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Predicting Reaction Conditions: A Data-Driven
Perspective†

Matt Ballab, Dragos Horvathb, Thierry Kogeja, Mikhail Kabeshova and Alexandre Varnekb∗

The selection of optimal reaction conditions is a critical challenge in synthetic chemistry, influencing
the efficiency, sustainability, and scalability of chemical processes. While machine learning (ML) has
emerged as a promising tool for predicting reaction conditions in computer-aided synthesis planning
(CASP), existing approaches face many significant challenges, including data quality, sparsity, choice
of reaction representation and method evaluation. Recent studies have suggested that these mod-
els may fail to surpass literature-derived popularity baselines, underscoring these problems. In this
work, we provide a critical review of state-of-the-art ML techniques, identifying innovations which
have addressed the key challenges facing researchers when modelling conditions. To illustrate how
relevant reaction representations can improve existing models, we perform a case study of heteroaro-
matic Suzuki-Miyaura reactions, derived from US patent data (USPTO). Using Condensed Graph
of Reaction-based inputs, we demonstrate how this alternative representation can enhance the pre-
dictive power of a model beyond popularity baselines. Finally, we propose future directions for the
field beyond improving data quality, suggesting potential options to mitigate data issues prevalent in
existing literature data. This perspective aims to guide researchers in understanding and overcoming
current limitations in computational reaction condition prediction.

1 Introduction
Selecting the ‘optimal’ reaction conditions for a given chemi-
cal transformation is a critical yet often time-consuming chal-
lenge faced by synthetic chemists daily. Despite its prevalence,
tools capable of reliably and consistently predicting ‘optimal’ re-
action conditions remain scarce and are limited by data qual-
ity1, scalability2 and generalisability3. The prediction of reaction
conditions forms a critical component of Computer Aided Syn-
thesis Planning (CASP), complementing tasks like forward syn-
thesis prediction4–6, retrosynthesis prediction7–14, feasibility as-
sessment15 and reaction yield prediction16–22. With the ever-
increasing amount of publicly-available data for chemical reaction
modelling through projects such as the Open Reaction Database
(ORD)23,24, we might expect data-driven approaches to continue
to improve. However notable challenges1,25–29 face those build-
ing models to predict ‘optimal’ reaction conditions which must be
considered.

We can start by defining what ‘conditions’ consist of. Conditions
are the contents ‘above the arrow’ in a chemical reaction, defining
the physicochemical environment under which a reaction occurs

a Molecular AI, Discovery Sciences RD, AstraZeneca, 431 83 Gothenburg, Sweden
b Laboratory of Cheminformatics, University of Strasbourg, 67081 Strasbourg, France
∗ varnek@unistra.fr
† Supplementary Information available: [details of any supplementary information
available should be included here]. See DOI: 00.0000/00000000.

- see Fig. 1. This can consist of ‘reagents’: chemical species which
take part in the reaction, but do not contribute a heavy atom to
the product. Examples of ‘reagents’ include solvents, catalysts,
ligands and bases in the case of a Suzuki coupling, but the scope
of these ‘reagents’ will vary as a function of the reaction type
being investigated. ‘Conditions’ are also comprised of physical
parameters like temperature, pressure and time (and countless
more), all of which influence the rate and feasibility of a reaction.

For modelling purposes, conditions can be encoded in the form
of some vector, c. The definition of such a vector is a key chal-
lenge in reaction informatics: what is the best way to encode
the ensemble of different species and parameters - reagents, tem-
perature and pressure for example - in a single numeric vector?
This vector requires a clear structure, containing elements asso-
ciated with reagents and thermodynamic parameter values. At
its most simple, this is a one-hot encoded vector, where the pres-
ence of a species is marked by the corresponding entry in the vec-
tor, and this is frequently used in condition prediction30–32. To
make these labels more general, simple empirical categories can
be used, like ‘hydrophobic/polar/protic’ for solvent, or ‘(Lewis)
acid/base’ for catalyst. Whilst the predictions of these targets
may be less specific, they can help mitigate data sparsity which
will be discussed in a later section. Moving towards the continu-
ous space, descriptors might be calculated from the structure of
the reagents33–35. Alternatively, agents may be characterised by
their experimental properties, like dielectric constant or Kamlet-
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Taft values36.

Therefore, for some reaction r under conditions c, reactivity
modelling can be formulated as:

ŷ = f (r;c) (1)

The reaction outcome ŷ can be - from the most accurate and
less available, to the most empirical and more common - a re-
action rate constant, a yield value or simply a binary classifier
(feasible/infeasible). ŷ can therefore be categorical (in the case
of feasibility) or continuous. Any continuous prediction can be
reformulated as a categorical one, by selecting a cutoff for ‘ac-
ceptable’ values for yield, rate etc. In general, feasibility models
are the most popular, given that the presence of a reaction in a re-
action database implies its feasibility, unless explicitly labelled as
‘failed’, which is unfortunately not customary27,28. Therefore, in
the absence of negative data, feasibility models act as ‘one-class
classifiers’ - for two-class classifiers, either experimental failures
or assumedly infeasible ‘decoy’ examples must be provided37.

This formulation is the generalisation of single-molecule quan-
titative structure-property relationship (QSPR) approaches to re-
actions. But there are additional challenges that must be consid-
ered in reaction informatics: the added complexity of reactions
(compared to single molecules), resulting from the consideration
of multiple reacting species and how they interact; in addition
to the increased data pressures, like quality and sparsity, that the
consideration of reaction conditions impose.

Like classical QSPR, Eq. 1 can be used to obtain ‘optimal’ condi-
tion predictions either directly or indirectly. By selecting different
conditions, we can evaluate f (r;c) to predict the reaction out-
come of interest. Then, we can select the conditions which lead
to the most desirable outcome. This is equivalent to selecting the
set of conditions c, from the available set C , that maximises the
objective function f (r;c) for a given reaction r. Formally this can
be expressed as:

copt = argmax
c∈C

f (r;c) (2)

where argmax denotes the value of c in C that yields the high-
est value of f . These ‘reactant-specific’ conditions may be best
for a single pair of reactants, but may not be optimal for other,
related reactants38. These conditions have applications in late-
stage, scale-up chemistry, for example to optimise the production
of a single molecule. Accordingly, vector c would, in this context,
be rather detailed - predict the precise combinations of agents
and thermodynamic parameters likely to work for the envisaged
synthesis. Alternatively, ‘general’ conditions are also of interest,
where a set of conditions may give strong outcomes for a range
of related reactants, but are not highly specialised to a single
reactant-pair39,40. Conditions of this type could be applied across
a High-Throughput Experimentation (HTE) plate of a specific re-
action type R using a variety of substrates in library synthesis or
a ‘robustness’ screen. In this case, Eq. 2 changes to:

copt = argmax
c∈C

φ( f (r;c),R) (3)

Where φ is some aggregation function, like the mean or a count
of outcomes above a threshold41. These approaches are taken in
pursuit of reaction optimisation via Bayesian optimisation34,42–44

or Bandit optimisation40,41, and often involves an iterative learn-
ing workflow to enhance the exploration of chemical space. The
approach may work with both detailed and coarse condition vec-
tors c - find specific setups which score consensually best of re-
action type R, or predict the generic trend (e.g. "polar solvent,
Lewis acid catalyst at room temperature").

This paper will mainly focus on the ‘direct’ prediction of con-
ditions: what are the conditions required for the reaction to pro-
ceed to give the desired outcome (e.g. a maximal yield, a feasible
reaction etc.).

ĉ = g(r;y) (4)

Here, the condition vector should be as supported by the training
data - the sparsity of which may force adoption of coarse-grained
condition vectors. In Eq. 4, like any ‘inverse QSPR’ approach,
condition prediction requires navigating many-to-many mappings
between reactions and viable conditions2. This is the idea that a
single reaction can occur under multiple different conditions, and
inversely that a single set of conditions can be used for multiple
reactions. Due to this, machine learning (ML)-based approaches
to reaction condition prediction are diverse and highly dependent
on the problem setup and dataset used. Raghavan et al. introduce
the concept of ‘global’ models and ‘local’ models45. ‘Global’ mod-
els are trained on large amounts of literature data, often spanning
a wide range of reaction types and aim to generalise across reac-
tion space, like those in Refs. 30 and 46, 47. In contrast, ‘local’
models might focus on a single reaction type and a well-defined
set of reactants and conditions45. Examples of ‘local’-type models
span from models for conditions of Michael additions48 to C-N
couplings49,50. This classification of these models as ‘local’ is ar-
bitrary, as the applicability domain of these models varies in focus
and comprehensiveness on a continuum. Ultimately, as the focus
of a model shifts from a ‘global’ analysis of all reactions listed in
a database to targeted modelling of specific reactions around se-
lected reactants, the ‘conditions’ requiring consideration may also
collapse to a subset of locally relevant options. Subsequently, the
methods applied to predicting conditions require adaptation, pay-
ing attention to the constraints of the dataset of interest, and the
scope of the conditions to be predicted.

