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Prussian blue analogues (PBAs) possess a unique three-dimensional crystal structure, which provides ample

space for the movement of sodium ions (Na+), making them an ideal choice for cathode materials in

sodium-ion batteries (SIBs). However, the bulk phase of PBAs typically contains some amount of crystal

water and vacancies, which compromise the integrity of the lattice and impede the migration of Na+.

Additionally, interface-related issues, such as side reactions and the dissolution of transition metal ions,

severely limit the reversible capacity and cycle stability of PBA-based cathode materials. Therefore,

addressing these challenges from the bulk and interface of PBAs is critical for the development of high-

performance cathode materials for SIBs. This review aims to provide insights into potential strategies for

overcoming these limitations and enhancing the electrochemical performance of PBAs. Firstly, the

structure, morphology, and reaction mechanisms of PBAs are summarized systematically. The key

challenges hindering the commercialization of PBAs are then categorized in this review. Several effective

strategies for addressing these challenges are provided, including bulk phase engineering (thermal

treatment, element doping, and etching), interface engineering (coating, ion exchange, and electrolyte

additives), and the co-regulation of bulk and interface. Finally, the future commercialization prospects of

PBAs are discussed, highlighting the necessary steps for transitioning from laboratory-scale research to

industrial-scale production.
1 Introduction

With the increasing emphasis on low-carbon lifestyles and
sustainable energy systems, the new energy industry is
advancing rapidly.1,2 Among various energy storage technolo-
gies, electrochemical storage, particularly secondary batteries,
is preferred for its high efficiency and exibility.3,4 While
lithium-ion batteries (LIBs) have dominated portable devices
and electric vehicles due to their long life-span and high power
density, the uneven distribution and scarcity of lithium
resources restrict their application in large-scale energy storage
systems (ESSs).5–7 In the process of exploring alternative energy
solutions, sodium-ion batteries (SIBs) have been the focus of
research due to their abundant resources, low cost, and similar
physicochemical properties to LIBs (Fig. 1a).8–10 Fig. 1b
ineering, Shanghai University, Shanghai,

edu.cn

logy, College of Chemistry and Materials

, Zhejiang, 325035, P. R. China. E-mail:

atteries, Wenzhou University Technology

on, Wenzhou, Zhejiang 325035, China

is work.

13628
illustrates the rapid increase in research on SIBs, cathode
materials, and PBAs over the past decade. With the continuous
progress of technology, SIBs are expected to play an important
role in ESSs, low-speed electric vehicles, and distributed energy
systems, thereby offering innovative solutions to global energy
and environmental challenges.11

Despite the numerous advantages of SIBs, several challenges
remain in their commercialization. One of the main limitations
is their relatively low energy density, which is primarily attrib-
uted to the slower migration of sodium ions (Na+) within the
sodium storage material. This slow migration is due to the
larger molecular weight and ionic radius of Na+ compared to
lithium ions (Li+). Additionally, the higher redox potential of
Na+/Na (−2.71 V vs. standard hydrogen electrode) in compar-
ison to Li+/Li (−3.04 V vs. standard hydrogen electrode) also
contributes to the inferior mass/volume energy density of the
SIBs. Eqn (1) provides a methodology for calculating the theo-
retical energy density.12

E ¼ QV ¼ 26 800
nV

M
(1)

