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enables discovery of sub-
micromolar antibacterials for ESKAPE pathogens
from ultra-large chemical spaces

Miguel Garćıa-Ortegón, †*abc Srijit Seal, †*cd Emily Geddes,d Jenny L. Littler,e

Collette S. Guy, e Jonathan Whiteside,e Carl Rasmussen,b Andreas Benderfcg

and Sergio Bacallado*a

The rise of antimicrobial resistance, especially among Gram-negative ESKAPE pathogens, presents an

urgent global health threat. However, the discovery of new antibiotics is hampered by sparse publicly

available antibacterial data, complex bacterial defenses, and weak economic incentives. Here, we

introduce a transfer learning framework using deep graph neural networks (DGNNs) to identify

antibacterials from ultra-large chemical libraries. DGNNs were first pre-trained on large molecular

datasets of protein–ligand simulations, binding affinities, and physicochemical properties to learn

generalizable chemical features, and then fine-tuned on limited antibacterial screening data. Compared

to classical methods, transfer learning significantly improved enrichment factors and predictive

performance in cross-dataset benchmarks. Applying this strategy to the ChemDiv and Enamine libraries,

we virtually screened over a billion compounds and prioritized 156 candidates. Experimental testing

against Escherichia coli revealed that 54% of compounds exhibited antibacterial activity (MIC # 64 mg

mL−1), with several demonstrating sub-micromolar potency and broad-spectrum efficacy against Gram-

positive and Gram-negative pathogens, including three ESKAPE species. Of 18 broad-spectrum

candidates, 15 showed minimal cytotoxicity and no hemolytic activity. These results validate our

approach for navigating underexplored chemical space and identifying potent, low-toxicity compounds

with antibiotic activity. We release open-source models and a scalable workflow to accelerate

antibacterial discovery in the face of data scarcity.
Introduction

The global rise of multidrug-resistant pathogens is a profound
crisis, with 1.27 million deaths directly attributed to resistant
bacteria in 2019 (ref. 1) and a projected 10 million deaths per
year by 2050.2 Infections caused by Gram-negative bacteria are
particularly challenging to treat due to the limited diversity of
antibiotics, and the FDA has not approved any new class of
antibiotics for treating Gram-negative infections in over 50
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1533
years.3 One signicant challenge in antibiotic discovery is that
Gram-negative bacteria possess a highly impermeable outer
membrane and active efflux pumps, which work together to
prevent intracellular accumulation of many compounds. This
dual defense mechanism severely limits the effectiveness of
traditional target-based drug design strategies, as potential
antibiotics oen fail to reach their intended intracellular targets
in sufficient concentrations to exert their effects.4,5 Further-
more, incentives for antibiotic development are poor,6,7 and
there is an inherent bias against complex chemistries and
natural products that are typically not considered drug-like.7

Therefore, cost-effective and efficient methods for identifying
novel chemical matter with whole-cell activity against Gram-
negative bacteria are highly desirable.

Machine learning models are increasingly being utilized to
predict the bioactivity and toxicity of compounds.8–12 Deep
neural networks (DNNs) have recently arisen as a powerful tool
for virtual screening to discover structurally distinct
compounds with antibacterial activity. Notable examples are
the work by Stokes et al., who used ensembles of deep graph
neural networks (DGNNs) to discover Halicin, an antibiotic with
a newmechanism of action,13 andWong et al., who used similar
© 2025 The Author(s). Published by the Royal Society of Chemistry
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models to nd a novel structural class of antibiotics.14 DNNs are
appealing because, as deep overparameterized models, they can
learn rich, continuous representations of various data types,
including discrete ones. This ability makes them highly exible
and enables high predictive performance in several application
domains, including image recognition,15 image generation,16

and natural language processing,17 among others. However,
unlike these elds, where abundant public data is available
(e.g., images, videos, and text), the availability of labeled posi-
tive examples in antibiotic datasets (i.e., compounds with
antibiotic properties) remains exceedingly limited. This scarcity
signicantly constrains supervised training, particularly for
high-capacity models. For example, the crowdsourced dataset
COADD18 for E. coli ATCC 25922 contains just 159 active
compounds (considering an 80% growth inhibition threshold,
Table 1), and many of these are structural analogs, with
approximately 15 unique antibiotic classes represented. This
limited data set hinders the practical application of DNNs,
which generally require large amounts of data to achieve high
predictive accuracy. Further, these models suffer from over-
tting in the low-data regime.

Transfer learning is a model training strategy that aims to
increase the performance of machine learning models in the
absence of sufficient training data and has proved effective in
molecular property prediction tasks with graph neural
networks.19 In this approach, models are not trained on the nal
task of interest from scratch, but rather, they are trained in two
stages. First, they are pre-trained on separate tasks for which
large amounts of data are available. Ideally, these tasks should
be highly related to the nal task of interest; however, this is not
required.20 In the second step, the parameters learned during
pre-training are adapted to the nal task of interest, for which
training data is scarce, in what is known as ne-tuning.
Crucially, ne-tuning involves minor modications of the pre-
trained parameters to avoid overtting to the limited dataset
of the task of interest. This can be achieved by setting a low
learning rate or a smaller number of epochs. In this way,
transfer learning attempts to learn general representations
during pre-training and subsequently adapts them to maximize
performance on downstream, specic tasks.21

Recent advances in transfer learning have leveraged knowl-
edge gained from large-scale, oen general-purpose datasets to
improve performance on specic downstream tasks. Li et al.
demonstrated the potential of MolPMoFiT, a ne-tuned
language model for molecular activity prediction, marking
a pivotal step toward next-generation QSAR modeling through
inductive transfer learning.22 Similarly, King-Smith et al. intro-
duced a foundational model for chemistry, showing how large
pre-trained architectures can be adapted across a wide spec-
trum of chemical tasks.23 In the domain of chemical reactivity,
Keto et al. leveraged chemically aware pre-training to improve
reaction prediction performance,24 while Noto et al. successfully
transferred learned representations across different photo-
catalytic reaction classes.25 Further developments have
combined chemical and biological data;8 Liu et al. trained
InfoAlign to learn molecular representations by aligning mole-
cules with cellular responses through an information
Chem. Sci., 2025, 16, 21518–21533 | 21519
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bottleneck, improving property prediction and enabling zero-
shot molecule-morphology matching.26 Overall, this shows
that domain-specic transfer learning strategies can be used to
improve models, and in this work we aimed to use transfer
learning to enhance virtual screens for sub-micromolar inhibi-
tors of ESKAPE pathogens, whereaer the model predictions
were experimentally validated.