This work examines the unique challenges of reaction condi-
tion prediction, particularly those related to data quality, model
design (input and output) and evaluation. We then move on
to review the state-of-the-art ML approaches, highlighting their
progress and limitations. Finally, we present a case study of het-
eroaromatic Suzuki-Miyaura reactions from the USPTO dataset
curated by Beker et al. 1. In particular, our case study assesses
the impact that reaction representation - how a reaction equation
is encoded - has on the predictive power of condition prediction
models. Here, we utilise Condensed Graph of Reaction (CGR)
fragment representations51 to explore if this reaction encoding
can improve models’ predictive power, beyond a strong popular-
ity baseline. To conclude, we provide an outlook on the field,
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Categorical

Optimising Reaction Conditions
a. What Are Reaction Conditions?

The components ‘above the arrow’ 
which facilitate a chemical reaction

X B(OR)2

Pd. Cat, Ligand
Solvent, Base

T oC, t mins

DIRECT
PREDICTION

𝒄" = 𝑔 𝒓, 𝒚

Predict outcome for all
conditions

Select the best performing 
conditions

𝒄𝐨𝐩𝐭 = argmax
𝒄	∈	'	

𝑓 𝒓, 𝒄

CONDITION PREDICTION

VIRTUAL CONDITION
SCREENING

Directly predict 
conditions that 
give desired
outcome

c. Mathematical Formulation

TRADITIONAL REACTION MODELLING

𝒚. = 𝑓 𝒓, 𝒄𝒄:
𝒓:

𝒚:

Reaction
Conditions
Outcome

b. Which Components Do We Optimise?

Reacting 
species which 
don’t contribute 
a heavy atom to 
the product.

Here:

§ Pd Cat.
§ Ligand
§ Solvent
§ Base

REAGENTS
CHEMICAL VARIABLES

PHYSICAL PARAMETERS
NON-CHEMICAL VARIABLES

Other non-
chemical 
variables that 
influence a 
reaction.

Here:
§ Temp.
§ Time
+ more… 

ContinuousCategorical

d. How Can ML Help Finding ’Optimal’ Conditions? 

Outcome

Experiment Number

Better Outcomes

Faster Optimisation

ML-Guided Initial Condition Prediction + BO
Improve starting points

Ideal ML Model Condition Prediction
Predict the best conditions, immediately

No Computational Help e.g. DoE, OFAT
Inefficient exploration of condition space

ML-Assisted Experiment Planning e.g. BO
More informed experiment design

How Can We Improve Starting Points?
For ML-assisted experiment planning 

Fig. 1 Introducing reaction condition prediction. Because of the large possible scope of conditions, a decision must be made when creating models
to limit the scope of ‘conditions’ considered.

identifying key directions for future research and development.

2 Data: Sources and Curation

From the formulation above, it can be seen that condition pre-
diction is the ‘inverse’ problem of predicting reaction properties.
Unfortunately, predicting some reaction properties (e.g reaction
yield) is challenging29, with many issues arising due to data. As
discussed by Raghavan et al., careful consideration must be paid
to the selection of raw data source, curation protocols and under-
lying biases to produce datasets appropriate for reactivity mod-
elling45. Due to the close relationship between yield and condi-
tion modelling, many of these problems are shared, as we discuss
below. However, the many-to-many nature of condition predic-
tion poses a unique obstacle for the construction and evaluation
of condition prediction models. This section will briefly touch on
challenges common across reaction/condition modelling, before
moving onto problems specific to predicting conditions.

2.1 Data Sources

Since both reaction property prediction and condition prediction
are modelling the same object: reactions, they naturally share
the same data sources. There exist two main sources of reaction
data: large-scale reaction databases (see Table 1) and smaller
scale HTE/Electronic Lab Notebook (ELN) datasets (see Table 2).

As introduced by Raghavan et al. ‘global’, large-scale datasets
typically cover a wide range of different reaction classes, with
high substrate diversity but limited condition exploration for a
given substrate45. A small collection of these can be found in Ta-

ble 1. Models trained on these datasets are capable of suggesting
conditions over a wide range of reaction types. However, Afon-
ina et al. found that predictions of a ‘global’ model (Ref. 30) on
a smaller, more focused dataset containing only hydrogenation
reactions were not satisfactory, losing out to a simple popularity-
based model. They hypothesised that the poorer performance
is a result of the model not being biased towards a specific re-
action type2. Even filtered versions of ‘global’ datasets to only
include a single reaction type often lead to poor generalisability
and applicability to industrial use cases, such as the screening of
high-yielding conditions for new reactions52. In this case, it was
suggested that these general datasets are too biased towards spe-
cific reagents for given reaction types to be useful for creating
yield/condition prediction models that are useful for prospective
applications.

Table 1 Examples of existing large-scale reaction datasets

Dataset Open-Source? # Reactions Reference
USPTO (Curated from ORD) Y ≈ 1.7 M 23,53,54

Pistachio N ≈ 13.3 M 55
Reaxys N ≈ 72 M 56,57

SciFinder N ≈ 150 M 58

In contrast, the ‘local’, small-scale datasets cover a much
smaller range of reaction classes, but with a smaller substrate di-
versity and higher condition exploration for each substrate. Mod-
els trained on this sort of data21,38,59 can show more satisfactory
results, and crucially better predictive propensity within their ap-
plicability domains38 versus models trained on ‘global’ datasets.
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The downside is that models trained on this data cannot be ex-
pected to generalise to other reaction types, due to the narrow
scope of the training data. The other issue is data availability,
as many smaller-scale datasets originate from proprietary ELNs
within pharmaceutical companies.

Table 2 Examples of existing small-scale reaction datasets

Dataset # Reactions Reference
Suzuki HTE (2018) 5,760 60

Buchwald-Hartwig HTE (2018) 4,608 16
NiCOLit 2,003 18

Pd-catalysed C-H arylation 1,536 40
Amide Coupling 960 40

2.2 Data Curation

With a reaction dataset chosen, the next consideration is data
quality. Raw reaction datasets are rarely ready for modelling. Er-
rors in a chemical structure representation always complicate a
modelling task and may cause technical problems61. However,
despite the importance of reaction dataset curation, there have
been few attempts to curate reaction datasets62,63, particularly
for reaction condition prediction47,64. The raw data sources men-
tioned in Table 1 have not been fully curated, and cannot be used
immediately for modelling, requiring further curation before be-
ing used in a condition prediction tool.

Errors within chemical reaction data can arise in the form
of missing reactants, reagents or products; mis-assigned reac-
tion roles; incorrect SMILES representations and incorrect atom-
mapping. There are a number of approaches for dealing with
these issues, by either resolving the problems or removing the re-
action from the dataset. As discussed by Gimadiev et al., reactions
should undergo 4 steps of curation before they can be used for re-
activity modelling: chemical structures curation, transformation
curation, reaction conditions curation and endpoints curation63

(see Fig. 2).
The exact details of the chemical structures curation are usu-

ally a subset of steps suggested by Fourches et al.: detection of
valence violations, ring aromatisation, normalisation of specific
chemotypes, standardisation of tautomeric forms and the split-
ting of ions, among others65. ‘Transformation curation’ aims
to resolve issues with unbalanced reactions, atom-to-atom map-
ping, reaction role assignment and duplicate detection. For un-
balanced reactions, dealing with missing reagents, reactants and
products can be done using ML tools by suggesting replacements
for these missing species46,66,67, and this improved data qual-
ity was shown to improve model performance in product predic-
tion46. Alternatively, rule-based tools can be used to fill missing
small molecules and balance reactions68,69. The same considera-
tion needs to be paid to the representation of reaction conditions,
where text-based entries for reaction conditions must be collected
and mapped to the appropriate SMILES string64.

