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Electrochemical synthesis of aziridines, pyrrolidines
and oxazolines enabled by azo-free alcohol
aminationfy

Emma A. Hale® and Qilei Zhu@®*

Although amines and nitrogen-containing heterocycles are prominent scaffolds in bioactive compounds,
functional materials, and commodity chemicals, their synthesis and functionalization often suffer from
lengthy pre-installation of the appropriate functional groups, employing exotic amination/aziridination
reagents and the use of expensive or toxic catalysts. Herein, we developed a mild and economical
electrochemical amination method to access aziridine, pyrrolidine and oxazoline motifs from the
corresponding amino alcohol substrates. Compared to the classic Mitsunobu reaction, this method
exhibits an expanded scope of nucleophiles, including weakly acidic amides and primary amines.
Mechanistic studies provided direct evidence for the proposed two-electron oxidation of alcohol and
PPhz to yield the alkoxyphosphonium cation intermediate. This reaction demonstrates the potential of
using electrochemistry to not only replace azo-oxidants in classic Mitsunobu reactions, but also improve

rsc.li/chemical-science

Nitrogen heterocycles, such as aziridines, are prevalent
synthetic targets in multiple research fields, including medic-
inal chemistry, the agricultural industry and materials science,
due to their versatile reactivities and engaged interaction modes
with metal cations and Brensted acids, such as coordination
and hydrogen-bonding aggregation."* However, current
synthesis and derivatization of complex aziridines often involve
lengthy functional group interconversion, tedious synthesis of
exotic nitrene-equivalent reagents, and expensive transition
metal catalysts.>® Due to the ubiquitous accessibility of amino
alcohol derivatives from amino acids, peptides and biochemical
feedstocks, it is conceivably desired to develop direct alcohol
amination/cyclization methods to afford nitrogen-containing
saturated heterocycles from the corresponding amino alcohol
substrates. In addition, it can be synthetically advantageous if
the native chirality in natural amino acids can be leveraged to
access chiral nitrogen-heterocycles through stereospecific
alcohol amination.

In spite of the abundance of the alcohol functionality,” its
use in direct amination reaction is scarce, considering the -OH
group is a poor leaving group in nucleophilic substitution
reactions. To achieve effective functionalization, additional
synthetic steps are often required to convert the alcohol to
a better leaving group, such as an alkyl halide or sulfonate
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the synthetic applicability by overcoming the pK; limit due to the azo-derived betaine intermediate.

ester,> or a more reactive electrophile, for instance, an alde-
hyde or ketone, that can participate in reductive amination
reactions with amine nucleophiles (Scheme 1A)."*** Both
approaches suffer from the multi-step functional group trans-
formation and redox state interconversion. Although catalytic
alcohol amination strategies are available via cascade alcohol
oxidation and reductive amination,">* it is challenging to
retain the chirality from the alcohol substrate via stereospecific
amination due to the chirality loss in the alcohol oxidation step.
Indeed, chiral catalysts are required for asymmetric hydroge-
nation of the imine intermediate." In contrast, the Mitsunobu
reaction is synthetically attractive due to its single-step and
stereochemically inverted alcohol substitution selectivity.'*'®
Despite the continuous progress in improving its applicability
and sustainability,””*® the classic Mitsunobu reaction still
suffers from two major limitations. First, only acidic nucleo-
philes (pK, < 13) are effective, because it is critical for the
nucleophile to protonate the zwitterionic betaine intermediate
(Scheme 1A) and prevent its reaction with the alkox-
yphosphonium cation species.® For example, carboxylamides
or aliphatic amines are not acidic enough to be employed as
nucleophiles under the Mitsunobu reaction conditions. More-
over, the use of stoichiometric oxidants—azodicarboxylate
esters—and the resulting hydrazine byproducts can lead to
potential safety concerns and cumbersome purification in large-
scale production.”® Notably, during the preparation of this
manuscript, Charette and coworkers reported a general strategy
to employ weakly acidic nucleophiles in the Mitsunobu reaction
by using a pre-made protonated betaine-like intermediate.*
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A. Strategies for intramolecular amination of alcohols to access heterocycles
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Scheme 1 Strategies for cyclization of amino alcohol substrates and
synthesis of nitrogen heterocycles.