Here, we take a transfer-learning approach to train an
ensemble of DGNNs for virtual screening in order to identify
compounds with activity against the Gram-negative bacterial
species Escherichia coli. Our training workow (Fig. 1a)
comprised two stages: during pre-training, models were opti-
mized to learn general molecular labels that were not specic to
Fig. 1 Workflows for transfer learning (a) and virtual screening of large c
networks were pre-trained on various molecular data, including dockin
virtual screening, molecules from large libraries were prioritized accord
a diverse candidate selection to increase the chances of finding structur
activity against a single bacterial strain, and active candidates were furthe

21520 | Chem. Sci., 2025, 16, 21518–21533
bacteria, such as docking scores, binding affinity against and
physicochemical properties. During ne-tuning, models were
optimized on small public antibacterial datasets measured on
E. coli. Our virtual screening protocol (Fig. 1b) prioritized the
top predictions by the trained DGNN ensemble while maxi-
mizing the diversity of the nal subset. First, we selected the
highest-ranking compounds from two large commercial
libraries, Chemdiv and Enamine, using clustering based on
ngerprints and grouping based on antibiotic class or func-
tional group to increase chemical diversity. Second, we vali-
dated our protocol by testing the antibacterial activity of the hit
compounds against E. coli, nding high enrichment of actives.
Finally, we also tested against a panel of Gram-positive and
hemical libraries (b). Before fine-tuning antibacterial data, graph neural
g scores, binding affinity, and physicochemical properties. During the
ing to their predicted inhibition, and clustering was used to achieve
ally unique hits. Candidates were first validated by testing antibacterial
r tested against a panel of Gram-positive and Gram-negative bacteria.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Gram-negative species, including multidrug-resistant strains of
ESKAPE pathogens. Our protocol identied several compounds
that were structurally novel, nontoxic and demonstrated broad-
spectrum activity.
Methods
Datasets

We used molecular property datasets for pre-training and
specic antibacterial datasets for ne-tuning or training
(Table 1). Due to limited public data from antibacterial experi-
ments, our pre-training datasets were not highly related to
antibacterial activity. Still, where pre-training datasets are
sufficiently numerous and diverse, both in terms of molecular
structure and task labels, they are known to promote the
learning of general molecular representations that can benet
ne-tuning on downstream bacterial tasks.27

For pretraining, we curated a dataset of RDKit molecular
descriptors (calculated using RDKit v2020.09.5), ExCAPE
binding affinity annotations (v2 2019), and DOCKSTRING
docking scores.28,29 These datasets, docking scores, binding
affinities, and physicochemical properties, were selected as
pretraining targets because they represent general, transferable
molecular features relevant across many bioactivity domains
and are well-represented in public datasets. These properties
have been shown to be useful in transfer learning using
chemically-informed feature space prior to ne-tuning on
scarce data.30,31 We used the ExCAPE data aggregating affinity
assays from PubChem and ChEMBL,32 particularly binary
affinity labels against mammalian proteins from physical
experiments, although it is highly sparse. All molecular struc-
tures were stored as SMILES strings. We used DOCKSTRING,
which contains AutoDock Vina docking scores of a subset of
260k ExCAPE molecules against human protein targets.28 For all
datasets above, stereochemical information was discarded for
consistency since not all datasets included it. During hyper-
parameter optimization experiments, SMILES were standard-
ized using the same pipeline as DOCKSTRING,28 which
included canonicalization with RDKit,33 discarding SMILES
with unnatural charges (formal charges on atoms other than N
or O), explicit hydrogens, radicals or multiple molecular
Fig. 2 Measured bacterial inhibition on E. coli from the (a) Stokes and (b
value of 0 indicated no inhibition or full growth, whereas 1 indicated full in
were possible: values below 0 suggested that the molecule promote
experimental variability or error. Count refers to the number of compou

© 2025 The Author(s). Published by the Royal Society of Chemistry
fragments, and nally, protonating SMILES at pH 7.4 with
OpenBabel.34 We calculated RDKit chemical descriptors33 for all
molecules in the ExCAPE dataset. Descriptors, as implemented
in rdkit.Chem.Descriptors33 module included physicochemical
and topological properties such as molecular weight, number of
valence electrons, maximum and minimum partial charges,
Bertz complexity index, log P, and number of rings (Fig. 1a).
Finally, this resulted in a dataset, RED, a concatenation of
RDKit, ExCAPE, and DOCKSTRING features for the 260k over-
lapping molecules from DOCKSTRING.

For ne-tuning and training, we used the antibacterial
datasets by Stokes et al. (hereaer referred to as the ‘Stokes
dataset’)13 and the Community for Open Antimicrobial Drug
Discovery (COADD).7,18 Both datasets were generated in wild-
type E. coli strains, with Stokes et al. using E. coli BW25113
and COADD using E. coli ATCC 25922. We focused on E. coli
ATCC 25922 for this study. Antibacterial activity can be
expressed in potency using concentration units or growth
inhibition using values between 0 (no inhibition) and 1 (full
inhibition). Growth inhibition is standard in high-throughput
experiments exposing bacteria to a xed, constant compound.
Stokes indicated results regarding nal growth achieved rather
than nal inhibition (i.e., in the raw Stokes dataset, zero would
indicate the highest level of inhibition and one the lowest),
while COADD expressed values as percentages. We processed
Stokes and COADD values to make their notation consistent
(Fig. 2). Occasionally, values outside the usual 0–1 range were
observed: negative values indicated that the compound
promoted bacterial growth rather than halting it, whereas
values slightly above one could result from experimental vari-
ability or error. For classication, inhibition values were bi-
narized using an activity threshold of 0.8 (active if inhibition
>0.8), consistent with the one previously employed by Stokes
et al. All datasets are released via https://github.com/mgarort/
dockbiotic/tree/main/data/ for public use.
Model architecture

We benchmarked two models: XGBoost, a tree-based ensemble
on molecular ngerprints, and AttentiveFP, a deep graph neural
network (DGNN) on molecular graphs.
) COADD dataset, processed here to make the notation consistent. A
hibition or no growth. Note that measurements outside the [0, 1] range
d bacterial growth, while values slightly above 1 could result from
nds.