When considering reaction condition prediction specifically,
role-assignment of reagents is incredibly important but this is not
trivial. Many existing ‘global’ approaches divide reagents into
roles such as catalysts, solvents and agents (which encapsulate

additives, acids, bases etc.)30–32,47. A single reagent can per-
form multiple different functions across different reaction types
(or even within a single reaction), leading to challenges when as-
signing a reagent to a particular class. This is particularly pro-
nounced when considering a wide range of reaction types, as
is the case in ‘global’ models. For such models, it is often the
case that a reagent role simply cannot be assigned beyond ‘Agent’,
‘Solvent’ or ‘Catalyst’30,47,70. Therefore, there are a larger num-
ber of classes within this reagent type and subsequently, a more
challenging classification problem. Another aspect of conditions
curation is understanding which reagents take part in the reac-
tion, and which ‘reagents’ are part of other procedural processes,
for example workups or purification. More high-fidelity labelling
of reaction roles could lead to higher quality datasets for condi-
tion modelling, as provided by modern databases such as ORD23.
Furthermore, trusting the labelling of reaction roles from large
datasets such as USPTO can lead to issues. Frequently reaction
components are mislabelled64, leading to ambiguity in what is
a reactant versus a reagent. To rectify this, atom-mapped reac-
tion equations can be used to determine what are reactants, by
identifying which species contribute ‘heavy atoms’ to the product.
Once reactions are in a standardised format and the roles of all
components have been assigned, duplicate reactions need to be
dropped. Duplicate entries are common, due to scientists adopt-
ing transformations reported elsewhere in the literature. Addi-
tional treatment of rare conditions may also be required, as Wigh
et al. report that the removal of these entries can improve per-
formance of condition prediction models64. It is crucial to adopt
standardised curation protocols to not only benefit reactivity pre-
diction tasks but enable fair comparisons of model performance.

3 Data: Sparsity and Bias
Even after curation, existing large-scale datasets face many issues
that require consideration. Like the previous sections, there exist
many common challenges to be addressed across reactivity mod-
elling, the first of which is dataset bias.

3.1 Dataset Bias

Strieth-Kalthoff et al. explain the three key types of bias fre-
quently found within chemical reaction datasets: experimental
noise, selection bias and reporting bias27 (see Fig. 3).

Briefly, experimental noise refers to noise caused by human or
experimental error, for example, errors in experimental protocol,
which caused the loss of product. This results in large variance
in recorded yield for reactions performed under the same condi-
tions as Voinarovska et al. show29. Depending on how yield in-
formation is used in the modelling process, the extent that this af-
fects condition prediction models varies. For models which don’t
use yield information at all (and assume all non-zero-yield reac-
tions are successful), these problems shouldn’t affect model per-
formance. Conversely, where yield information directly influences
model training, high variance in yield could hypothetically lead to
the incorrect ‘optimal’ conditions being identified.

Selection bias refers to the tendency of chemists to select es-
tablished conditions (or the reagents that are simply available in
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Creating Reaction Datasets For Condition Modelling
a. Types Of Data Source b. Curating Reaction Datasets

Global

§ Large-scale reaction 
databases

§ Low condition exploration per 
substrate

§ Multiple reaction types

§ Low number of failed 
reactions

§ E.g. USPTO, CAS, Pistachio

Local

§ Small reaction datasets, e.g. 
HTE/ELN-derived

§ High condition exploration 
per substrate (HTE)

§ Single Reaction Type

§ Higher number of failed 
reactions

§ E.g. HTE Optimisation 
Campaign

DMF appears on 
both sides of the 

equation = reagent

K2CO3 not mapped 
= reagent

Input Reaction

K+ added to 
balance charges

LG molecule 
added to balance

Species which contribute a heavy atom to product = Reactant

Transformations
§ Atom-to-atom mapping 

(if necessary)

§ Balancing reactions 
(where possible)

Conditions
§ Assigning reagent roles to 

determine targets for modelling.

§ Deal with rare reagents.

§ Determine reagents used in 
reaction vs workup

Atom Mapped

Chemical Structures
§ Standardise

§ Balance Ions

Fig. 2 Summarising key features of reaction data sources and the subsequent steps required to curate these sources.

the lab) when performing reactions, ultimately leading to large
imbalances in the dataset where few conditions are explored and
can lead to models that are trained on this data to learn little
more than popularity trends1.

The final type of bias discussed by Strieth-Kalthoff et al. con-
cerns the reporting of results, and particularly the bias of high
yielding ‘successful’ results. This issue is further exacerbated by
the common practice of reporting only the optimal outcome from
a series of identical experiments, often without accompanying er-
ror estimates, which further complicates modelling. As a result,
there are large imbalances in the distributions of yields across a
data source, which prevents models from learning which reac-
tions don’t work and ultimately reduces performance27. Maloney
et al. called for an improvement in the reporting of experimen-
tal yields, and an increase in the amount of these ‘low yielding’
reactions being reported, thereby making these reactions more
common in chemical reaction databases28.

Despite these biases, there are approaches which can counter-
act this (although, they have their own issues which need to be
considered). For example, it has been demonstrated that the in-
troduction of synthetic ‘negative’ data (labelled, impossible reac-
tions) in appropriate quantities can lead to improved performance
in yield prediction27 or retrosynthesis applications37. Alterna-
tive approaches include the sampling of ‘hard negative’ condi-
tions. These ‘hard negatives’ (incorrect reagent or solvent pre-
dictions assigned a high probability by the model) were com-
bined with true labels to generate diverse training examples to
help the model distinguish between correct and incorrect con-
ditions32. Schwaller et al. artificially expanded existing data

via data augmentation using permuted and randomised reaction
SMILES strings, resulting in an improvement in R2 of up to 0.15
for a yield prediction model71. Various forms of data augmen-
tation have also been applied in the prediction of retrosynthe-
sis7,72 or reaction products73. Other options to leverage existing
chemical knowledge include transfer learning and this has shown
promise in modelling reactivity3,74, although in certain cases this
‘transfer’ of information can hinder the models’ predictive capa-
bilities via ‘negative’ transfer75. This emphasises that, although
these strategies can aid the situation, care must be taken to ensure
that the additional data is not causing a decrease in performance,
and that the introduction of the new data is not bringing signifi-
cant biases with it.

3.2 Data Sparsity

These biases both cause and propagate data sparsity - the scarcity
of explored conditions per reaction relative to the vast combina-
torial condition space (see Fig. 3). This sparsity hinders the de-
velopment of reliable, robust models27,29, especially in the case
of ‘global’ datasets, where this problem is most acute with their
broad scope of reaction types, and subsequently their reaction
conditions. For these models it is difficult to learn the links be-
tween ‘reactant reactivity’ and ‘reagent reactivity’ (i.e. how harsh
or mild the conditions are) due to the limited data available for
each reactant pair. Beyond prediction, data sparsity also affects
the way that condition prediction models can be evaluated, which
we discuss below.

While data quality, bias, and sparsity are critical challenges in
any reactivity modelling, they manifest themselves differently in
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Key Data Challenges In Reaction Datasets

a. Biases In Reaction Data

Reporting Bias
Chemists typically only 
report successful reactions Co

un
t

Yield

Selection Bias
Only a small number of 
established conditions are 
typically used Fr

eq
ue

nc
y

Condition Set

Experimental Noise
Yield values vary between 
chemists, even with the 
same conditions.

Single result and 
no error 

estimates 
recorded

Yi
el

d

Experiment

b. Data Sparsity

Reaction

So
lv

en
t

Ba
se Tested Combination

Most Reactions Only Appear Under 
A Single Set Of Conditions
Making it difficult for models to learn 
trends in both reactant and condition 
reactivity.

Data Sparsity
HigherLower

# Variables

Fi
ne

-G
ra

in
in

g
of

 V
ar

ia
bl

es

Sparsity Increases With The 
Number Of Condition Variables
Therefore, models must balance the 
scope and granularity of their 
predictions. 

Causes

This complicates model development and evaluation.