By taking advantage of the stereospecificity of the Mitsunobu
reaction, we aimed to develop an electrochemical synthesis of
chiral nitrogen heterocycles from accessible chiral amino
alcohol building blocks (Scheme 1B). We hypothesized that the
proposed transformation would overcome several challenges
related to the azo-reagents in the classic Mitsunobu reaction by
replacing the problematic azodicarboxylate chemical oxidants
with anodic oxidation, inspired by our recent discovery of an
electrochemical alcohol cyanation method and previously re-
ported analogous stepwise electrosynthesis.”**® Since the
alkoxyphosphonium species is directly synthesized from anodic
oxidation, bypassing the betaine intermediate, we envisioned
that the electrochemical alcohol substitution reaction can
employ an expanded scope of weakly acidic nitrogen nucleo-
philes (pK, > 13). Although similar stepwise or one-pot alcohol
nucleophilic substitution/C-N bond formation has been previ-
ously reported with azide and azole nucleophiles,>™?® the
intramolecular amination/heterocycle synthesis has not been
demonstrated. Moreover, experimental evidence and mecha-
nistic studies of the proposed two-electron oxidation of phos-
phine and alcohol to yield the alkoxyphosphonium cation are
also not available. Herein, we report electrochemical conditions
for azo-free Mitsunobu-type synthesis of aziridine, pyrrolidine,
oxazoline and related nitrogen heterocycles. Furthermore, cyclic
voltammetry (CV) and linear sweep voltammetry (LSV) experi-
ments provided proof of the proposed anodic two-electron
oxidation mechanism leading to the alkoxyphosphonium
intermediate.

Our optimization efforts started from studying the electro-
chemical cyclization of N-(2-hydroxyethyl)-toluenesulfonamide
(1) to produce the corresponding aziridine 2 (Table 1). Initial
constant current (10 mA) electrolysis of 1 in the presence of
PPh; (1.2 equiv.), DBU base (1,8-diazabicyclo[5.4.0Jundec-7-ene,
2.0 equiv.), tetrabutylammonium hexafluorophosphate ("Bu,-
NPF,) supporting electrolyte (0.1 M), a reticulated vitreous
carbon (RVC) anode and a nickel foam cathode yielded 2 with
14% yield (entry 1). Drastically increased yields were observed

© 2025 The Author(s). Published by the Royal Society of Chemistry
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with an acidic alcohol additive, HFIP (1,1,1,3,3,3-hexa-
fluoroisopropanol), presumably due to the more favorable
cathodic hydrogen evolution reaction (HER) (entries 2-4). The
highest yield of 71% was achieved with 4.0 equiv. of HFIP. We
hypothesize that the acidic but non-nucleophilic HFIP can
accelerate the cathodic hydrogen evolution reaction (HER)
without trapping the anodically generated phosphine radical
cation.”” Indeed, less hindered trifluoroethanol (TFE) and less
acidic tert-butanol do not improve the aziridination reaction
(entries 5 and 6). Besides DBU, other N(sp?)-centered organic
bases, such as TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene), DMAP
(4-(dimethylamino)pyridine) and 1,3,5-collidine, are also effec-
tive in promoting electrochemical alcohol amination (entries 7-
9). In contrast, no product was observed when DBU was
replaced by inorganic carbonate or phosphate bases (entries 10
and 11), potentially owing to their poor solubility in dichloro-
methane (CH,Cl,) solvent. Decreased yields were obtained
when the electrolysis current was reduced to 2.5 and 5 mA, or
increased to 12.5 mA (entries 12-14), presumably due to the
different electrode potentials (see ESI, Fig. S13t) that can favor
undesired redox events of DBU or CH,Cl, solvent. Furthermore,
control experiments lacking phosphine or electrolysis failed to
produce any product (entries 15 and 16).