Chem. Sci., 2025, 16, 21518–21533 | 21521
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XGBoost (eXtreme Gradient Boosting) is a popular algorithm
for training tree ensembles for regression or classication. The
key idea of tree ensembling is to combine several weak learners
(simple models slightly better than random guessing) into
a single strong learner (a model with high predictive perfor-
mance) that takes a majority vote. Boosting means that the
ensemble is trained by adding one tree at a time, and new trees
are built, giving more weight to the training data points that are
incorrectly classied. Thus, complex examples become more
inuential as training progresses. We employed the original
XGBoost implementation,35 taking binary Morgan ngerprints
of length 2048 or 4096 as inputs.33,36,37

AttentiveFP,38 a DGNN, generates a vector representation of
a molecule in two steps. First, it produces an embedding of each
atom in an iterative procedure of message passing with attention.
Each atom embedding gets updated at each iteration through
a transformation that takes in that atom's current embedding and
its neighbors' current embeddings (message passing). The inu-
ence of all neighbors in the transformation is not equal, but rather,
they are weighted by attention coefficients. Second, it produces an
embedding of the entire molecule in another iterative procedure
with attention. An initial embedding of the molecule is produced
by summing all the atoms' embeddings. Then, for several itera-
tions, the molecular embedding gets updated through a trans-
formation that takes in each atom's current molecular embedding
and the current molecular embedding. Attention coefficients
weigh the inuence of each atom in the transformation. Finally,
once the molecule embedding has been generated, a prediction
can be performed with a nal linear layer. We used the Deep-
Chem39 implementation of AttentiveFP. The input for AttentiveFP
was DeepChem graph representations of type Mol-
GraphConvFeaturizer using edges, e.g. providing the argument
use_edges = True. Doing so incorporated bond features by
concatenating one-hot vectors for bond type (single, double, triple,
or aromatic), same ring membership, conjugation status, and
stereo conguration. These edge features modulate the attention-
weighted aggregation of neighbor atom embeddings during
message passing, allowing the model to distinguish between
different bond types when computing molecular representations.

All models used a batch size of 64 and were trainedwith Adam
optimization.40 When training with transfer learning, we used
a learning rate of 10−3 for pre-training and a learning rate of 10−4

for ne-tuning. The ne-tuned model started with the last layer
initialized randomly and all other layers initialized with the
weights from the pre-trained model. All layers were trainable
during ne-tuning, allowing the full network to adapt to the
antibacterial task. The 10× learning rate reduction during ne-
tuning encouraged staying in the vicinity of the pre-trained
weights. When trained without transfer learning, training was
consistent with the ne-tuning phase of transfer learning to
facilitate comparisons. Therefore, models not pre-trained were
also trained with a learning rate of 10−4 throughout.
Loss functions

For the losses used during the pre-training phase, we employed
MSE for the regression of absolute values (DOCKSTRING and
21522 | Chem. Sci., 2025, 16, 21518–21533
RDKit) and cross-entropy to classify binary values (ExCAPE).
ExCAPE was highly sparse; we ignored missing ExCAPE values
when calculating the loss.

Inhibition values in the processed COADD and Stokes data-
sets were real numbers ranging between 0 and 1. The prediction
of these values could be framed as regression or binary classi-
cation aer binarizing according to some threshold. However,
both of these settings are simplications and carry potential
disadvantages. For example, consider a molecule with
a measured inhibition of 0.7. Predictions of 0.4 and 1.0 would
be assigned the same quantitative error by a regression loss
even though 1.0 is qualitatively very different because it indi-
cates perfect inhibition. Similarly, consider the binary classi-
cation setting and a binarization threshold of 0.8. Molecules
with measured inhibition of 0.1 or 0.7 would both be binarized
as inactive, even though these values indicate very different
levels of growth. For these reasons, in addition to losses for
regression (MSE) and binary classication (cross-entropy), we
dened a custom loss function to predict inhibition values
between 0 and 1, which we call the inhibition loss. The inhi-
bition loss combined regression and classication properties by
using a custom sigmoid-based squashing function centered at
a threshold (e.g., 0.8) to approximate a binary classication loss.
It penalized false positives and false negatives differently using
adjustable scaling factors c+ and c−, ensuring exibility in
prioritizing errors (for further details, see SI S1).
Model benchmarking

We evaluated different prediction model classes, losses, and
transfer learning protocols to nd an optimal high-performing
model for virtual screening to discover antibiotics. Specically,
we benchmarked (1) XGBoost and AttentiveFP models, (2) mean
squared error (MSE) for regression, cross-entropy for binary
classication, and the custom inhibition loss for inhibition
values between 0 and 1, and (3) training from scratch without
pre-training or with pre-training on the RDKit, ExCAPE,
DOCKSTRING, or a combination of the three datasets. Further,
we benchmarked the amount of pre-training epochs (between 1
and 20) and ne-tuning epochs (100 and 1000). A xed number
of ten pre-training and ten ne-tuning epochs was used to
benchmark other parameters.

In virtual screening, molecules from an extensive library are
ranked computationally, and the top subset is selected and
tested. In our benchmarking experiments, we trained all models
on the Stokes dataset and tested them on a reduced version of
COADD, selecting the top-ranked compounds from COADD to
emulate a virtual screening workow. COADD was reserved for
testing because it was more extensive and diverse (with respect
to the number of scaffolds, see Table 1) than Stokes, having
been aggregated from compounds suggested by numerous
independent research groups over several years. Therefore, it is
expected to better represent the screening of an extensive
chemical library. We removed all compounds from COADD that
were analogs or structurally similar to those in Stokes, as
determined by Tanimoto similarity computed on Morgan
ngerprints and RDKit path ngerprints. Compounds with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a Tanimoto similarity higher than 0.9 on any of the two
ngerprint types were removed.

Model performance for virtual screening was quantied with
the enrichment factor (EF) which is dened as the ratio of
actives in the top selected subset over the ratio of actives in the
initial library:

EF ¼
�
nactives selected

nselected

���
ntotal actives

ntotal

�

We computed the EF on the top 200 compounds from
COADD. Specically, we computed the average EF over three
random repetitions with different initializations for each
hyperparameter combination.

Training nal models

Once the optimal model and transfer-learning hyperparameters
had been selected, the nal models for virtual screening were
ne-tuned on both Stokes and COADD so that they could learn
from all available data. COADD, with an active rate of 0.002, was
substantially more imbalanced than Stokes, which had an
active rate of 0.05. To maintain a similar active rate while
training the nal models, as during hyperparameter optimiza-
tion, we upsampled the active molecules of COADD 100 times.

We trained an ensemble of 6 models using the two best
transfer-learning hyperparameters (3 models with different
random seeds for each hyperparameter combination). We
trained two ensembles of 6 models: one with fully standardized
SMILES for ChemDiv and one with minimally standardized
SMILES for Enamine since Enamine SMILES were too
numerous (5.52b) to undergo complete standardization. Here,
fully standardizing SMILES involved removing isomeric infor-
mation, protonation, and validation for a consistent, chemically
valid representation while minimal standardization of SMILES
only removed isomeric information and canonicalized the
structure without additional processing. The latter is used for
larger datasets (like Enamine) to save on computational
resources.