Fig. 3 Key data challenges faced when using reaction datasets. The biases in literature data sources directly result in the sparsity of reaction-condition
pairs that are observed. These biases often interact, for example, a single transformation may result in multiple different outcomes for the same set
of conditions (experimental noise), where only the ‘best’ outcome is then recorded in a database (reporting bias). This sparsity impacts the condition
scope that models can reliably predict, since models may not ‘see’ an appropriate amount of condition space in training.

condition modelling due to the many-to-many relationship be-
tween reactions and potential conditions, which we will explore
now.

4 The Many-to-Many Nature of Condition Predic-
tion

Arguably the most important consideration in condition mod-
elling is that a single reaction can succeed under multiple valid
conditions. This many-to-many relationship, combined with the
dataset biases and sparsity discussed above, make the modelling
of reaction conditions particularly challenging. This challenge
presents itself in two forms: model design (specifically the se-
lection of input and output) and model evaluation.

4.1 Model Input: Representing Reaction Equations

For condition prediction models, we would expect the input to
be a reaction equation, and the output to be a set, or list of, vi-
able conditions. The choice of encoding of both input and output
will have a profound effect on the performance of such a model.
For ‘global’ models, reaction descriptors should balance compu-
tational overhead (and storage considerations), with relevance
to the problem at hand. For example, reactions have been rep-
resented in binary fingerprints, like Morgan fingerprints of the
reactants and products1 (or their difference30). Alternatively, re-
actions can be encoded by SMARTS strings and modelled with
Natural Language Processing (NLP) methods46,47. Finally, graph-
based representations of the reactants and products31,76 or the
CGR2,77 can be used. For smaller-scale (‘local’) models more
computationally intensive descriptors can be calculated, due to
the smaller dataset size. Examples of such representations for
reactions here might include Density Functional Theory (DFT)

properties of the reactive atoms59,78, or custom 3D descriptors
which can account for complex steric effects38.

In our case study (see later), we use the CGR, aiming to strike
a balance between an informative representation and computa-
tional cost. The CGR encodes a reaction as a single pseudo-
molecule, arising from the superposition of the reactant and
product graphs of molecules in a reaction51 (see Fig. S2).
This pseudo-molecule contains ‘dynamic’ bonds, representing the
bonds that are broken or made during the reaction. However, this
requires atom mapping, which is not trivial, and even state-of-the-
art computational tools79,80 cannot achieve perfect accuracy81.
The requirement for atom mapping aside, CGRs have emerged as
a powerful representation for chemical reactions and have shown
strong performance when used as input for the prediction of re-
action properties such as activation energies, rate constants and
protecting group reactivity82–84.

4.2 Model Output: Encoding Conditions

The direct prediction of reaction conditions using ML methods is
tributary to the level of coarseness chosen (or enforced by data
sparsity) for the condition vector to predict, and to the level of
‘globality’ of the approach - see Fig 4. Ideally, a model would
be able to predict the exact combination, stoichiometry, and or-
der of addition for all reagents in a reaction (and physical pa-
rameters like temperature, pressure, flow rate etc.). Due to the
aforementioned challenges with existing literature data, increas-
ing the number of variables to model exacerbates the data sparsity
problem. Consequently, the choice of variables to predict forms
a critical and difficult aspect of condition modelling. Variables
must balance practical utility for synthetic chemists with the con-
straints imposed by data availability.
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Polarity

‘Featurising‘ Conditions
How similar are the properties/representations of the predicted 
reagent/condition compared to the ‘ground truth’?

Expert-Assigned Reagent Classes
Does the predicted reagent fall into the same ‘class’ as the 
‘ground truth’ reagent?

The Impact Of Data Sparsity In Modelling Conditions

Continuous Representation
Physical Properties, 
Learnt Embeddings etc.

Dissimilar

Similar

Condition Space

E2

E1Experimental Validation
What is the outcome of using the predicted conditions?

b. Assessing ‘Incorrect’ Predictions

Exact Match: MeOH
Fine-Grained Match: Alcohol
Coarse-Grained Match: Polar

R1 R2R1

a. How Should We Evaluate Predictions?

Pred.True

Co
nd

iti
on

Prediction doesn’t 
match ‘ground truth’

Prediction matches
‘ground truth’

Has similar 
reactivity

Desired 
model output

‘Incorrect’ Predictions Can Be Valid
They may correspond to viable-but-untested 
conditions, but how can we assess this?

Tested Predicted

R2

Qualitatively
Would a chemist be willing to try these conditions?

c. How Should We Encode Model Output?

One-Hot Encoded Vectors
Using ’exact’ reagent identities

One-Hot Encoded Vectors
Using reagent ‘classes’

Binary Classification
Does the prediction match the 
‘class’

Similarity Metrics
How similar are the representations?

ENCODING EVALUATION

Alcohol

Polar

Fine

Coarse

MeOH

Dielectric Constant SASA

Fig. 4 The impact of data sparsity on the prediction of conditions. Because many reactions only have a single set of conditions associated with the
record, analysis of these predictions are often limited to binary correct/incorrect evaluations, where more nuanced analysis of the incorrect predictions
may be required. Consideration of conditions beyond simple one-hot encoding of identity could present a way of quantifying the similarity between an
‘incorrect’ prediction and the ‘ground truth’. In any case, the best way of assessing ‘incorrect’ predictions is to test them experimentally.

Most often, a one-hot encoded c vector is targeted, where the
presence of a given reagent is indicated by a binary label to be
predicted by the approach. Continuous variables, like tempera-
ture or pressure, are often treated in the same way by ‘binning’
the variable into discrete categories2 (or can be modelled as a
regression task30,47).

When modelling with ‘local’ datasets, where data sparsity may
be less pronounced, modelling variables at a higher fidelity may
be possible. As a further benefit of this scenario, some condition
factors may be sine-qua-non prerequisites for the given class of
reactions, and therefore already known - hence no longer explic-
itly included in the output vector c. In contrast, when modelling
with ‘global’ datasets, where the prerequisites for the conditions
may vary across reaction types, this is not possible.

4.3 Model Evaluation

Unlike reaction property prediction, where the magnitude of a
prediction’s error can be gauged quantitatively using root mean
squared error (RMSE) and related metrics, condition prediction
necessitates careful consideration of classification-based metrics
and the inherent ambiguity concerning ‘optimal’ conditions.

‘Global’ models are often evaluated using classification met-
rics like top-k accuracy30,32,47,85. However, the ‘ground truth’
in literature-derived datasets is inherently ambiguous: multiple
valid conditions may exist for a reaction, but only a subset are
documented. For example, a model predicting methanol instead
of the ‘ground truth’ ethanol for a polar protic solvent is penalised
equivalently to one predicting toluene, even though methanol is

chemically plausible but untested. Conventional metrics fail to
distinguish between chemically invalid predictions and valid-but-
unexplored alternatives.

For ‘local’ models, multiple condition sets may be successfully
applied to a single reaction. In such cases, ranking-based eval-
uation metrics such as mean reciprocal rank or the Kendall tau
coefficient can be used to assess performance78, with ‘true’ rank-
ings based on the outcomes of each condition set. Similarly, when
yield prediction is being used to ‘screen’ conditions, one could
also use the Spearman correlation coefficient or average yield
percentile ranking35, which emphasise relative performance of
conditions over absolute error. Of course, these approaches are
less applicable for global models, where the ranking of all possi-
ble conditions is unfeasible, and a given reaction may only have
a single condition label associated with it.

The ‘gold-standard’ for the evaluation of models would include
the testing of predictions in the lab, alongside top-k accuracy, as
done by Schilter et al. 86. This is particularly important in the
case of a model’s prediction disagreeing with the ‘ground truth’.
However, access to experimental validation is not always possible
(and is resource-intensive), but other in silico metrics could also
be used. As an example, Wang et al. used the Solvent Similar-
ity Index87 to determine how similar the predictions of ‘incorrect’
solvents were to the ground truth47. Of course, no in silico met-
ric of similarity can replace experimental validation, but it can
help provide further information into the ‘chemical reasoning’ of
a model.

