pref-
erence for polyenes is sound considering the simplicity of their
SMILES pattern, which consists of frequently occurring tokens
in the FORMED database (e.g., C and =). Furthermore, these
molecules are abundant in FORMED (used to train both the
generative and property prediction models).

To steer the generative exploration toward other chemical
space regions, we introduce custom alerts,* SMARTS-based
filters for unwanted substructures into the scoring function at
both stages of the RL curriculum. If a generated molecule
contains any substructure from the predefined list, its score is
set to zero, effectively penalizing the generation of such mole-
cules. Molecules containing ring systems and extensive -
conjugated frameworks (entries 1-15 in the complete list of
unwanted substructures provided in the SI) were initially
penalized.

With these structural constraints, the second and third
optimization trials guide the generative models toward more
compact and tunable molecules featuring rigid m-conjugated
cores. However, each post-RL generative model continues to
create molecules within the same structural class. Specifically,
the second and third post-RL models predominantly generate
substituted acenes®®*** (e.g., 2) and derivatives of boron-
dipyrromethane (BODIPY)*** (e.g., 3), respectively. Notably,
despite these structural constraints, the diversity of molecules
generated in these trials remains comparable to that of the first
RL trial in terms of the number of unique scaffolds and simi-
larity scores (Table S3), where no custom alert filter was used.
Similar to polyenes, these molecule classes have been investi-
gated for SF and are prominently represented in FORMED, with
BODIPY and anthracene appearing 621 and 928 times,
respectively.

We thus include BODIPY and acene in the unwanted struc-
ture list (entries 16-17 in the complete list of unwanted
substructures provided in the SI) for further exploration.
Incorporating the full list of unwanted substructures in the
structural constraints leads to a more challenging optimization,
requiring a larger number of iterations to improve the excited-
state properties of the generated molecules (Fig. S4 and S5).
Seven additional optimization trials were carried out with the
full list of unwanted structures. Each trial directs the generative
model toward a distinct family of SF chromophores, corre-
sponding to a unique region of chemical space, as illustrated by
the dimensionality reduction plot in Fig. 5. The RL optimization
curves and kernel density histogram plots of the excited-state
properties of all trials are presented in Fig. S3-S5,
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respectively. A summary of the performance of all generative
models is provided in Tables S3 and S4.

At the end of each of the 10 optimizations, we collect the top
10 candidates from 1280 molecules created by the post-RL
generative model according to their predicted energy scores.
These top performers are then optimized with DFT, and their
vertical energies computed with TD-DFT. Among the 100 eval-
uated molecules, 73 meet the SF criterion, demonstrating that
Chemprop reliably guides the generative model toward high-
reward regions of chemical space via RL. From this pool of
computationally validated SF molecules, we (re)discover
molecular classes with energy splittings that satisfy the SF
thermodynamic criteria. One to three representative molecules
from each post-RL generative model are presented in Fig. 6.
Their adiabatic excited-state energies, along with the
Chemprop-predicted vertical excitation energies, are provided
in Fig. S10 and S11, respectively. The computed Es .. and Er, e
of our candidate molecules fall within the thermodynamically
favorable region for S; — 2T, conversion. Furthermore, these
candidates' Er, . value is adequate for their potential integra-
tion into solar cell applications (Fig. 6) and the T,-T, energy
gaps are large enough to suppress unwanted triplet upconver-
sion. As stated above, the three initial trials coincide with the
rediscovery of polyenes (1), acenes (2), and BODIPY (3). In the
following seven runs, which exclude the full list of unwanted
substructures, the generative model uncovered derivatives such
as substituted 2-benzofurans (4), which were initially screened
and identified by Michl and coworkers'” as potential SF chro-
mophores. Similarly to their findings, our candidates feature
substitutions at the C1 and C3 positions,”®"* lowering the
triplet energies to better align with the energy requirements for
solar cell applications than the unsubstituted counterparts
(Fig. S14).

We also encountered a variety of fulvenoid and quinoidal
compounds (5-8), recently identified as promising SF scaf-
folds."*** The fulvenoid derivatives feature diverse heterocyclic
rings such as furan, thiophene, imidazole, and hydantoin,
linked to aromatic rings via an exocyclic bridge containing one
or more methine moieties, often decorated with a cyano group.
Similar to the substituted fulvenes previously identified,** these
fulvenoid structures maintained a favorable Eg . : Er, , ratio.
While these structures merit further investigation, they will not
be the focus of the remainder of this work.

In line with a previous work by some of us, the post-RL
generative model 9 yielded molecules containing mesoionic
N-oxide motifs (9)."”> Mesoionic heterocycles have been identi-
fied as good acceptor units for charge transfer in donor-
acceptor systems.'**"?* Interestingly, structures embedding the
N-oxide in an anthracene core exhibit lower Er .. and similar
Eg, ve compared to the substituted acenes, which increases the
splitting (Er, ve = 1.4 €V, and Er . = 3.4 eV).