Virtual screening

Screening libraries. We screened the commercial libraries
ChemDiv41,42 and Enamine REAL (REadily AccessibLe).43 The
former is an in-stock chemical collection with millions of
compounds. In contrast, the latter is a combinatorial list of
billions of molecules predicted to be synthesizable from initial
reagents and chemical reactions (Table 2). Therefore, not every
compound ordered from Enamine can eventually be acquired;
their self-reported synthesis success rate is 80%.44
Table 2 Description of screening libraries used in this study

Library Version # Compounds
Number of
Bemis–Murcko scaffolds

ChemDiv 1566731 1.57m 277k
Enamine 2022q1-2 5.52b 2.94b (estimated)

© 2025 The Author(s). Published by the Royal Society of Chemistry
For ChemDiv (1.57m compounds) SMILES were fully stan-
dardized using the same protocol from DOCKSTRING.
Enamine's (5.52b) large size precluded charge checking and
protonation, so SMILES in pre-training, training, and screening
underwent a minimal standardization protocol of canon-
icalization with RDKit.

XGBoost employed a ngerprint molecular representation
computed with RDKit, and AttentiveFP used a graph represen-
tation by DeepChem.39 Molecular ngerprints were also used to
calculate Tanimoto similarity to assess closeness to the training
set. We computed binary Morgan ngerprints (2048 bits) and
RDKit ngerprints of path length six and length 2048, calcu-
lated the Tanimoto similarity on each ngerprint type, and used
the highest of the two as the similarity score.

We reported the number of Bemis-Murcko (BM) scaffolds in
each dataset using RDKit (Table 2). The Enamine dataset was
too large to decompose every molecule, so we estimated the
number of BM scaffolds on a random sample of 2 million
compounds.

Selection protocol. For our screening protocol, we rst
ranked the compounds in ChemDiv and Enamine by the inhi-
bition activity predicted by the nal ensemble of DGNNmodels.
We selected molecules with mean predicted inhibition above
0.5. Second, we removed candidates with Tanimoto similarity
(computed on Morgan ngerprints and RDKit path nger-
prints) higher than 0.8 to any molecule in the COADD and
Stokes training sets. By doing this, we attempted to avoid
selecting compounds too structurally similar to known antibi-
otics. Third, many of the top-ranking compounds in Enamine
were potentially redundant, with many structurally similar
molecules. To increase the diversity and reduce the number of
molecules selected, we clustered our selection with DBSCAN,45

using RDKit path ngerprints of length 2048 and 3 = 4.5, and
kept the ve top-ranking compounds within each cluster.
Finally, we grouped the selected molecules by antibiotic class or
functional group and selected top-ranking molecules within
each group. Compound selection protocol. We employed
DBSCAN clustering for compound selection because it deter-
mines the optimal number of clusters and demonstrates
robustness to noise, making it particularly suitable for working
with structurally diverse, high-dimensional data, though we
acknowledge that alternative methods like K-means or
agglomerative clustering could be used since the clustering
approach is secondary to the transfer learning methodology
itself.

Visualization of learned chemical space. One of the advan-
tages of neural models is that they can learn abstract contin-
uous representations of discrete data types such as molecules.
This ability has been previously studied to enable the explora-
tion of chemical space with generative models such as molec-
ular VAEs and deep reinforcement learning.46,47 Purely
supervised methods can also benet from representation
learning because clustering similar compounds within nearby
regions of representation space may facilitate making predic-
tions. AttentiveFP, the DGNNmodel in our ensemble, calculates
predictions by rst generating embeddings for each atom and
later producing an embedding for the whole molecule by
Chem. Sci., 2025, 16, 21518–21533 | 21523
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aggregating atomic representations. To better understand
whether the AttentiveFP models trained for virtual screening
were capturing antibiotic class-specic features, we performed
dimensionality reduction of the molecular representations
learned by AttentiveFP. Using one of the models in the
ensemble, we produced AttentiveFP embeddings (200-dimen-
sional) of training molecules (all Stokes molecules and
a random sample of 50k COADD molecules) and screening
molecules (a random sample of 50k ChemDiv molecules). Then,
we computed 2-dimensional embeddings with UMAP,48 using
default parameters, and visualized them in a scatter plot.

Experimental validation

Bacterial strains: all tested compounds were evaluated for
antibacterial activity against the wild-type E. coli strain 25 922
from the National Collection of Type Cultures (NCTC). A subset
of compounds was assessed in a panel of strains, including
a uropathogenic strain of E. coli (ECU) 13 400, P. mirabilis (PM)
432 002, K. pneumoniae (KP) 13 442, A. baumannii (AB) 19 606
and S. aureus (SA) 29 213. The strains EC 13 400, AB 19 606, KP
13 442, and SA 29 213 were obtained from the NCTC, and the
strain PM 432 002 was obtained from the American Type
Culture Collection (ATCC).

MIC and MBC determination protocols. The antibacterial
activity of the candidate compounds was evaluated using
minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC). MIC indicates the lowest
compound concentration that halts growth, while MBC refers to
the lowest compound concentration that kills all bacterial cells.
The Warwick Antimicrobial Screening Facility conducted these
experiments using CLSI and EUCAST guidelines on antimicro-
bial susceptibility testing. Bacteria were cultured in cation-
adjusted Mueller–Hinton broth at 37 °C. For MBC experi-
ments, bacteria were plated on cation-adjusted Mueller–Hinton
agar plates. Two antibiotic controls, ampicillin and ciprooxa-
cin, were used in this experiment. The growth and no growth
control were media and bacteria without antibiotics and media
alone, respectively.

In brief, a 2-fold serial dilution of each molecule in DMSO
was prepared from 256 mg mL−1 down to 0.000122 mg mL−1

across two 96-well plates. A bacterial culture was prepared
following the MacFarland 0.5 standard and added to each well.
Plates were incubated for 18 hours at 37 °C without shaking.
The MIC was the concentration of the last well with complete
inhibition (i.e., a completely clear well). For the MBC, 10 ml of
each well was pipetted onto agar plates and further incubated
for 24 hours at 37 °C without shaking. The formation of colonies
was observed, and the concentration of the last well from which
no colonies were formed was taken as the MBC.