Table 1 Survey of electrolysis conditions®

PPh;3 (1.2 equiv.),

Base (2.0 equiv.), Ts

TS\H/\/QH :\dditive (x equiv.) [1‘
P A
10 mA, 4.0 F/mol
1 CH,Cly (0.05 M), rt,, Ny 2

Entry Base Additive Yield® of 2 (%)
1 DBU — 14
2 DBU HFIP (1.0 equiv.) 27
3 DBU HFIP (3.0 equiv.) 37
4 DBU HFIP (4.0 equiv.) 71
5 DBU TFE (4.0 equiv.) 18
6 DBU t-BuOH (4.0 equiv.) 12
7 TBD HFIP (4.0 equiv.) 51
8 DMAP HFIP (4.0 equiv.) 68
9 Collidine HFIP (4.0 equiv.) 60
10 Cs,CO; HFIP (4.0 equiv.) 0
11 K;PO, HFIP (4.0 equiv.) 0
12¢ DBU HFIP (4.0 equiv.) 23
134 DBU HFIP (4.0 equiv.) 36
14¢ DBU HFIP (4.0 equiv.) 46
15/ DBU HFIP (4.0 equiv.) 0
16° HFIP (4.0 equiv.) 0

NMe, Me

SO SO sl

Me’ N Me
TBD DMAP 1,3,56-collidine

@ All reactions were performed at room temperature on a 0.25 mmol
scale under a N, atmosphere. © Yields of product 2 were determined
by '"H-NMR with 1,3,5- trlmethoxybenzene as the internal standard.
¢ Electrolysis current I = 2.5 mA. Electr01y51s current / = 5.0 mA.

¢ Electrolysis current I = 12.5 mA.”/ No PPh; is added. ¢ No electrolysis.
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Attempting to probe the stereospecificity of the alcohol
nucleophilic amination, we applied the optimized conditions to
the diastereotopic ephedrine-derived substrate 3, which yielded
the o-OH chiral carbon-center inverted aziridine product 4 with
>20:1 diastereomeric ratio (d.r.) and 80% isolated yield
(Scheme 2A). In comparison, the «-NHTs chiral carbon centers
in 3 and 5 were retained in products 4 and 6 after electrolysis,
consistent with a Mitsunobu-like Sy2 nucleophilic substitution
mechanism. Moreover, we tested our hypothesis of employing
weakly acidic nucleophiles, such as amines and amides, in the
electrochemical Mitsunobu reaction by replacing the sulfon-
amide nucleophile with benzamide protecting groups (pK, = 23
in DMSO).>® Gratifyingly, by implementing slightly modified
conditions including an NMI (N-methylimidazole) base and
a "BuyN'T" catalyst, the oxazoline nucleophilic substitution
products 7 and 8 were obtained in 61% and 96% yields,
respectively, from the ethanolamine and serine-derived benza-
mide substrates, in which the O-atom in the amide moiety
served as the nucleophilic site (Scheme 2B). Besides the ben-
zamide protecting group, aliphatic and heterocyclic carboxylic
acid-derived amides can also be employed to yield the corre-
sponding oxazoline products efficiently (9, 10). In addition,
electrolysis of the 2,2-dimethylmalonamide substrate produced
the chiral symmetric bis(oxazoline) (BOX) chiral ligand in 64%
yield under the standard conditions. Ostensibly, electrolysis of

A. Stereochemistry probing experiments

PPh; (1.8 equiv.),
OH DBU (2.0 equiv.), Ts
: Me HFIP (4.0 equiv.) ,!‘
Ph/\r "BusNPFg (0.1 M) /Q
NHTs RVC (+)Ni (-) Ph ‘Me
10 mA, 4.0 F/mol 4