Another alternative is to use condition clustering, where
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reagents with similar chemical properties are categorised in the
same cluster. The intuition behind this follows directly from
above: in general, we might expect reagents with very similar
chemical properties to react in the same way. This approach
could be applied post-prediction77, aiming to evaluate model
performance whilst accounting for data sparsity and the many
unlabelled positive examples in reaction condition datasets. On
the other hand, such an approach could be applied in data pre-
processing, reducing the number of classes that a model might
need to predict, and subsequently improving performance1,2. We
explore this concept further in our case study, see 7. This is com-
parable to the concept of ‘binning’ in yield prediction, where the
underlying variance in yield data makes modelling of exact yields
difficult29; but effective, useful tools can still be developed by
considering yield as a discrete class including ‘zero yield’, ‘low
yield’ or ‘high yield’ classes.

The final consideration to be made, like in any reactivity mod-
elling, is testing that a model has learnt meaningful chemistry
rather than exploiting underlying patterns in the data88. For ex-
ample, using adversarial tests for unrelated representations of re-
actants (e.g. random or one-hot encoding) to illustrate the im-
provement that applying such a model can have on the problem
of predicting appropriate conditions78.

We have seen how condition prediction presents a unique chal-
lenge due to its inherently many-to-many nature. This complexity,
combined with dataset sparsity and bias, impacts every stage of
model development: from input representation and output en-
coding to evaluation. The choice of both input representation
and output encoding is closely tied to the nature of the dataset
and should be carefully considered, particularly for ‘global’ mod-
els. Furthermore, standard evaluation metrics in ‘global’ mod-
els often fall short, due to the ambiguity of ‘ground truth’ labels.
Therefore, it is critical that the evaluation of such models should
include experimental validation (in the ideal case), or at the very
least careful analysis of ‘incorrect’ predictions, to gain a better
insight into a model’s performance.

5 State-of-the-Art Approaches to Predicting Con-
ditions

These challenges set the stage for exploring state-of-the-art ap-
proaches that aim to overcome these limitations with more robust
architectures and chemically aware strategies, as we will look at
now. The following sections explore these developments, empha-
sising how models can still use imperfect datasets to deliver ac-
tionable predictions.

To begin, we refer back to the introduction, and the differ-
ent definitions of ‘optimal’ conditions. The majority of exist-
ing approaches focus on selecting conditions for a given sub-
strate pair which produce the highest yield of the desired prod-
uct38,43,59. Though some methods focus on discovering and pre-
dicting ‘general’ reaction conditions39,40,89. We will predomi-
nantly focus on models of the former, analysing models based
on their architecture. For models that aim to optimise the yield,
we can classify these models in the same way we did with the
data: ‘global’ models and ‘local’ models45. ‘Global’ models re-

fer to models that are trained on large amounts of literature
data contained within datasets such as US Patent & Trademark
Office (USPTO)53, Reaxys56, Pistachio90 or the Open Reaction
Database23, and can be applied to many different reaction types.
On the contrary, ‘local’ models are trained on a single, specific
reaction type (often) using HTE data.

Furthermore, it is important to distinguish possible problem se-
tups employed to predict conditions (see Fig. 5). Most ‘global’
models aim to solve some form of ‘classification’ task: which
reagent(s) from a selection of reagents are the most appropriate
for the input reaction? With this in mind, we begin our analysis
by analysing ‘global’ models.

5.1 ‘Global’ Condition Prediction Models

5.1.1 Similarity Approaches

When synthetic chemists think about conditions for reactions with
new substrates, conditions from similar reactions in the literature
often function as a starting point. Some tools leverage the same
idea by performing a similarity search for reactions and returning
the conditions for the most similar reactions84,91. For example,
the work of Refs. 84 and 91. The encoding of reactions differs
in the two approaches, with Lin et al. using CGRs to predict con-
ditions with respect to protecting group reactivity, with balanced
accuracy of predictions varying between 85-95 %84. Conversely,
Dobbelaere et al. demonstrate how a bond-electron matrix ap-
proach can be used to select initial conditions for a Heck reac-
tion91. As another example, Walker et al. found that k-Nearest
Neighbour (kNN) models were the best approach for predict-
ing solvents for named organic reactions, beating support vector
machine (SVM) and neural network methods. The kNN model
achieved a top-1 accuracy of 69-80 % and an impressive top-3 ac-
curacy of 91-99 % depending on the reaction type92. They also
found that when the solvents were grouped using the similar-
ity metrics employed by the kNN model, solvents formed distinct
clusters corresponding to certain physical properties. These ap-
proaches provide inherent interpretability for predictions, where
chemists can intuitively understand that conditions are being se-
lected based on their suitability for similar reactions. A compara-
ble approach was applied by Afonina et al. as a comparison model
for hydrogenation reactions using a kNN model which showed
good performance (improvement of 10 % over a popularity base-
line for top-10 accuracy)2, even outperforming other popular ML
approaches (improvement of 3 % over the same baseline)30.

However, the similarity approach does have issues, as similar-
ity searching on large databases can become very slow, and re-
quires special approaches like FAISS93,94. This can make simi-
larity searching impractical, despite its interpretable nature. The
other issue is that similar reactant structures can often exhibit
very different reactivity, for example changing the substitution
pattern of aromatic systems like indoles can cause vastly different
reactions to occur (electrophiles reacting at C(3) versus reacting
at nitrogen). Structural encodings must be able to capture this
subtle change in reactivity, which might not be possible through
simple fingerprints, and more complex DFT-based featurisation
methods might be better suited to capturing these differences.
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Problem + Model Setups For Predicting Conditions
a. Direct Prediction

b. Virtual Condition Screening
Yield Prediction
Predict the yield using each set of conditions, select the condition with the 
highest predicted yield

Multi-Class Classification
Predict probabilities of exactly 
one reagent being used in a class

Multi-Label Classification
Predict probabilities of each 
reagent being used simultaneously

Reagent inter-dependency: ExplicitReagent inter-dependency: None

Use previous prediction in 
prediction of next reagent

Predict all reagents 
simultaneously

R + Condition 1
R + Condition 2
R + Condition 3

Best Condition

Solvent Base

Base
Solvent

Reagents

Model

Condition 1
Condition 2
Condition 3

Label Ranking
Predict the rank of each set of conditions relative to the other conditions

Final Ranked 
Conditions

Rankings Aggregate

Algorithm

Predicted Yields

Probability
(unless stated otherwise)

Fig. 5 Problem setups used when predicting conditions. For all ‘direct prediction’ models, the input is simply the reaction equation. Generally, ‘global’
models will adopt the task of predicting conditions as a multi-label classification task, or a series of multi-class classification tasks, aiming to predict
the individual components of the conditions. For ‘local’ datasets, where the space of conditions can be enumerated, alternative approaches like label
ranking and yield prediction can, and have, been used to predict highly performant sets of conditions.

Increasing the complexity of models can capture more of this re-
activity information, which can lead to better performance which
we will discuss now.

5.1.2 Feed Forward Neural Networks

Feed-forward neural networks have also been applied to this
problem, aiming to capture more complex relationships between
the reaction conditions and the reactants. The most notable ex-
ample of this was Gao et al., who used an RNN-like architecture,
trained on over 10M reactions in the Reaxys database to pre-
dict reaction conditions consisting of two solvents, two reagents,
a catalyst and temperature. The prediction was done sequen-
tially, with the catalyst being predicted first, followed by two
solvents, two reagents and finally the temperature. Here, reac-
tions were encoded using simple Morgan fingerprints95, illustrat-
ing how even ‘simple’ reaction representations can furnish strong
results. This work also implements a ‘close match’ evaluation
of predictions, using solvent similarity and feature-based Mor-
gan fingerprints to determine matches. Using this metric they
achieve an impressive 70 % top-10 accuracy across all reactions.
The same reaction condition prediction architecture was also em-
ployed by Qian et al., but alongside using product and reaction
fingerprints, the input data was augmented with procedural infor-
mation and demonstrated state-of-the-art performance, improv-
ing on SMILES-only methods by 17.2 % for top-1 accuracy70.
This indicates that procedural information for similar reactions
can be very useful in determining potential conditions for a new
reaction of interest. Crucially, by allowing the model to use its
previous reagent predictions, these approaches have the ability
to capture the dependence between predicted reagents. Such a
trait is important when thinking about reaction conditions, as it
is important that reagents are compatible (e.g. all reagents are in
the correct phase at the given reaction temperature). This idea is
also exploited in the tree-based models used by Maser et al., who
highlight a drop-off in model performance when this information

from the previous prediction is withheld31.