where E is the theoretical specic energy density, Q is the
specic capacity, V is the potential, n is the number of electrons
transferred in the reaction, andM is the molecular weight of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Comparison between lithium and sodium elements of crustal abundance, raw material costs, ion radius, standard potential, Stökes
radius in polypropylene carbonate (PC), and desolvation in ethylene carbonate (EC). (b) The number of publications on SIBs in the past decade (as
of December 2024, generated by Web of Science using keywords ‘Sodium ion Batteries’, ‘Sodium ion Batteries and Cathode’, ‘Sodium ion
Batteries and Prussian blue’). (c) The specific capacity and voltage window of SIB cathode materials recently reported. (d) Radar chart of specific
capacity, rate performance, cycle life, average voltage, environmental friendliness and price advantage of three cathode materials in SIBs.
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material. The output voltage of the battery is due to the poten-
tial difference between the anode and cathode. It can be seen
that for SIBs, since their molecular weights have been deter-
mined, the key to improving energy density is to develop
cathode materials with high capacity and high potential. The
cathode material is one of the four primary components of
a battery, accounting for approximately 30–40% of its total cost.
It plays a crucial role in determining both the energy density
and cycle life of the battery. Currently, the mainstream cathode
materials include layered metal oxides, polyanionic compounds
and PBAs. Among them, layered metal oxides have relatively
large specic capacity and high operating potential, however,
they suffer from a series of fatal problems such as unstable
© 2025 The Author(s). Published by the Royal Society of Chemistry
cathode/electrolyte interface, poor air stability, and irreversible
phase transition.13–16 Polyanionic compounds offer excellent
safety and long cycle life, but their poor conductivity results in
a lower practical specic capacity.17,18 Compared with these two
materials, PBAs show unique advantages, such as high theo-
retical capacity, low synthesis cost, exible and adjustable
structure. Notably, their oxygen-free structure can circumvent
the common risk of thermal runaway of batteries, which makes
it one of the highly promising cathode materials in SIBs.19–21

Fig. 1c, d and Table 1 summarize the performance of three
representative cathode materials in terms of specic capacity,
rate performance, cycle life, average voltage, price advantage
and environmental friendliness. However, in practical
Chem. Sci., 2025, 16, 13594–13628 | 13595
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Table 1 Electrochemical performance comparison of three representative cathode materials

Type Electrodes

Voltage
window
[V vs. Na+/Na]

Average
voltage
[V vs. Na+/Na]

Capacity [mA h g−1]/e
nergy density
[W h kg−1]

Capacity retention
[retention, cycle @ mA g−1] Ref.

Prussian blue
analogues

Na1.34Ni[Fe(CN)6]0.92 2.0–4.3 3.32 54.5/175.49 63.4%, 3000 @ 50 25
Na0.28K1.55Fe[Fe(CN)6]$1.53H2O 2.0–4.2 ∼3.04 147.9/∼450.0 83.5%, 300 @ 150 26
Na0.96Fe[Fe(CN)6]0.93$0.96H2O 2.0–4.0 2.94 140.0/411.6 93.2%, 200 @ 170 27
Na1.94Mn[Fe0.99(CN)6]0.95,0.05$1.92H2O 2.0–4.2 3.44 168.8/580.7 87.6%, 100 @ 100 28
Na1.92Mn[Fe(CN)6]0.98$1.38H2O 2.0–4.0 3.45 152.8/527.2 82.0%, 500 @ 100 29
Na1.54Fe0.67,0.33[Fe(CN)6] 2.0–4.2 ∼3.10 163.7/∼507.5 78.5%, 200 @ 500 30

Layered
metal oxides

Na2/3[Fe1/2Mn1/2]O2 1.5–4.2 2.75 189.1/520.0 70.0%, 30 @ 260 31
Na45/54Li4/54Ni16/54Mn34/54O2 2.0–4.0 3.00 140.3/421.0 75.0%, 500 @ 140 32
Na0.67Li0.11Fe0.36Mn0.36Ti0.17O2 1.5–4.2 3.00 235.0/705.0 85.4%, 100 @ 200 33
Na0.75Mg0.25Mn0.75O2 1.5–4.0 2.39 166.0/396.7 83.1%, 500 @ 700 34
Na0.9Li0.1Zn0.05Ni0.25Mn0.6O2 2.0–4.3 3.25 145.0/471.3 87.0%, 100 @ 20 35
Na[Li1/4Ni1/3Ru5/12]O2 2.0–4.1 2.89 168.0/485.5 87.0%, 100 @ 260 36