CH,ClI; (0.05 M), r.t., N.
2Cl2 0.05 M), £t Nz 80% yield, > 20:1 dr

NHTs electrolysis conditions TI-S
H same as above N
Ph /\/OH > . /\
Ph
5 6

58% yield, 98% ee
B. Amide nucleophiles for oxazoline synthesis

PPh;3 (1.2 equiv.)
NMI (2.0 equiv.)
0o HFIP (4.0 equiv.) o
)I\ "BugNI (0.2 equiv.) >_
e "BusNPFg (0.1 M) I:N/ R
H CH,Cly, RVC (+)/Ni(-)
pK, = 23 (DMSO) 10 mA, 4.0 F/mol
Me_ Me
o} 0, ! 0, O\RQ(O
S
G G - T D
N Mo, N pr” N N NN/
Ph Ph
7 61% 8 96% 9 84% 10 83% 11 64%
gram-scale: 77%?
C. Amine nucleophiles for synthesis of unprotected N-heterocycles
PPh; (1.8 equiv.)
HFIP (4.0 equiv.)
NH "Bu,NI (0.1 M) N
ph)\/OH CH,Clp: PhF =3 : 1 . JVAN
RVC (+)/Ni(-) P
12 10 mA, 4.0 F/mol 13 40% yield®
(1) electrolysis conditions
HO. same as above z &
NNk, (2) TCI, NEt, N
s
14 15 42% yield®

Scheme 2 Stereochemistry and nucleophile scope. 8.0 mmol scale
reaction with 1.8 eq. of PPhs and 5.0 F mol™ charge. °PNMR yield was
used. “Tosyl protection was conducted after electrolysis to quantify
the product yield more accurately with *H-NMR.
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unprotected amino alcohols (12, 14) (pK, (NH;) = 41 in DMSO)*
also yielded the corresponding free aziridine (13) and pyrroli-
dine (15) products in moderate yields (Scheme 2C). The same
electrochemical conditions can be adapted for large-scale
synthesis, as gram-scale batch electrolysis successfully yielded
77% yield of 8. These collective observations successfully
corroborated the hypothesis that the pK, limit in the classic
Mitsunobu reaction can be alleviated by replacing the azo
chemical oxidants with anodic oxidation of phosphine and
alcohol, affording the critical alkoxyphosphonium cation and
the nucleophilic substitution product without the betaine
intermediate.

To further investigate the proposed two-electron anodic
oxidation mechanism of phosphine and alcohol, cyclic vol-
tammetry experiments were used to probe their redox proper-
ties in CH,Cl, solvent on a glassy carbon electrode (Scheme 3A).
Consistent with our previous electrochemical cyanation
report,* PPh; exhibited a fully irreversible oxidation peak with

A. Cyclic voltammograms of PPhg, alcohol and collidine base

08
— PPh,
06— PPns+PRCHEOH (16)
g — PPh, + collidine
S 4] PPha+colidine +
r- PhC4HLOH (16)
é 0.2+
3
0.0
02 T

T T T T T
0.2 00 0.2 04 0.6 0.8 1.0 12
Potential (V vs Fc*/Fc)

B. Electron transfer stoichiometry

_ o010
1
T -
S 0.084
2]
58
24 0.067 n=1.89
L E
A 4
3 004+
_‘>C~<.("’ n=1.00n=0,89 n=0.92
[53
2 E 0.02-
=3
]
%
0.00
Fc PPh, PPhy+ PPhy+
alcohol  alcohol +
collidine
C. Nucleophilic substitution of alkoxyphosphonium
PPhy+HBF,, Ts—NH,
PPhs, CH,Cl. DBU (2.0 eq.)
Phy ,,OH & ~M2v2 _ Ph, O @ Phy ,.NHTs
A RVC()/NIC) 5 “PPhy >IN
10 mA, 3 F/mol
16 17 18

51% yield

68% 3'P NMR yield (0% without DBU)

D. Proposed mechanism

anode cathode
? ), —O=PPhy "I\"s 5
@PPh; NHTs VANY FiC” CF,
m DBU  H-DBU* ()
woaur il
_H2
©
PPhy + HO\(")n/\NHTs 2 )O\
+ DBU (U} FsC™ "CFy