Cytotoxicity assays

HepG2 cells were cultured in DMEM supplemented with 10%
fetal bovine serum (FBS) and seeded at 4 × 104 cells per well in
a 96-well tissue culture plate. Aer incubation at 37 °C with 5%
CO2 for 24 h, the media was aspirated off and replaced with 98
mL of fresh media. Compounds were serially diluted 2-fold in
21524 | Chem. Sci., 2025, 16, 21518–21533
DMSO to give stock concentrations ranging from 3.2 mg mL−1

to 200 mg mL−1, and then 2 mL of compound stock was added to
the plates, resulting in a nal DMSO concentration of 2%. Final
compound concentrations ranged from 64 mg mL−1 to 4 mg
mL−1. Aer a 24-hour incubation, the cytotoxicity of
compounds was evaluated using the CytoTox-GloTM assay
(Promega) following the manufacturers' instructions. Lumi-
nescence was measured using the GloMax® plate reader
(Promega). Cells receiving media + 2% DMSO were used as
a negative control, and cells receiving media + 2% Tritonx100
were used as the positive control for maximum cell cytotoxicity.
Hemolysis assay

Debrinated equine blood was centrifuged (1000×g, 10 min),
and the supernatant was removed. Pelleted erythrocytes were
washed thrice with PBS and resuspended to a 5% erythrocyte
concentration in PBS. Compounds were serially diluted 2-fold in
PBS to give a range of concentrations from 256–0.25 mg mL−1,
100 mL total volume. Controls of PBS, equivalent DMSO
concentrations, and Triton X-100 were also added to the plates.
The resuspended erythrocytes (100 mL) were added to each well
and incubated without shaking (37 °C, 1 h). Plates were then
centrifuged (1000×g, 10 min), and 50 mL of supernatant was
removed and added to 50 mL of PBS in a fresh plate. The
absorbance was then measured at 550 nm, and the hemolytic
concentration for each compound was determined, where the
lowest concentration deemed to cause >10% cell lysis was
judged to be the hemolytic concentration (PBS control used to
represent 0% lysis and Triton X-100 used at 100% lysis). Each
measurement was performed in triplicate.
Results and discussion
Few active compounds are present in antibacterial dataset

Public datasets contain few compounds with high antibacterial
activity and these datasets are oen quite imbalanced (espe-
cially for Gram-negative bacteria, where for every one active
compound reported, there are hundreds of inactive
compounds). For example, the database AntibioticDB records
only 2939 molecules with antibacterial activity.49 This makes the
datasets insufficient for training neural networks which need
hundreds of thousands of datapoints. To increase the learning
efficiency of our DGNNmodels, we adopted a transfer approach,
using datasets with hundreds of thousands of molecules and
hundreds of millions of labels for pre-training. Our pre-training
labels were not directly related to the antibacterial activity;
instead, they represented general physicochemical properties
(RDKit), affinity binding labels against mammalian proteins
(ExCAPE) or docking scores against human protein targets
(DOCKSTRING) (Table 1). Thus, pre-training aimed to learn
general molecular representations that could be ne-tuned on
antibacterial activity data later. For training or ne-tuning, we
processed and homogenized the COADD and Stokes datasets,
which represented inhibition as values between 0 (no inhibi-
tion) and 1 (complete inhibition) (Fig. 2). Most compounds in
these datasets were inactive, with only 118 molecules in Stokes
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(screened at 50 mM) and 159 molecules in COADD eliciting
inhibition above the 0.8 activity threshold on wild-type E. coli
(screened at 32 mg mL−1).13,18
Enrichment factors improve with pre-training across multiple
representations

We optimized the virtual screening protocol for antibacterial
identication by evaluating the enrichment factor (EF) obtained
with different model classes, losses, and transfer-learning
regimes. All models in this section were trained on Stokes and
evaluated on COADD (molecules from COADD that were struc-
tural analogs of those in Stokes were removed).

First, we compared two model classes: a tree-based model on
hand-engineered molecular features (XGBoost on Morgan
ngerprints) and a DGNN (AttentiveFP) trained with and
without transfer learning. Performing this comparison was
important because classical models on ngerprints can be
highly performant relative to deep neural networks. Fig. 3 shows
the results of our benchmarking experiment. The poorest level
of enrichment was achieved by AttentiveFP without pre-
training, thus conrming our hypothesis that the antibacterial
data in the training datasets was too small to train DGNNs from
scratch; XGBoost on molecular ngerprints achieved fair
enrichment, with 2048 bit ngerprints being the most
successful. AttentiveFP obtained the highest level of enrichment
with pre-training; pre-training was better than training from
scratch for all pre-training datasets, and a pre-trained Attenti-
veFP model was better than XGBoost on ngerprints for almost
all pre-training datasets. These results supported our proposed
transfer-learning approach for virtual screening.

Second, we benchmarked different training loss functions.
The inhibition values in Stokes and COADD were real numbers
ranging primarily between 0 and 1. Prediction of antibacterial
activity could, therefore, be framed as regression of raw values,
with a mean squared error (MSE) loss, or as classication of
binarized values, with a cross-entropy loss. In addition, we tried
a custom inhibition loss (IL) that we designed specically for
inhibition since both regression and classication presented
disadvantages for predicting inhibition values. This loss was
derived from a hard binary classication loss, which was
Fig. 3 Enrichment factor MSE (left) and cross-entropy (right) from tree-b
on Morgan fingerprints) compared to a DGNN (AttentiveFP) trained with

© 2025 The Author(s). Published by the Royal Society of Chemistry
modied by swapping its complex step functions with so
sigmoid-like functions and which was augmented with hyper-
parameters that controlled the relative weight of false positives
and false negatives. Again, we found that pre-training with any
of the three losses was superior to training from scratch (SI
Table S2). However, we did not observe a signicant difference
between the three losses, with EFs, which overlapped consid-
erably in terms of standard deviation. Therefore, for simplicity,
we decided to frame the prediction of inhibition values as
regression with MSE loss.

Finally, we optimized the hyperparameters related to the
transfer-learning protocol: the choice of a pre-training dataset,
the number of pre-training epochs, and the number of ne-
tuning epochs (EF obtained are shown in SI Fig. S1). To
increase the robustness of our screening protocol, we trained an
ensemble of 6 nal models for virtual screening. To improve the
diversity of models in the ensemble, we selected the two
highest-performing hyperparameter combinations and trained
three AttentiveFP models with each combination, starting with
different random initializations. Since overparameterized
neural models are data-intensive, random initialization
performs better than bootstrapping the training data when
creating ensembles of deep neural models.50 The best EF was
achieved by pre-training on ExCAPE for 20 epochs and ne-
tuning for 500 epochs and by pre-training on RDKit for 10
epochs and ne-tuning for 1000 epochs.