Both Afonina et al. and Chen and Li also treat condition pre-
diction as a classification problem, though with some similarities
to ‘label ranking’ (see Fig. 5)2,32. Afonina et al. use a ‘Likelihood
ranking model’ which enumerates all conditions including acid,
base, temperature, pressure and catalyst, encoding reactions us-
ing ISIDA CGR fragment descriptors51, before using a neural net-
work to output the most likely conditions for that reaction. This
approach showed strong performance, improving on the work of
Gao et al. for hydrogenation reactions (73 % top-1 accuracy on
a retrospective test set), although performance on the prospec-
tive test set showed that a popularity baseline was comparable
in performance, achieving correct top-1 predictions 68 % of the
time. This method requires the enumeration of all conditions, and
for large datasets covering many reaction types, enumerating all
combinations of conditions is computationally infeasible2. Chen
and Li employed a neural network that shares many characteris-
tics of the ‘likelihood ranking model’. Using a two-stage condi-
tion generation and ranking approach, they leveraged a ranking
model alongside a generation model to generate plausible condi-
tions prior to ranking, avoiding the need for the enumeration of
all possible conditions32. Again, this yielded good results, find-
ing an exact match to the true condition with the top-1 suggestion
53 % of the time. Interestingly, in a short case study, the authors
found that the model suggested conditions which were used in the
publication but were not recorded in the reaction database. This
reiterates the importance of not only recording all reactions per-
formed in reaction databases, but also that care should be taken
when evaluating models purely based on top-k accuracy.

The key to all feed forward neural network approaches is the
choice of reaction descriptors. Whilst the fingerprints employed
by Chen and Li and Gao et al. are computationally inexpensive to
calculate, they may not capture the more complex electronic and
steric effects that can explain reactivity patterns. With the devel-
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opment of methods to estimate complex descriptors and features
in computationally inexpensive ways96,97, future models may be
able to take advantage of this. Alternatively, researchers can look
towards more complex architectures, such as graph neural net-
works and transformers to generate more information-rich en-
codings for the reactions in order to improve performance, which
we will see in the next section.

5.1.3 Graph-Based Neural Networks

The structure of molecules naturally lends themselves to the
graph representation, with nodes encoding atomic information
and edges encoding bond information. Graph neural networks
(GNNs) have been applied to many molecular tasks, including
property prediction98–101, synthesis planning12,102 and genera-
tive molecular design103–105. Generally, these approaches use
message passing neural networks (MPNNs)106, or graph convo-
lutional networks107 to convert the molecular graph into a vector
representation which can be used in downstream tasks. However,
when thinking about reactions, the situation is more complicated.
Reactions are composed of multiple disconnected graphs corre-
sponding to the reactants, reagents and products. One method of
dealing with this is using the CGR approach (explained in more
detail in the case study)51. Once the reaction is encoded within
the CGR pseudo-molecule, GNN methods can be applied to it, and
the D-MPNN created by Heid and Green showed state-of-the-art
performance on reaction property prediction tasks83.

Applied to condition recommendation, the most notable exam-
ples of GNN application are Maser et al., Kwon et al. and Wang
et al. 31,77,85. Maser et al. used ‘attended relational’ graph convo-
lutional networks (AR-GCNs) to predict conditions for a collection
of different coupling reactions, including Suzuki, Negishi and C-
N couplings. The models showed good predictive performance
over a popularity baseline (31-42 % improvement for top-1 pre-
dictions). In addition, this model has an accompanying analyti-
cal framework, providing interpretability analysis on the learned
feature weights to understand the reasoning behind different pre-
dictions. However, the performance of this model was marginally
worse (2 % for top-1 accuracy) compared to tree-based methods
also used in the publication on the smaller Pauson-Khand dataset.
The authors suggested that the smaller dataset size makes the
GCN more prone to overfitting, which made tree-based modelling
more suitable here31.

Extending this approach, Kwon et al. used GNNs to encode both
reactants and products, combining this with a variational auto-
encoder (VAE)108 to predict conditions85. In comparison to both
Gao et al. and Maser et al. this approach resulted in a higher accu-
racy when allowing multiple predictions from the VAE. However,
this approach is more time-consuming versus the others, and no
comparison was performed where the models from Refs. 30 and
31 could predict multiple conditions.

Finally, Wang et al. use a combination of templates and
condition-clustering alongside a D-MPNN acting on CGRs. This
work exemplifies one of the first uses of condition clustering to
improve performance, by increasing the diversity of predictions,
and acknowledging the many-to-many nature of condition pre-
diction77. By incorporating this clustering, the top-1 accuracy of

their method jumps from 45 % to 66 %, a significant increase.
Zhang et al. take a slightly different approach; they encode their
reactant and product as graphs before passing through their GNN
pretrained on atom level and bond level tasks. These molecular
level descriptors from the GNN are passed to a second NN along
with a one-hot encoded reaction template, and this is used to
predict the most likely solvents and catalysts for a reaction. How-
ever, in the prediction of the solvent and catalyst, the identity of
the other reaction component is not considered76. Nonetheless,
these models could predict the correct catalyst and solvent 59 %
and 42 % of the time respectively. Ignoring the inter-dependence
of the conditions is likely to lead to some drop in accuracy, be-
cause the identity of one reagent, along with the reaction will
determine the identity of the other reagents. Modelling this de-
pendence is a key part of reaction condition prediction.

GNNs clearly show promising performance in predicting appro-
priate conditions, indicating the representation that these models
learn is comparable to (and sometimes better than), more sim-
ple fingerprint descriptors. Moving beyond graphs, reactions can
also be described by their SMILES string, to which natural lan-
guage processing (NLP) methods can be applied, and the final
architecture we will look at are the transformer-based models.

5.1.4 Transformer Models

The transformer architecture109 has shown application across
many life sciences, covering areas like protein structure pre-
diction110,111, protein design112 and in chemistry specifi-
cally, transformers have demonstrated utility in synthesis plan-
ning4,9,13,17,113 among others. Extending this to condition pre-
diction, Wang et al. created a condition prediction transformer,
Parrot, which demonstrated very good performance, showing
higher accuracies in a direct comparison to other condition pre-
diction models (Refs. 30, 76 and 31) achieving a top-1 accu-
racy of 27 % for exact matches47, on a subset of the USPTO
and Reaxys datasets which the authors curated. This architec-
ture uses a BERT-like114 encoder to generate a reaction feature
vector from a SMILES string, and a transformer decoder to pre-
dict the conditions sequentially, in the same order as the model
proposed by Gao et al.. This was pretrained on 2 separate tasks,
using masked language modelling (MLM) and masked reaction
centre modelling (RCM) to guide the model to understand reac-
tion centres. Furthermore, the transformers use of the attention
mechanism allows for investigation of the attention weights to
improve interpretability of predictions, another desirable feature
of any model.

Another similar approach was taken by Andronov et al., who re-
purposed the MolecularTransformer described by Schwaller et al.
for reagent prediction5,46. The final example to leverage the
transformer architecture is MM-RCR by Zhang et al. 115. This
uses a combination of the previous architectures, using a mul-
timodal reaction input consisting of SMILES, Graphs and Text, on
top of a large language model (LLM) to predict conditions. This
achieves state-of-the-art performance on the same dataset curated
by Wang et al.. Their ablation study demonstrates the benefits of
a multi-modal representation, showing significant (up to 17 %)
improvement over the same model using a single data modality.
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To conclude this section, whilst ‘global’ condition prediction
models are highly desirable (and many such models perform to
a strong level), the level of detail that can be afforded without
making the dataset too sparse means that finer grained details of
a reaction such as timing, pH and others are often ignored, de-
spite their importance to synthesis planning. Furthermore, the
lack of consistent benchmarking datasets until the work of Wang
et al. and Wigh et al. has meant there has not yet been a wide-
scale comparison of the existing methods, including performance
by reaction class or failure modes, which represents a potential
area for future work. When tested on focused reaction datasets,
these ‘global’ models can also struggle, as the exposure to many
different types of reaction can add ‘noise’ to predictions, as found
by Afonina et al. 2. On the contrary, smaller-scale models can be
tailored to specific reactions, allowing the aforementioned param-
eters to be predicted, and enabling the incorporation of domain-
specific descriptors which enhance performance38, as we will dis-
cuss now.