Scheme 3 Electrochemical mechanistic studies and proposed reac-
tion mechanism.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the onset close to its oxidation potential (E(PPh;"*/PPh;) = 0.54
V vs. Fc'/Fc). This irreversibility is potentially resulting from
facile side reactions of PPh,;"* with solvent and residual mois-
ture. Inclusion of alcohol 16 and 1,3,5-collidine base separately
showed negligible changes in the PPh; cyclic voltammogram.
The collidine base was chosen for the electrochemical mecha-
nistic studies because the DBU base exhibited noticeable
background oxidation current interfering with the PPh;"*/PPh;
redox couple (see ESI, Fig. S37). Notably, when both alcohol 16
and 1,3,5-collidine were added, a significant enhancement of
the PPh; oxidation peak current was observed, indicating an
increased electron transfer stoichiometry in the electrochemical
oxidation. To further investigate the mechanism of the anodic
oxidation observed in cyclic voltammetry, linear sweep vol-
tammetry (LSV) on a glassy carbon rotating-disc electrode (RDE)
was used to extract the electron transfer stoichiometry of PPh;
oxidation with the alcohol substrate and collidine base. By
comparing the Koutecky-Levich plot* slopes of PPh; with that
of ferrocene (Fc), anodic oxidation of PPh; with and without
alcohol 16 was dominated by single-electron transfer (Scheme
3B, also see ESI, Section S4+t). In contrast, the electrochemical
oxidation of PPh; in the presence of both alcohol 16 and 1,3,5-
collidine is mostly dictated by a two-electron oxidation pathway

Table 2 Survey of various amino alcohol substrates®
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(see ESI, Section S4.4t), consistent with the proposed depro-
tonative oxidation mechanism to yield the alkoxyphosphonium
cation intermediate (Scheme 1B). By adapting previously re-
ported electrolysis conditions,* we have prepared and charac-
terized alkoxyphosphonium 17 with 68% *'P-NMR yield, which
successfully converted to the intermolecular nucleophilic
substitution sulfonamide product 18 in 51% yield when treated
with the TsNH, nucleophile and DBU base (Scheme 3C, also see
ESI, Section S7%). The TsNH, (pK, = 16.3)*" nucleophilic
substitution of alkoxyphosphonium failed to yield any product
without DBU (pK, = 13.9),** indicating that the deprotonated
sulfonamide anion is the effective nucleophile, although the
deprotonation is thermodynamically disfavored.

Combining voltammetry and stoichiometric trapping of the
alkoxyphosphonium cation, the reaction mechanism is
proposed in Scheme 3D. Anodic two-electron oxidation and
deprotonation of phosphine and the amino alcohol substrate (I)
yielded the alkoxyphosphonium cation (II), followed by an
intramolecular nucleophilic substitution by the amine/amide
nucleophiles, affording the desired heterocyclic product (III).
Cathodic proton reduction-hydrogen evolution from HFIP
furnishes the entire electrochemical circuit. Thermodynami-
cally favorable proton transfer from protonated H-DBU" (pK, =

PPhy (1.2 €q.),

DBU (2.0 eq.),
on HFIP (4.0 eq.) I
N
TsHNT, "Bu,NPFg (0.1 M)
CH,Cly, RVC (+)/Ni(-) ),

10 mA, 4.0 F/mol

Ts Ts
Ts

N { \ O)I\ N N

N
AN Ts

2 71% 19 75%°

[ NTs

NTs
& P

23 68% 24 33%

@ Ts

28 60% 29 50%°

o Me o
S
S
N N
Ts \ ’\/R 0 Ts

34 R=2-CF3,77%

35 R=2-F, 97%
36 R=4-Br, 89%

i i
HOW/Q BnHNJ"'W
N

Me Ts

33 63%¢

T -

20 56%°

Ts

K w (-
N Me
Ts

25 58%°

%\/o\/A eo_o. A

30 68%

40 84%9,>99% ee 41 72%9,>99% ee
89% (gram-scale)

Ph\/Q

22 76%

Ph

21 55%

26 58%° 27 72%b°

Ts Ts Ts

N N N

N ANIPAGYA
SO MeS'