Overall, physicochemical properties demonstrate superior
transfer learning effectiveness, with RDKit achieving the high-
est enrichment factor of 75.2 (10 pre-training epochs, 1000 ne-
tuning epochs) compared to binding affinity predictions
(ExCAPE: maximum 79.6) and docking scores (DOCKSTRING:
maximum 55.6) in the test set (SI Fig. S1). While ExCAPE shows
the single highest peak performance, RDKit demonstrates more
consistent high performance across multiple training congu-
rations (64.3–75.2 range), indicating greater robustness and
reliability for transfer learning applications. This could be due
to the biological relevance of fundamental molecular descrip-
tors (lipophilicity, hydrogen bonding capacity, molecular size)
that inuence activity across diverse targets, unlike docking
scores which encode highly target-specic geometric
asedmodels trained on hand-engineered molecular features (XGBoost
and without transfer learning (further data in SI Table S1).

Chem. Sci., 2025, 16, 21518–21533 | 21525
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complementarity and show the most limited performance
ceiling. These results also establish a hierarchical molecular
representation framework where physicochemical properties
provide the most transferable foundation, binding affinity
offers intermediate specicity, and docking scores represent
highly specialized but perhaps less transferable features.

Virtual screening of ultra-large libraries to select structurally
novel compounds for experimental testing

Our virtual screening protocol attempted to prioritize the top
predictions by the ensemble of DGNNs while maximizing
chemical diversity in the nal selection to increase the chances
of nding hits. First, we predicted the antibacterial activity of
every compound in ChemDiv and Enamine. Most predictions
were negative, with just a few tens of compounds displaying very
high predicted inhibition above 0.8 in each library (Fig. 4a and
b). Unsurprisingly, all molecules with very high predicted
activity were close analogs of compounds in the training sets
Stokes and COADD (Fig. 4c and d), which suggested that our
models only predicted very high activity when the candidate
molecules belonged to known antibiotic classes. To nd anti-
bacterials with novel scaffolds, we expanded our selection to
compounds with moderate predicted activity, including all
Fig. 4 Highest predictions by the ensemble for molecules in (a) Chem
ChemDiv and (d) Enamine to their closest neighbor in the Stokes and COA
to the large size of the Enamine dataset, (d) only showsmolecules with pr
1] range were possible: values below 0 suggested that the molecule prom
experimental variability or error. Count refers to the number of compou

21526 | Chem. Sci., 2025, 16, 21518–21533
compounds predicted to inhibit growth with values >0.5.
Structural novelty was achieved by removing candidates with
a Tanimoto similarity to the training set higher than 0.8 (with
the exception of a polyketide, a natural product, which was
retained as a test compound with known antibiotic properties).
Finally, this yielded 151 compounds in ChemDiv and over 10
000 in Enamine, with the caveat that inherent redundancy in
combinatorial libraries in Enamine could be responsible for
multiple hits.

To reduce the number of selected compounds while main-
taining chemical diversity, we clustered the Enamine pre-
selection using molecular ngerprints and selected top-
ranking compounds from each cluster to avoid redundancy
(as described in Selection protocol in Methods) —particularly
among overlapping quinolone amides. For both ChemDiv and
Enamine, we further grouped compounds into known antibi-
otic classes or those featuring recurrent functional groups (e.g.,
nitro moieties), selecting top candidates from each group. The
nal selection comprised 54 ChemDiv and 140 Enamine
compounds, of which 53 and 103, respectively, were available
for experimental testing (Table 3), totaling 156 compounds.
This included one known polyketide antibiotic retained as
a positive control.
Div and (b) Enamine. Tanimoto's similarities of the molecules in (c)
DD training set are binned by their predicted antibacterial activity. Due
edicted inhibition above 0.5. Note that predicted activity outside the [0,
oted bacterial growth, while values slightly above 1 could result from

nds.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 After each selection step, total count (and count per million)

Step ChemDiv Enamine

Initial size 1.57m (106) 5.52b (106)
Predicted inhibition $0.5 369 (236) 10 791 (1.97)
Tanimoto similarity #0.8 151 (96.6) 10 059 (1.85)
Clustering — 5699 (1.03)
Antibiotic diversity 54 (34.5) 140 (2.53 × 10−2)
Delivered by provider 53 (33.9) 103 (1.86 × 10−2)
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Visualization of learned representations reveals antibiotic
class clustering

To assess whether AttentiveFP models learned meaningful
representations for antibiotic classication, we visualized the
distribution of compound embeddings in the learned repre-
sentation space. Embeddings were extracted from one of the
models in the ensemble for all compounds in the training
datasets Stokes and COADD and in the library ChemDiv. These
embeddings, computed by aggregating atom-level representa-
tions, allowed us to examine clustering patterns associated with
antibiotic classes. Then, we reduced the dimensionality of the
embeddings to two dimensions with UMAP. Fig. 5 shows the
resulting arrangement, highlighting the molecules considered
active as per the 0.8 inhibition threshold (measured or pre-
dicted), and showing some of the active structures. We observed
that clusters grouped similar antibiotic molecules and func-
tional groups, which suggested that our models were learning
about the underlying antibiotic classes. However, not all similar
antibiotics and functional groups were assigned to the same
Fig. 5 UMAP-reduced visualization of the AttentiveFP embeddings of S
and COADD are depicted in green, and predicted inhibition from ChemD
above 0.8 are highlighted with larger points. Frames show structures rep

© 2025 The Author(s). Published by the Royal Society of Chemistry
cluster; for example, quinolones and polyketides were split
between two clusters.
Broad-spectrum testing identies non-cytotoxic active
compounds against Gram-positive and Gram-negative
pathogens

We next tested the minimum inhibitory concentration (MIC)
and minimum bactericidal concentration (MBC) of the 156
compounds selected in the previous section against the wild-
type strain E. coli ATCC 29522. A high level of enrichment for
antibacterial activity was observed in the selected subset, with
roughly two-thirds of ChemDiv compounds and half of
Enamine compounds reaching the MIC hit threshold of 64 mg
mL−1 (Fig. 6 and Table 4), with a total validation rate of ∼54%.
We compared candidates' MIC and MBC values with those of
ampicillin, a known antibiotic used as a control. In our exper-
iment, ampicillin yielded MIC values of 4–8 mg mL−1 and MBC
values of 8–16 mg mL−1. Our selection included 10 compounds
with better MIC values than ampicillin and 11 with better MBC
values (Table 4). The MIC distribution was also observed to have
a lower concentration range than the MBC concentration
distribution. This was expected because inhibiting growth, as
measured by MIC values, is less challenging than killing
bacterial cells, as measured by MBC values.