5.2 ‘Local’ Condition Prediction Models
‘Local’ condition prediction models can be more specialised to the
reaction of interest. By focusing on a single reaction type or even
a single reactant pairing, reagents can be more easily classified
into their respective roles, allowing for finer-grained modelling
of condition components. With smaller datasets, the feasibility of
computing more information-rich descriptors, such as those based
on density function theory (DFT)116, increases. Furthermore, as
the condition space is smaller for single reaction types, it is now
computationally feasible to enumerate conditions. This means
that other approaches to condition prediction can be employed.
For example, we can now rank all conditions against each other,
like in label ranking, or alternatively, we can ‘screen’ conditions
in silico by predicting the yield of reactant/reagent combinations
and then testing the highest yielding predictions (see Fig. 5).

5.2.1 Label Ranking

An emerging approach which is particularly suited for small data
is label ranking78. This method aims to directly compare condi-
tions against one another, producing a ranked list of conditions
for a given input equation. Shim et al. applied this to good ef-
fect on ‘small-data’ deoxyfluorination and C-heteroatom coupling
reaction datasets. Notably, this approach performed well un-
der both a full combinatorial regime where all reactant-condition
pairs were available; and under the more realistic partially com-
plete data regime, where some reactant-condition pairs were ran-
domly masked out78. However, the authors also suggest that
this approach can work on some larger condition datasets, us-
ing the C-N Ullman coupling dataset curated by Samha et al. 59

and they highlight the benefit of aggregating condition rankings
as opposed to using a simple classifier.

In a related approach, Eshel et al. use classifiers to assign ranks
in order to select conditions for aldehyde deuteration and C-H
activation reactions. They incorporate expert knowledge about
the reactivity of conditions relative to the substrates they are ap-
plied to inform the choice of ordinal ranking algorithms, therefore
working in a similar manner to Shim et al. by ranking conditions

against one another117. Both of these recent works suggest that
ranking methods could be a strong approach for condition recom-
mendation, particularly in the small-data regime.

5.2.2 Virtual Condition Screening

As referenced already, ML-based yield prediction is an entirely
different topic on its own and is covered in depth, alongside their
challenges, in other reviews29,52,118. The benefit of accurate yield
prediction models is that they can be used to filter possible reac-
tion conditions and by selecting the conditions that lead to the
highest predicted yield to test we can find optimal conditions
without wasting the time and resources required to screen all
the conditions experimentally. Shields et al. use Bayesian Opti-
misation (BO) as a tool to predict and select conditions based on
the observed yields in an iterative learning approach43. Rinehart
et al. and Samha et al. both found success by modelling coupling
reactions using a combination of ML models with custom descrip-
tors38,59, and Kwon et al. have used GNNs alongside BO to ex-
plore optimal reaction conditions119.

All of the above approaches carry out their experiments in an
‘Iterative Learning’120 workflow, designing and creating datasets
specifically for building models of reactivity.

The alternative approach is to use existing datasets. As previ-
ously discussed, a yield prediction model can be trained and ap-
plied to small, focused datasets, with conditions predicted to lead
to the optimal outcomes being selected to test (see Figure 5b). As
representative examples, Schwaller et al. created Yield-BERT, a
transformer-based model to predict reaction yields, then trained
this on a small fraction of a dataset and prospectively screened the
rest of the dataset to identify promising conditions17. Atz et al.
used a graph-transformer neural network in a similar manner to
screen conditions for a Suzuki-type cross-coupling reaction121.
Both examples exemplify how yield prediction can be incorpo-
rated into condition recommendation, provided conditions can
be enumerated.

Of course, scaling these approaches to a ‘global’ level is chal-
lenging, requiring predictions for all possible combinations of
conditions which would be computationally intensive. It is pos-
sible that these yield-prediction models could be used as a final
computational screen of ‘feasible’ conditions suggested by a dif-
ferent model, analogous to Chen and Li 32. However, for ‘local’
datasets, the yield-prediction route offers a viable method of eval-
uating and suggesting reaction conditions.

Whilst challenges like data sparsity and evaluation remain, we
have seen how progress in reaction condition prediction can come
from advances in model architecture. Although progress can also
come from rethinking fundamental aspects of modelling, such as
data representation. Having discussed the modelling earlier, we
have seen how data representation can influence predictive per-
formance. To illustrate this, we apply models to CGR-based re-
action representations and demonstrate improved performance
over traditional reaction representations.

6 The Importance of Reaction Representation: A
Case Study

Beker et al. argued that machine learning-based models some-
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Table 3 Examples of condition prediction models trained on large databases, instead of HTE data

Model Type Data Source Source Code? Reference
Reacon GNN (+ FFNN) USPTO Y 77
2S-DNN FFNN (×2) Reaxys Y 32

TextReact FFNN USPTO Y 70
Molecular Transformer Transformer USPTO/Reaxys Y 46

PARROT Transformer USPTO/Reaxys Y 47
ReactionVAE VAE Reaxys Y 85

CIMG GNN Dcaiku Y 76
LRM FFNN Reaxys N 30

times simply capture literature popularity and cannot provide sig-
nificant improvement over predicting the most common condi-
tions for a given reaction1. Their approach involved categorising
solvents and bases into 6 or 13 and 7 expert-assigned classes,
respectively, then training models to predict these classes. The
best performing model, a feed-forward neural network based on
Morgan fingerprints95, could not significantly outperform simply
picking the most popular classes for solvent/base.

To demonstrate the impact of reaction representation, we se-
lect a different method to encode reactions: CGR fragments. We
wanted to see if this encoding could produce models of improved
predictive power and crucially, outperform a challenging litera-
ture baseline1. Afonina et al. introduced a method combining a
multitask neural network and likelihood ranking based on CGR
fragments which can produce lists of viable conditions for hydro-
genation reactions2, and we adopt a similar strategy here.

The USPTO dataset was downloaded directly from Ref. 1,
where the same curation as that publication was applied, split-
ting solvents into 6 ‘coarse’ classes, 13 ‘fine’ classes and the bases
into 7 classes1. We choose not to predict the identity of the Pd
source, ligand or temperature, to enable comparison with Ref.
1, who only predict solvent and base. Full details of the identi-
ties of the clusters can be found in the Supplementary Material.
The reaction itself is split into reactants and products, leaving
2 reactants and a single product. Following this procedure, we
perform atom mapping using Chython79, and an additional du-
plicate check, removing all reactions with the same mapped reac-
tion equation, ‘coarse’ solvent class, ‘fine’ solvent class and base
class. This leaves us with fewer reactions (5,219) than the origi-
nal publication (5,434).

We then split the dataset using 5x5 cross validation (CV), using
stratified sampling of the ‘fine’ solvent class. Whilst this differs
from Beker et al. who use random 5x5 CV, stratified sampling
ensures that the model’s evaluation is more accurate, given the
unbalanced nature of both the base and solvent targets1.

To generate the model input, ISIDA fragment descriptors51

were generated for each reaction. We used the same procedure as
set out in Ref. 2, generating atom and bond-centred fragments of
length two to four atoms using ISIDA Fragmentor 2017, wrapped
by CIMTools122. We used the same additional settings as that
publication, namely Formal Charge encoding and all fragments
formation, creating fragments with both ‘dynamic’ and ‘regular’
bonds. Fragments occurring fewer than five times were removed,
and the resulting vectors were scaled to zero mean and unit stan-
dard deviation. Finally, incremental PCA was performed to get a
final CGR fragment vector of length 1500 for each reaction. For a

schematic, see Fig. S1.

We created four machine learning models based on vectors
formed from the PCA projection of CGR fragment count vectors:
a Random Forest (RF); a Gradient Boosting Machine (GBM); a
similarity search (kNN) and a multitask neural network (MTNN),
similar in architecture to the best model from the work of Beker
et al. 1. We used ChemProp83,98,101, based on the D-MPNN archi-
tecture, as an additional test of CGRs as a reaction representation
for condition prediction. For the RF, GBM, MTNN and D-MPNN
models, the hyperparameters were tuned using Optuna123, once
per iteration of the 5x5 CV. These hyperparameters were used to
test the models across the rest of the folds within that repetition.