31 74% 32 76%

Ts
N
HO>(Q

Me Me

37 43%¢ 38 62%

o \_me

Meooc—< o

B”HN% HN
.’I‘.‘

s NTs

42 61%°

“ Reactions were run on a 0.5 mmol scale. Yields are for isolated material following chromatography on silica gel unless otherwise noted. ” Reaction
was refluxed. ¢ 4-Dimethylaminopyridine (DMAP) used as a base, with "Bu,NI (0.2" eq.) added. ¢ N-Methylimidazole (NMI) used as a base.
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13.9) to the HFIP-derived alkoxide anion (pK, (HFIP) = 17.9)*
can regenerate the DBU base and HFIP alcohol. Initial reaction
kinetics under the optimized electrolysis conditions were
measured to be (8.07 + 0.27) x 10~* mmol min~" (see ESI, Fig.
S14t), which corresponds to a faradaic yield of (26 &+ 1)%. It is
also noteworthy that a gradual rate increase was observed as the
electrolysis progresses, presumably due to the accumulation of
the alkoxyphosphonium intermediate and accelerated nucleo-
philic substitution by the sulfonamide nucleophile. The anodic
oxidation potential under the optimized bulk electrolysis
conditions was also measured in the presence of a Ag'/Ag
reference electrode to be around 3.6 V vs. Fc'/Fc (see ESI, Fig.
S127). This large overpotential compared to the PPh;"/PPh;
couple is likely due to the sluggish electron transfer kinetics and
substantial mass transfer resistance in relatively non-polar
dichloromethane solvent.

Lastly, we examined the scope of different amino alcohol
substrates in the electrochemical cyclization/nucleophilic
substitution reaction (Table 2). Consistent with the small-scale
optimization experiments, aziridine 2 was obtained in 71%
isolated yield from the optimized electrolysis conditions.
Besides aziridines, pyrrolidine (19) and six-membered carba-
mate (20) can also be synthesized in 75% and 56% yields from
the corresponding 4-amino-1-butanol-derived sulfonamide and
1,3-diol-derived carbamate substrates, respectively. The latter
can be synthetically useful in synthesizing 1,3-aminoalcohols
from the corresponding 1,3-diol substrates. In addition, phenyl
(21), benzyl (22) and spiro- (23, 24) aziridines can be successfully
accessed from electrolysis in good to moderate yields.
Substrates containing secondary alcohols (25-27) are also suit-
able under the optimized conditions, affording the substituted
mono- and bicyclic aziridine and pyrrolidine products with
good efficiencies. Gratifyingly, a broad range of functional
groups can be tolerated under the electrolysis conditions,
including alkenes (28), alkynes (29), acetals (30), silyl ethers
(31), thioethers (32) and alkyl halides (33). Moreover, substrates
containing electron-deficient arenes (34-36) and electron-rich
heterocycles (37) also yielded the corresponding aziridine
products in satisfactory yields. The sulfide (32, 34-36) and
furan-containing (37) examples are particularly noteworthy
because it is well known that furan and sulfides can be readily
oxidized to the corresponding polyfuran,** sulfoxide or sulfone
compounds,* indicating mild and selective anodic oxidation
under the optimized conditions. For substrates containing
more than one alcohol moiety (38, 39), the cyclization is che-
moselective for primary alcohols, presumably controlled by
steric hindrance in trapping the electrochemically generated
PPh;"" species. Gratifyingly, by substituting the DBU base under
optimized conditions with the milder NMI base (pK, (H-NMI")
= 6.4),* chiral aziridine carboxylamides can be synthesized
from accessible (L)- and (p)-serine derivatives (40, 41) and
dipeptides (42) with no noticeable racemization, elucidating
potential applications in biorthogonal functionalization and
modification of peptides. To demonstrate the synthetic poten-
tial of the electrochemical aziridination reaction, gram-scale
synthesis of 40 was conducted under the same conditions with
89% yield.
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Conclusions

In conclusion, we developed an electrochemical alcohol nucle-
ophilic substitution method for the synthesis of aziridines and
other nitrogen heterocycles. Voltammetry studies confirmed the
two-electron oxidation mechanism of phosphine and alcohol to
generate the alkoxyphosphonium intermediate, followed by
facile nucleophilic substitution by sulfonamides for the
synthesis of various nitrogen heterocycles. The electrochemical
substitution method also accepts weakly acidic amide and
amine nucleophiles. This work demonstrates the potential of
employing electrochemistry for azo-free Mitsunobu-type
alcohol substitution with both improved practicality and
expanded synthetic scope.
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