Polyanionic
compounds

Na3.12MnTi0.9(V,Fe,Mg,Cr,Zr)0.02(PO4)3 1.5–4.3 3.00 169.6/508.8 85.6%, 500 @ 176 37
Na3V1.9(Ca,Mg,Al,Cr,Mn)0.1(PO4)2F3 2.0–4.3 3.81 116.9/445.4 90.2%, 400 @ 0.1C 38
Na4Fe2.7Mn0.3(PO4)2P2O7/rGO 1.7–4.3 ∼3.00 131.5/∼394.5 91.6%, 200 @ 258 39
Na3.5MnTi0.5Cr0.5(PO4)3/C 1.5–4.3 ∼3.20 137.6/∼440.3 91.2%, 300 @ 100 40
Na2Fe2(SO4)3/C 2.0–4.3 3.60 110/396.0 N/A 41
Na3V2(PO4)3@C@CNTs 2.5–4.3 ∼3.40 112/∼380.8 99.9%, 20 000 @ 20 000 42
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applications, to achieve high-performance SIBs, further solu-
tions are needed to address some key issues with PBAs, such as
low initial coulombic efficiency, poor cycling stability and low
charge/discharge specic capacity. Based on the previous
research, it has been found that the key problems lie in the
following. (1) The presence in the bulk phase of Fe(CN)6
vacancies and lattice water molecules. These vacancies and
water molecules were mainly originated from the co-precipita-
tion reaction process as well as the inhomogeneous nucleation
rate. Their presence occupies sodium storage sites on the one
hand, and alters the local electric eld distribution and ionic
diffusion paths within the material on the other hand. (2)
Irreversible phase transitions and lattice distortions. In partic-
ular, in manganese-based PBA systems, the special electronic
conguration of manganese ions triggers lattice distortion due
to the Jahn–Teller effect.22 During the charge/discharge process,
this distortion leads to an unstable structure. The frequent
irreversible phase transition destroys the crystal structure of the
material, which seriously weakens its cycling stability and
charge/discharge specic capacity. (3) Side reactions present at
the interface. At the contact interface between PBAs and other
components such as the electrolyte, all kinds of side reactions
are likely to occur.23,24 These side reactions not only consume
active substances, but also damage the stability and integrity of
the interface, hindering the smooth transmission of ions and
electrons at the interface, which ultimately leads to a signicant
reduction in the actual capacity and cycling performance of
PBAs.

To address these challenges faced by PBAs in current appli-
cations, researchers have actively explored and implemented
a range of effective regulation strategies; these strategies
include structural, morphological, and surface modications,
which can alter the chemical composition and skeletal structure
of PBAs, and then optimizing their intrinsic properties.
13596 | Chem. Sci., 2025, 16, 13594–13628
Alternatively, other materials can be used to coat PBAs to
enhance the stability of the interface. The review rstly thor-
oughly introduces the crystal structure and electrochemical
reaction mechanisms of PBAs, followed by a discussion on the
current commercialization process and the challenges facing
future development. Key factors affecting the practical appli-
cations of PBAs are highlighted, including crystal water, crystal
defects, side reactions, transition metal dissolution, low
conductivity, and structural collapse during cycling. This review
addresses the challenges hindering the commercialization of
PBAs by categorizing their regulation strategies into two main
areas: bulk phase regulation and interface regulation. Bulk
phase regulation focuses on the material itself and aims to
improve the intrinsic properties of PBAs, including the control
of crystal water content and vacancies. Interface regulation
examines the interactions between the PBAs and their external
environment, with particular emphasis on the interfacial
properties between the material and the surrounding medium,
such as the electrolyte and collector. The complementary
approach of bulk phase and interface regulation provides
a comprehensive and effective solution to the obstacles
currently limiting the commercialization of PBAs. Several low-
cost, scalable structural regulation methods that can be applied
in practical production are introduced, such as bulk doping,
defect control, etching, coating, surface ion exchange, and the
use of additives. Finally, the future development of PBAs is
explored, with the aim of providing valuable insights to
promote their commercialization.
2 The fundamentals of PBAs in SIBs
2.1 Crystal and phase structures

Prussian blue (PB), the rst synthetic coordination compound
in history, has been extensively studied for its unique
© 2025 The Author(s). Published by the Royal Society of Chemistry
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physicochemical properties since its discovery in 1704.43 The
chemical formula of an ideal PBA can be expressed as
AxMA[MB(CN)6]y$,1−y$nH2O. In this formula, ‘A’ represents
alkali metal ions (e.g., Li, Na, K), ‘MA’ and ‘MB’ are transition
metal ions (e.g., Fe, Mn, Co, Ni, Cu), ‘,’ indicates Fe(CN)6
vacancies, and ‘H2O’ denotes crystal water, including adsorbed
water, interstitial water, and coordination water (Fig. 2a).44