Overall, the diversity of the (re)discovered singlet fission
chromophore candidates demonstrates the capability of the
optimization pipeline, powered by a tailored scoring function
and the FORMED database, to identify SF molecules across
different structural classes. Furthermore, the successive
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inclusion of unwanted substructures as a penalty term in the RL
step underscores the flexibility of the workflow.

3.2 A coumarin isomer as a promising scaffold

Along with the above finding, a series of coumarin derivatives
sharing the same 2-benzopyran-3-one core (10-12) and
emerging from the generative model 10 caught our attention,
as, to the best of our knowledge, such systems have not yet been
explored for SF applications. We term this scaffold neo-
coumarin to distinguish it from the well-known coumarin (1-
benzopyran-2-one) and from its primary constitutional isomer,
isocoumarin (2-benzopyran-1-one). Akin to coumarin and iso-
coumarin, neocoumarin derivatives feature a bicyclic system
consisting of a benzene ring fused to a 2-pyrone ring.

The derivatives selected by the model include amine and aryl
substituents on the pyrone ring. Substituted neocoumarin
structures (10 and 11) generated by our optimization trials
exhibit proper energetics for SF, with Ey . = 1.4 eVand Eg . =
3.0 eV. The distribution of the excited-state character, as visu-
alized through the hole and electron densities derived from the
natural transition orbitals (Fig. S15), shows significant overlap

a) Add/remove fused ring

O 15
O~

Et1ad4=2.556eV
Eg1a9=4.38 eV Et1a94=0.85eV
Esta4=2.52 eV

e X
6 LI 0
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between the singlet and triplet states, both being localized near
the aromatic subsystem of the fused ring core.

To identify the molecular core responsible for the SF-relevant
properties and extract concrete design principles, we performed
adiabatic TD-DFT computations on the bare neocoumarin
structure (13, Fig. 7), which confirmed good S;/T; splitting
(Et,aa = 1.49 eV and Eg ,q = 3.34 eV). We also noted that the
synthesis of neocoumarin and derivatives thereof has been
accomplished in a number of previous works.”>'*7'% Interest-
ingly, while coumarin (1-benzopyran-2-one) and isocoumarin
(2-benzopyran-1-one) motifs appear 889 and 121 times,
respectively, in the FORMED database, neocoumarin (2-
benzopyran-3-one) is not present. Neither coumarin (Et, .q =
2.75 eV, Eg aq = 4.43 eV) nor isocoumarin (Er, aq = 2.46 €V, Eg_.q
= 4.43 eV) exhibit energies which are conducive to SF (green
crosses in Fig. 8; see also Fig. S14). This implies that the opti-
mization strategy succeeded at finding an out-of-sample, syn-
thesizable chemical motif with good SF properties in spite of its
absence from the training data and the inadequacy of its closest
constitutional isomers.

The synthetic viability of neocoumarin opens the door to
a whole class of compounds with shared structural and

b) Modify functional group
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Fig. 7 Derivative structures of neocoumarin from (a) adding or removing fused rings, (b) modifying the capping functional group, (c) switching
the benzene ring to other aromatic fused rings, and (d) altering the aromaticity of the conjugated system. Structural changes that preserve
excited-state energies that satisfy SF criteria are indicated by the yellow background.
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Fig. 8 Property map between E .4 and Es .4 Of the neocoumarin-
related structures. The yellow region designates where S; — 2T,
conversion is thermodynamically feasible and Et e is aligned for
potential integration into solar cell applications.

electronic characteristics. In order to exhaustively identify
beneficial modifications and rule out modifications that disturb
the SF energetics, we systematically explored the chemical space
around the neocoumarin core by manually constructing diverse
derivatives and computing their excited-state properties using
adiabatic TD-DFT (Fig. 7). Vertical T, and T, excited state energy
levels of these molecules are reported in Fig. S13.

We first varied the number of fused rings in the system.
Removing the fused benzene ring increases Eg ,q to 4.38 €V (14),
while extending the number of fused rings reduces Er, .q to
0.86 eV for two fused benzene rings (15) and 0.47 eV for three
fused benzene rings (16), leading to poor SF thermodynamics in
both cases, thus establishing that an energetic sweet spot is
achieved with two rings. The role of the lactone moiety was then
explored by swapping the ester functional group in the lactone
ring with an amide (17, forming a lactam), which lead to an
increase of Ep, ,q by around 0.2 eV, and thus a poorer splitting.
Replacing the lactam with a thioester instead (19) lowers Et, .q
by 0.1 eV while Eg_,q decreases by about 0.2 eV, which keeps the
splitting ratio approximately constant. These results corrobo-
rate that the ortho-quinoidal double bonds are key to the pho-
tophysical properties of the system, whereas the nature of the
lactone-type endcapping functional group and substituents on
the pyranone unit are synthetic handles of interest for potential
kinetic stability or synthesizability reasons.