We next evaluated whether a subset of compounds with
activity against E. coli had activity against other bacterial
species. Though broad-spectrum antibiotics are highly valuable,
it is much more straightforward to train models to predict
tokes, COADD, and ChemDiv. Measured inhibition values from Stokes
iv is indicated in red. Molecules with measured or predicted inhibition
resentative of each cluster.

Chem. Sci., 2025, 16, 21518–21533 | 21527

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc03055b


Fig. 6 Distribution of MIC and MBC of the (a) 53 molecules selected from ChemDiv and (b) the 103 molecules selected from Enamine; shown
only compounds with MIC values of #64 mg mL−1.

Table 4 Hits in the 156-molecule selection from ChemDiv and
Enamine. Hits are defined as compounds with MICvalues of #64 mg
mL−1 against E. coli. “Similar to ampicillin” is defined as within two-fold
of the observed MIC value for ampicillin, or more active than ampicillin

Signicance Threshold ChemDiv Enamine

MIC hit MIC # 64 mg mL−1 32 52
MIC similar to ampicillin MIC # 8 mg mL−1 10 22
MIC better than ampicillin MIC < 4 mg mL−1 4 6
MBC hit MBC # 64 mg mL−1 22 38
MBC similar to ampicillin MBC # 16 mg mL−1 11 23
MBC better than ampicillin MBC < 8 mg mL−1 4 7
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compound activity against a single bacterial strain vs. multiple
species. However, given the shared homology of some essential
targets and the large proportion of broad-spectrum antibiotics
used to train the dataset, it is reasonable that a subset of
compounds identied using this model may have broad-
spectrum activity.

Given the high prevalence of quinolone derivatives and
nitrofurans in the validated compound set, structural diversity
was considered in addition to MIC in the selection of molecules
to test for broad-spectrum activity. Compounds were grouped
by scaffold or functional group, such as nitrofurans or halogen-
containing molecules, and examples from each structural
category are shown in Fig. 5. A subset of compounds was
selected from each category with an MIC requirement of#16 mg
mL−1 against E. coli (optimising potency, availability and cost
among other factors). 18 compounds were evaluated for broad-
spectrum activity against the following panel of strains,
including three ESKAPE pathogens: a uropathogenic strain of E.
coli (ECU) 13 400, P. mirabilis (PM) 432 002, K. pneumoniae (KP)
13 442, A. baumannii (AB) 19 606 and S. aureus (SA) 29 213 (for
detailed results see SI Table S3).
Chemical analysis of identied novel antibacterial
compounds

Fig. 7 shows seven representative examples from the 18 mole-
cules tested, together with their MIC and MBC measurements,
21528 | Chem. Sci., 2025, 16, 21518–21533
the closest molecule in the training set according to the Atten-
tiveFP embeddings, and the most active molecule among the 10
closest molecules in the training set. The top row shows the test
compound polyketide with known antibiotic properties which
was included in the virtual screening process used as a positive
control to test if the workow selected for active compounds.
The bottom row shows the structure of the known antibiotic
ampicillin and its MIC andMBCmeasurements on E. coli and S.
aureus. 16 out of the 18 compounds exhibited better MIC values
than ampicillin against either E. coli or S. aureus (6 out of the 7
in Fig. 7), indicating that our protocol was effective at identi-
fying compounds with potent broad-spectrum antibacterial
activity. Finally, it is worth noting that the compounds shown
here are hits taken directly from the screening library and could
potentially be improved through a medicinal chemistry
campaign. While some of the hits are simple substitutions of
previous antibacterials (e.g., the chlorinated compound 6 in
Fig. 7), others represent signicant deviations from the training
set (e.g., compound 5 or compound 7 in Fig. 7). As such, they
could be compounds that work through a unique mechanism of
action compared to current antibiotics, therefore avoiding
existing resistance mechanisms.
Compounds exhibit minimal HepG2 cytotoxicity and
hemolytic effects

To ensure that our model was not primarily identifying
compounds with general toxicity, these 18 compounds were
tested in a cytotoxicity assay against HepG2 cells and a hemo-
lysis assay against erythrocytes. In the HepG2 assay at
a concentration of 64 mg mL−1, 2 out of 18 compounds
demonstrated signicant reductions in both cell viability and
hemolytic activity. Additionally, one compound showed signif-
icant reductions in cell viability only, while another exhibited
hemolytic activity only. 15 compounds showed no hemolytic
activity at #256 mg mL−1 (maximum concentration tested).
Overall, this workow identied structurally novel compounds
with reasonable wild-type antibacterial activity against both
Gram-positive and Gram-negative bacterial species, including
multidrug resistant strains, that show limited cytotoxicity.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Sample of seven molecules tested in the broad-spectrum validation. The top row shows a polyketide, a natural product that is a known
antibiotic used as a positive control included in the virtual screening process to test if the workflow selected for active compounds. The bottom
row shows ampicillin, a known antibiotic, also commonly used as the positive control in MIC experiments. Blue bars indicate mean MIC and red
bars indicate mean MBC. Dots at the top of the bar indicate the individual measurements from different biological replicates. Distance to the
closest compounds in the training set was calculated in the embedding space produced by AttentiveFP. For details of all compounds, see SI Table
S3.
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Limitations and future work

In this study, we used enrichment factors to optimize the virtual
screening protocol for antibacterial identication. Enrichment
factors have been the established performance metric in virtual
screening for decades, specically designed for scenarios where
the objective is to prioritize a small subset of candidates from
ultra-large libraries for experimental validation.51,52 In the
context of antibacterial discovery against ESKAPE pathogens,
where sub-micromolar inhibitors are extremely rare, enrich-
ment factors provide the most relevant measure of model
performance. We refrain from using general machine learning
evaluation metrics such as F1-score, which, while useful in
balanced classication tasks, are not well-suited to virtual
screening applications.53 F1-score aggregates precision and
recall while accounting for false positives and false negatives.
However, in virtual screening for active compound discovery, we
operate in an “abundance of discovery” setting where chemical
space is vast and screening libraries contain millions of
potential compounds. In this context, what matters is discov-
ering compounds that possess the desired biological activity; we
do not need to concern ourselves with correctly classifying the
enormous number of inactive compounds we choose not to
pursue. The drug discovery paradigm fundamentally differs
from typical classication problems: false positives are readily
identied and ltered out through downstream experimental
validation, while false negatives represent missed opportunities
for discovering valuable active compounds.10 Enrichment
factors directly reect this practical reality by measuring how
effectively a model concentrates active compounds in the top-
ranked subset relative to random selection, which aligns
precisely with the experimental prioritization process. This
makes enrichment factors not only more actionable and inter-
pretable for real-world drug discovery applications, but also the
historically appropriate metric for this specic eld. Our study
focuses on virtual screening to discover diverse antibacterial
hits from large chemical libraries, rather than serving as
a benchmarking exercise for general predictive modeling.