As set out in Ref. 2, we transformed the independent predic-
tions for solvents and bases into a ranked list of combinations of
these reagents using a likelihood ranking approach. To do this we
first enumerated all combinations of the solvents and bases. We
then determine the probability of each combination by multiply-
ing the probabilities for the solvent and base within each combi-
nation, and finally, ranking the combinations in order of proba-
bility. The only difference to Afonina et al. is that we do not take
the mean of the negative log-likelihoods (and minimising), but
rather maximise the probability directly. See Fig. S3 for more
information.

6.1 Results

With the CGR fragments created, the models were then tested
across the USPTO dataset. It can be seen from Fig. S4 that
the CGR-based MTNN models outperformed the literature bench-
mark, and the best performing model from Ref. 1 (Morgan
MTNN). Furthermore, the strong performance of the similarity-
based search, comparable to the performance of the Morgan
fingerprint-based model gives credence to the hypothesis that
‘similar reactions react under similar conditions’. Although, an al-
ternative interpretation could be that similar reactions may have
been performed within the same laboratory, and therefore used
similar conditions, highlighting the selection bias prevalent in re-
action datasets.

Resulting statistical analysis, using the workflow suggested by
Ash et al. 124 demonstrate that these results are statistically sig-
nificant (see Fig. S9 and S10). The other CGR-based models
were also tested, but for clarity of the plots, only the best model:
the MTNN, was selected to be shown. Comparisons between the
CGR-based methods can be found in the Supplementary Mate-
rial. Therefore, to answer the question of the case study: ‘Can
machine learning methods improve significantly upon literature
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Fig. 6 Box plots of the distribution of top-k accuracies when predicting
solvent and base, together. The CGR multitask network is highlighted
in yellow, and outperforms the literature, similarity and existing machine
learning baselines. We see the Morgan fingerprint-based model perform
better than the literature popularity for top-1 accuracy, but becomes
similar for k > 1. Plots for the individual solvent and base accuracies
can be found in the supplementary material.

baselines on this dataset?’, these results would suggest that an al-
ternative representation, the Condensed Graph of Reaction, can
outperform this baseline, on the independent predictions of sol-
vents and bases.

However, synthetic chemists require combined predictions of
all components in a chemical reaction, since solvents and bases
may be incompatible, or not lead to a reaction, despite the in-
dividual components being sufficient in other cases. Therefore,
we combined these independent predictions using the likelihood
ranking approach, to give an indication of the performance of
such a model when predicting combinations of reagents, the re-
sults of which can be found in Fig. 6. We can see that the gap
between the CGR-based model and the popularity benchmark is
now higher, and similarly with the Morgan fingerprint model. Al-
though as we understand Beker et al. didn’t include testing (or
optimisation) for their Morgan fingerprint models on a combined
reagent prediction task. Nonetheless, these results demonstrate
that this CGR-based model can improve on the strong literature
popularity benchmark. This is potentially because CGRs explicitly
encode more information than Morgan fingerprints, where the
transformation is not directly represented. Since the CGRs require
atom mapping, the reaction centre is explicitly encoded, rather
than this being implicitly encoded in other fingerprints based on

the individual reactants.
Additionally, we wished to illustrate the benefit of expert-

assigned reagent classification to enable fairer model evaluation.
First, we generated ‘exact’ predictions for both the base and the
solvent, Then the same clustering was applied post-prediction to
highlight how clustering causes an increase in model accuracy,
suggesting that when models are making ‘incorrect’ predictions,
these predictions are still chemically relevant. The results of this
can be seen in Fig. 7. It can also be seen that clustering in pre-
processing can lead to improved performance, versus predicting
the exact reagent and clustering post-prediction.

Our case study of Suzuki-Miyaura reactions demonstrates that
existing machine learning methods can overcome popularity met-
rics, by using an appropriate representation. By using a CGR-
based representation, we developed models that outperformed
the existing state-of-the-art on the USPTO Suzuki dataset. Despite
this, further improvement of the models is possible. Alternative
classification metrics (see Fig. S7) show that despite the higher
accuracies, these models still require improvements to truly ‘learn’
the underlying chemistry being modelled. This underscores the
need for further improvements, either through the use of more
complex architectures (though this doesn’t always help, see Ref.
1) or through other strategies. For example, refining solvent and
base clustering to address class imbalance and data sparsity (pro-
vided that clusters are both chemically meaningful and useful to
end users). Furthermore, this modelling ignores the presence of
many other variables in Suzuki reactions, like temperature, Pd-
source and ligand. With an increase in the number of variables,
the condition space expands: exacerbating the data sparsity prob-
lem and increasing the importance of methods to mitigate it.

Nonetheless, this example highlights the critical role of data
representation in reaction condition modelling, aligning with our
broader argument that thoughtful representation design is key to
unlocking improvements in model performance. However, other
challenges discussed in this perspective, such as data sparsity and
selection bias, remain unresolved in this case study. Bridging
these gaps will require continued exploration of strategies such
as data augmentation, chemically informed clustering, or more
advanced machine learning architectures.

Despite these limitations, the ability of models to outperform
popularity benchmarks provides a step forward in bridging the
gap between computational predictions and practical applica-
tions, even with existing literature data.

7 Conclusions
To conclude, this paper provides a brief introduction to the mod-
elling and prediction of ‘optimal’ chemical reaction conditions,
based on existing literature data.

The challenges with reaction data are well-documented27–29,
but we expect that with the increased awareness of synthetic
chemists to the importance of holistic reporting of experiments
that data quality in the future will continue to improve, resulting
in improved models. Initiatives like ORD promote standardised
recording of reaction data, which will act to counteract the exist-
ing biases. However, bridging the gap between existing datasets,
and the ‘ideal’ datasets of the future will require continued inno-
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Fig. 7 Analysing the impact of clustering on solvent Top-K accuracies. Whilst we cannot say that clustering ‘improves’ model performance, because
the clustering does not alter the underlying prediction, it can clearly be seen that the top-k accuracies increase across all methods. What this does
highlight, is the need for care when evaluating model performance to understand how chemically relevant predictions are. Here we can see that despite
low ‘exact’ accuracies, the model is still producing chemically relevant predictions in many cases. An equivalent plot for the bases can be found in
Fig. S18. The right figure demonstrates that better results are obtained when training the models on the coarser solvent labels, rather than applying
the clustering in post-processing.

vation, such as incorporating procedural data70 data augmenta-
tion71 and innovative sampling techniques32 to maximise exist-
ing data and create generalisable, robust models.

In reaction condition prediction, the many-to-many relation-
ship between a reaction equation and feasible conditions requires
that models should predict multiple conditions for a single re-
action equation, and the format of this output is dependent on
the task at hand. Although the prediction of ‘exact’ reagents has
its place in reaction optimisation, we believe that existing data
requires condition predictions to adopt a more general condition
encoding. As the scope of reactions considered increases - moving
towards a ‘global’ model - and the data becomes sparser, we sug-
gest that model outputs should generalise, for example through
the categorisation of similar reagents in order to reduce the num-
ber of classes that a model is required to predict from. ‘Local’
models remain valuable in scenarios where data sparsity is less of
a concern, such as carefully curated datasets with high condition
coverage for each reaction equation. In this case, higher-fidelity
condition predictions are possible, and the requirement for out-
put ‘generalisation’ diminishes. With improving large-scale data
quality, increasing fidelity of predictions from ‘global’ models may
be possible in the future. In the meantime, the selection of an
appropriate ‘general’ condition encoding remains an area for fu-
ture work, and such a representation should incorporate chemical
knowledge whilst compressing condition space to mitigate exist-
ing data concerns.

We provide an overview of existing models, through the lens
of ‘global’ and ‘local’ models, following from the classifications of
Raghavan et al. 45. These different approaches have leveraged dif-
ferent representations, like strings (in the case of transformers),
graphs and reaction fingerprints. Our case study highlights the

critical role of reaction representation in reaction condition mod-
elling, emphasising that thoughtful representation design is key
to unlocking improvements in model performance. In particular,
using reaction representations that explicitly encode the reaction
transformation occurring, like the CGR, can improve upon the
performance of other representations (like Morgan fingerprints).

By leveraging higher-quality data, the condition prediction
models of the future will improve upon this current generation of
models. However, during this transition period, we believe that
developing novel encodings for both input and output of these
models can enhance the practical applicability of these models to
synthetic chemists.
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Data availability
All the source code and datasets used to produce the reported results can be found at: 
https://github.com/Laboratoirede-

Chemoinformatique/CGR-Case-Study
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