Fig. 2b and c show the perfect crystal structure of PBAs and
a defective crystal structure containing crystal water and
defects. Overall, the values of ‘x’, ‘1 − y’ and ‘n’ depend on the
synthesis conditions, including the liquid phase environment
and the presence of chelating agents. In different liquid phase
systems, such as acidic, alkaline or neutral solution environ-
ments, the ions can exist in very different forms, reactivity and
mode of interaction. For example, chelating agents can form
stable complexes with metal ions, changing the effective
concentration and reactivity of the metal ions. As a result, the
rate and mode of their participation in PBA synthesis reactions
are altered. These changes ultimately affect three aspects of the
nal product: the alkali metal content, the number of vacancies,
and the amount of crystal water.45 It is worth noting that a high
proportion of crystal water is generally correlated with Fe(CN)6
vacancy content. Specically, when the crystal water content
increases, the Fe(CN)6 vacancy content also tends to rise.
Furthermore, the simultaneous increase of these two factors
typically corresponds to a decrease in Na+ content. Behind these
Fig. 2 (a) Cross-sectional view of PBAs containing crystal water and vaca
PBAs with crystal water and vacancies. (d) Spin orbitals of MA and MB (H
evolution of (e) monoclinic 4 cubic 4 tetragonal, (f) rhombohedral 4

© 2025 The Author(s). Published by the Royal Society of Chemistry
interrelated phenomena, complex principles of chemical equi-
librium and crystal structure construction are involved.46 In the
structure of PBAs, MA and MB are connected by –CN– ligands,
where the low-spin state is connected to C and the high-spin
state is connected to N, which together form a complex three-
dimensional framework structure (Fig. 2d).47,48 This structure
can endow PBAs with their characteristic large gap sites and ion
transport channels. They have a unique size, shape and chem-
ical environment that can accommodate Na+, potassium ion
(K+) and other ions well.

According to the differences in Fe(CN)6 vacancies, crystal
water, and alkali metal ion content, the crystal structure of PBAs
exhibit various phases, such as cubic phase, monoclinic phase,
and rhombohedral phase.49 The monoclinic and rhombohedral
phases are both sodium-rich phases, with the key distinction
lying in the presence or absence of interstitial water. The
monoclinic phase contains interstitial water while the rhom-
bohedral phase does not. Consequently, the monoclinic phase
is regarded as the transition state between the cubic and
rhombohedral phases. To exemplify, the Fe-based hex-
acyanoferrates (FeHCF) typically exhibit a cubic phase struc-
ture.50,51 Nevertheless, alterations in the concentration of guest
cations can intensify coulombic interactions with nitrogen
atoms, potentially resulting in lattice expansion.52 As observed
in the case of sodium-rich FeHCF (NaxFeHCF), when the
sodium content exceeds 1.5, the asymmetric occupation of
ncies. (b) Framework structure of ideal PBAs. (c) Framework structure of
S denotes High Spin, LS denotes Low Spin). Electrochemical structural
cubic and (g) monoclinic 4 cubic.

Chem. Sci., 2025, 16, 13594–13628 | 13597
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Fig. 3 Various morphologies of PBAs and their advantages.
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electrons from transition metal ions in simple merged orbitals
will have different electron shielding effects on the Na+ in
different directions, resulting in a phase transition from cubic
to monoclinic phase.53 Further removal of the crystal water will
affect the distribution of the electron cloud, which reduces the
Pauli repulsion in the framework, making the structure more
susceptible to distortion. This contributes to the transformation
of the material from the monoclinic into the rhombohedral
phase, which is more distorted than the previous structure.

Phase transitions are also observed in electrochemical
reaction processes. Specically, when guest ions are reversibly
inserted or extracted, manganese-based hexacyanoferrates
(MnHCF) undergo a three-phase transition from themonoclinic
to the cubic and then to the tetragonal phase (Fig. 2e). This
transition is attributed to structural deformation of the Mn–N
bond, particularly the octahedral deformation induced by Jahn–
Teller distortion, which exhibits signicant structural
changes.54,55 In contrast to MnHCF, FeHCF and cobalt-based
hexacyanoferrates (CoHCF) typically exhibit a two-phase tran-
sition between the rhombohedral and cubic phases during the
reversible insertion or extraction of guest ions (Fig. 2f).53,56,57