The choice of ring system was also explored by manually
constructing and testing different 5- and 6-membered aromatic
heterocycles as a replacement for benzene to understand the
limitations of this strategy. With 5-membered heterocyclic rings
such as pyrrole (21, and 22), thiophene (23), the Eg ,q:Er, ad
ratio remains close to ideal while Ey .4 increases to around
2.0 eV. However, replacing benzene with pyridine (24) has
a negligible effect on SF energetics.

Since replacing benzene with other aromatic rings proved to
be a viable strategy to fine-tune the neocoumarin core, we tested

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the role of aromaticity by using non-aromatic or anti-aromatic
fused rings instead. Replacing benzene by cyclobutene or
cyclooctatriene (25-26) leads to a dramatic lowering in Er, aq,
while breaking the delocalized 7 system through saturation
(27-28) leads to a consistent increase in Er o4, in both cases
hampering SF energetics.

We note the similarity between the neocoumarin core and
the previously identified 2-benzofuran derivatives pioneered by
Michl and coworkers (Fig. 9a).'”'°'* In both cases, the pres-
ence of o-xylylene motif characterized by two ortho quinoid
endocyclic double bonds appears to be conducive to good SF
energies. As expected from this analysis, removing this motif by
altering aromaticity (as in 27 and 28) or by changing the posi-
tion of the ester functional group in the 2-pyrone ring (Fig. 8),
disturbs the energetics of the system.

In the case of 2-benzofuran, the presence of the o-xylylene
motif (dark green in Fig. 9b), has been linked with diradicaloid
character, an electronic property associated with SF

a) Coumarin Benzofuran Neocoumarin
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Fig. 9 (a) Spin-density plots and comparison of coumarin, benzo-
furan, and neocoumarin. (b) Components of the neocoumarin scaf-
fold. The ortho quinoid motif responsible for SF-relevant properties is
highlighted in green.
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propensity.'0%10%104110.111 Tg agssess whether the same applies to
the identified class of molecules, we evaluated the di- and
tetraradical character (y, and y,, respectively) of neocoumarin
and selected derivatives via natural orbital analysis of their
unrestricted Hartree-Fock (UHF) wavefunctions (see SI for
additional analysis)."****>'** The results are compiled in Fig. 9.
We find that the diradical character in neocoumarin (y, = 0.16)
is slightly higher than in benzofuran (y, = 0.09, hence the lower
T; energy of the former, cf. Fig. 8) while both retain very small
tetraradical character (y; = 0.01). By comparison, coumarin has
little of both diradical and tetraradical character (y, = 0.02,y, =
0.00). These findings, along with the features of the spin density
plots (Fig. 9) highlight the critical role of the ortho quinoid
arrangement and the necessity of preserving aromaticity in
maintaining singlet fission (SF)-relevant electronic properties,
offering valuable insights for the design of next-generation SF
molecules.

4 Conclusions

In this work, we demonstrated the relevance of a data-driven
generative framework for the discovery of potential SF mate-
rials, combining structure generation and property prediction
models. Building upon the FORMED database and leveraging
curriculum-based reinforcement learning, this approach
successfully rediscovered a broader range of SF chromophores
than our previous fragment-based design methods, including
polyenes, acenes, boron-dipyrromethane (BODIPY), benzofu-
rans, fulvenoids, quinoidal structures, and mesoionic
compounds. More significantly, the generative framework
identified a molecular class, neocoumarins (2-benzopyran-3-
one), which is uncharted for optoelectronic applications but
exhibits favorable excited-state energetics for SF. While the
coumarin and isocoumarin systems, well-represented in the
FORMED database, exhibited poor SF properties, the generative
model, guided by our RL optimization strategy, uncovered this
third coumarin isomer, which is absent from the FORMED
database but is found to possess promising SF energetics. This
ortho-xylylene core capped by a cyclic ester group follows Michl's
diradical design principles while addressing some of the limi-
tations of the benzofuran core and offering novel opportunities
for SF material development.

Our results thus highlight the potential of generative design
not only to rediscover known SF candidates but also to explore
uncharted regions of chemical space, enabling the identifica-
tion of out-of-the-box chromophores with tailored properties.
This offers a promising pathway for advancing the discovery of
functional materials. Although we successfully identified
a variety of target molecules, our current approach relies on
manually guiding the generation process by excluding previ-
ously discovered scaffolds. This process could be streamlined by
automatically detecting key scaffolds identified at the end of
each trial and dynamically updating the list of excluded motifs
for subsequent trials. Furthermore, direct comparisons with
other approaches (e.g., genetic optimization) across a broader
range of practical chemical applications are still awaited.
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