Another limitation of this study is the exclusion of stereo-
chemical information from molecular representations to
ensure dataset consistency, as not all publicly available datasets
contained complete stereochemical annotations or stereo-
chemistry annotation is poor and absolute conguration is
unknown.10 While this standardization step is important for fair
comparisons, it may reduce model performance, since stereo-
chemistry plays a key role in determining biological activity
(enantiomers, for instance, can have vastly different pharma-
cological effects, toxicities, and target affinities). That said, prior
research has shown that 2D molecular representations can
oen suffice for bioactivity prediction andmay even outperform
3D descriptors, as they reduce noise from irrelevant confor-
mational variability and benet from analogue bias in bench-
marks that favor 2D structural similarity over complex 3D
features.54,55

Our results also highlight the limitations of virtual screening
based on existing chemical libraries. Our DGNN ensemble
primarily identied compounds structurally related to known
21530 | Chem. Sci., 2025, 16, 21518–21533
antibiotics, such as quinolones, cephalosporins, and penicil-
lins, consistent with prior annotations in the Stokes and
COADD training sets. As shown in Fig. 5, clusters in the Atten-
tiveFP representation space are aligned with known antibacte-
rial classes. While this validation conrms the model's learned
representation is meaningful, it also implies the screen is
biased toward chemical space already covered by known active
compounds.

We believe the primary driver was the limited diversity in the
ne-tuning data, which overwhelmingly consist of known
antibiotic scaffolds. The custom loss function was designed to
optimize classication performance, but it did not explicitly
penalize structural redundancy or encourage exploration of
underrepresented chemical space. Thus, while the loss function
may have contributed indirectly to the lack of diversity, the
dominant factor appears to be the training data's chemical
composition. Many top Enamine hits were quinolone amides,
and although they were active, their structural redundancy
necessitated clustering and the selection of representatives. In
contrast, ChemDiv yielded more chemically diverse hits,
possibly due to its inclusion of natural-product-like scaffolds,
despite being ∼3500 times smaller than Enamine. The inherent
redundancy in combinatorial libraries, such as Enamine, may
limit their utility unless this diversity is accounted for.

Some hits did deviate substantially from the training space
(Fig. 6), and these are arguably the most valuable. Finding novel
analogs in a fast, automated way with virtual screening could in
itself be useful; for example, noroxacin and ciprooxacin are
both approved for clinical use as antibiotics even though they
differ minimally in a single substituent (the former has an ethyl
group where the latter has a cyclopropyl). The most valuable
hits, however, are those that differ signicantly from known
antibacterials. Structurally novel antibacterials are more likely
to evade known resistance mechanisms, thereby opening up
opportunities for new structure–activity relationship (SAR)
exploration. They may represent samples from relatively unex-
plored regions of chemical space. However, our current models
only predicted high inhibition for compounds somewhat
related to known antibacterials (Fig. 5), which is a limitation
shared by many ligand-based virtual screening approaches. To
identify relatively novel hits, we needed to consider all candi-
dates with predicted inhibition values higher than 0.5. Other
library candidates with high activity but distant from the
training set were likely missed in our virtual screening.

The limited structural diversity of known antimicrobials
constrains machine learning approaches. Yet, as described by
Tommasi et al.,56 identifying compounds with legitimate activity
against wild-type Gram-negative bacteria is exceedingly diffi-
cult. For example, AstraZeneca screenedmillions of compounds
but was unable to identify any tractable hits against Gram-
negative bacteria.56

In this work, we did not lter molecules by predicted toxicity
or accumulation, and yet our model seems to identify active
molecules that are not generally cytotoxic and have some broad-
spectrum activity. Although our ensemble approach demon-
strated success in the low-data regime for antibacterial predic-
tion, extending this methodology to build reliable predictive
© 2025 The Author(s). Published by the Royal Society of Chemistry
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models for toxicity proles would face additional challenges.
The heterogeneity in experimental conditions, cell lines, and
assay protocols across different toxicity datasets introduces
noise.10 Furthermore, the integration of multiple toxicity
endpoints (cytotoxicity, hemolytic activity, organ-specic
toxicity) would require careful consideration of endpoint rela-
tionships and potential conicts between different safety
proles and developing new approach methodlogies to predict
them.57 In the future, a promising direction would be to utilize
high-quality data on toxicity and Gram-negative accumulation
to rene our virtual screening algorithm.

Conclusions

We developed a virtual screening protocol using ensembles of
pre-trained DGNNs to identify antibacterials in large chemical
libraries. A key challenge was the scarcity of annotated active
compounds—only a few hundred in public datasets—making it
difficult for DGNNs trained from scratch to generalize effec-
tively. In this data-sparse regime, classical QSAR models, such
as XGBoost, applied to molecular ngerprints, outperformed
näıve DGNNs. However, our use of transfer learning dramati-
cally improved model performance. Pre-training on unrelated
tasks with hundreds of thousands of molecules enabled the
model to learn broadly useful molecular representations. This
allowed ne-tuning on small antibacterial datasets to be effec-
tive, outperforming XGBoost and DGNNs trained from scratch.
While pre-training strategies have been widely successful in
other domains (e.g., protein language models, GPT-style archi-
tectures17,58), their value in drug discovery, particularly for
antibacterials, has been more debated. Compared to Stokes
et al.13 who applied a graph neural network to screen ZINC15,
our approach was conceptually more straightforward and ach-
ieved high experimental hit rates despite screening a larger
number of compounds.

Overall, we demonstrate that transfer learning with deep
graph neural networks signicantly enhances virtual screening
performance in the data-sparse regime of antibacterial
discovery. By pre-training on large, general molecular datasets
and ne-tuning on limited E. coli data, our AttentiveFP
ensemble achieved high enrichment factors and identied
structurally novel, sub-micromolar compounds active against
Gram-positive and Gram-negative ESKAPE pathogens. Experi-
mental validation conrmed a 54% hit rate, with broad-
spectrum efficacy and minimal cytotoxicity. The open-source
models and scalable workow developed in this study demon-
strates that deep learning models for antibacterial screening
can be effectively trained using transfer learning, even when the
amount of antibacterial data is limited and the pre-training
features are unrelated to antibacterial activity.
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