Meanwhile, nickel-based hexacyanoferrate (NiHCF) and copper-
based hexacyanoferrate (CuHCF) exhibit only minor deforma-
tion of the cubic crystal framework during electrochemical
reactions (Fig. 2g). This behavior is associated with the elec-
trochemical inertness of nickel and copper ion species.58,59

Notably, the structural evolution of zinc-based hex-
acyanoferrates (ZnHCF) are strongly dependent on electrolyte
concentration. In low-concentration electrolytes, ZnHCF trans-
forms from the rhombohedral into the cubic phase, accompa-
nied by enhanced solubility in aqueous solution.60 However, in
high concentrations of electrolyte, ZnHCF tends to maintain its
rhombohedral structure without a phase transition.61
2.2 Morphology

The design of specic morphology plays a crucial role in
improving the performance of PBAs, which are mainly classied
13598 | Chem. Sci., 2025, 16, 13594–13628
into two categories: solid structures and hollow structures, each
of which contains a variety of specic morphologies. Different
morphologies will bring different advantages. For example,
cubic structures have more active centers. Spherical structures
have a more uniform particle size. Hollow structures have
shorter ion diffusion and are more adaptable to volume
changes, making them less prone to collapse (Fig. 3).

2.2.1 Solid structures. The solid structure can be classied
into cubic, spherical, core–shell and other special morphol-
ogies. Cubic morphology is the typical morphology of PBAs,
which can be prepared by a simple co-precipitation method and
is also the common morphology in the laboratory.62–64 It is
worth noting that during the synthesis of cubic PBAs, the
addition of chelating agents can slow down the growth of
crystals and thus increase the crystallinity.65 Meanwhile, the
concentration of hydrogen ions also affects the morphology of
the products. When the concentration of hydrogen ions is high,
the nuclei are more likely to aggregate along the surface of the
high-energy crystals thus producing a uniform cubic shape.66

Etching treatment can improve its electrochemical properties,
such as hydrochloric acid (HCl) etching and ammonia
etching.67,68 Aer the etching treatment, groove structures will
be formed, which establish channels for ions to enter the
interior, enhance the ability of ion migration and diffusion, and
thus improve the performance of PBAs.

Spherical structures can be synthesized by a variety of
methods, such as hydrothermal method, synthesis under
polyvinyl pyrrolidone (PVP) assistance, etc.69–71 The size and
other properties of the resulting structures can be regulated by
adjusting the reaction temperature and adding ethanol during
the synthesis process. For example, a hydrothermal reaction
temperature of 150–170 °C is suitable for the synthesis of
nanospheres. Furthermore, the addition of ethanol can reduce
the size of PBA nanoparticles, so that spherical PBAs with
different sizes and properties can be customized to meet
diversied application requirements.72 The spherical structure
of PBAs enhances micro-scale uniformity, leading to two
© 2025 The Author(s). Published by the Royal Society of Chemistry
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signicant advantages. First, it improves the material's
compaction density. Second, it facilitates better electrolyte
penetration, thereby promoting ion transport and exchange.

In practical applications, PBAs with classical morphology
frequently demonstrate accelerated capacity fading due to
synergistic effects of structural degradation and parasitic side
reactions. Therefore, products with special morphology can be
designed and synthesized to solve these problems. One
common morphology is the core–shell structure as a hetero-
structure, which consists of one or more materials as a shell
structure around the main material.73–75 Core-shell structures
can be prepared in a variety of ways. A commonmethod is to use
an ion-exchange method to form a two-layer structure by taking
advantage of the interactions between transition metal ions and
specic ligands (e.g., sodium citrate) and the differences in
reaction kinetics during the preparation of PBAs.76 Another
method is to introduce a protective layer on the surface of PBAs
through surface coating technology. Both methods can stabilize
the interface of PBAs and improve their cycling stability.

2.2.2 Hollow structures.Hollow structures can be classied
into three main categories: single-shell hollow structures, open
hollow structures, and complex hollow structures. Among
these, the single-shell hollow structure represents the most
prevalent type of PBA hollow structure. This particular
morphology offers signicant advantages, including effective
buffering of volume changes induced by Na+ insertion/extrac-
tion, enhanced structural stability, and improved cycling
performance.77,78 The synthesis of single-shell hollow structures
primarily involves two approaches: the etching method and the
self-template method. The etching method involves the direc-
tional etching of materials using specic etchants to achieve the
desired hollow structure.79 For instance, the PVP-assisted HCl
etching method can be employed to etch PBA particles in the
presence of PVP, resulting in products with hollow structures.
While this method is straightforward and convenient to
implement, it presents notable drawbacks. Specically, the HCl
etching process can generate toxic hydrogen cyanide, posing
potential risks to both environmental safety and experimental
conditions. Alternatively, the self-template method represents
another widely utilized synthesis strategy. This approach
primarily relies on the use of precursors with specic shapes to
construct hollow structures.80 The precursor's material compo-
sition includes the ionic constituents necessary for the target
product. During the reaction, the precursor gradually dissolves
and releases the target ions by modulating the reaction envi-
ronment (e.g., pH, temperature), ultimately forming a single-
shell hollow structure. In comparison to the etching method,
the self-template method offers greater controllability and
environmental friendliness. However, it typically entails a more
complex synthesis process and imposes stricter requirements
on precursor selection and reaction conditions.

Open hollow structures and complicated hollow structures
are an extension of hollow structures. They present an internal
hollow state and may form openings on the faces or frames of
the cube, allowing the internal hollow portion to communicate
with the external environment. The open hollow structure
exhibits a shorter ion diffusion path, signicantly enhancing
© 2025 The Author(s). Published by the Royal Society of Chemistry
the sodium ion migration rate.81 This improvement facilitates
better electrolyte permeability, ensuring sufficient contact
between electrodes and electrolytes, thereby boosting the rate
performance and reversible capacity of the materials. Addi-
tionally, complex hollow structures possess a larger specic
surface area and a hierarchical pore structure, which provide
more active sites and optimize ion and electron transport
pathways. These special structures can overcome the perfor-
mance limitations of traditional designs, showing promising
potential in energy storage applications.82,83 In summary, the
morphology of PBAs is highly versatile and tunable. By
employing various synthesis methods and modulation tech-
niques, PBAs can be tailored to meet diverse application
requirements.

2.3 Redox mechanism

Understanding the reaction mechanism of guest cations in the
insertion/extraction process is crucial for the development of
high-performance PBA electrode materials. According to the
number of redox active sites involved in the reaction, PBAs can
be classied into double electron transfer type (DE-PBA: MA and
MB = Mn, Fe, Co) and single electron transfer type (SE-PBA: MA

= Zn, Ni and MB = Fe, Co, Mn), and their theoretical specic
capacities are 170 mA h g−1 and 85 mA h g−1, respectively.84 The
two-electron transfer type has a high theoretical capacity and
thus is promising and competitive for high energy density
devices, even comparable to lithium iron phosphate, a well-
known LIB cathode material (Fig. 4a). In contrast, single-elec-
tron transfer types have a stable structure and good conductivity
properties during electrochemical processes, which makes
them suitable for battery applications that require fast
charging/discharging and long-term stable operation (Fig. 4b).85

For a typical DE-PBA with ideal stoichiometry (x = 2, y = 1) and
no crystal water interactions, the overall electrochemical equa-
tions controlling Na+ insertion/extraction in the case of Na2Fe
[Fe(CN)6] can be described as follows:

Charge 1:

Na2Fe
IIFeII(CN)6 4 NaFeIIIFeII(CN)6 + Na+ + e− (2)

Charge 2:

NaFeIIIFeII(CN)6 4 FeIIIFeIII(CN)6 + Na+ + e− (3)

Discharge 1:

FeIIIFeIII(CN)6 + Na+ + e− 4 NaFeIIIFeII(CN)6 (4)

Discharge 2:

NaFeIIIFeII(CN)6 + Na+ + e− 4 Na2Fe
IIFeII(CN)6 (5)

For the charging process, at the beginning, Na+ is extracted
from the Na2Fe[Fe(CN)6] lattice, and when the rst Na+ is
completely extracted, FeII with high-spin coordinated to N is
oxidized to FeIII in order to maintain charge parity. The crystal
structure begins to change from the initial high sodium content
rhombohedral phase and the cell volume may begin to shrink
Chem. Sci., 2025, 16, 13594–13628 | 13599
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Fig. 4 (a) Application scenarios of double electron transfer type PBAs. (b) Application scenarios of single electron transfer type PBAs. (c)
Schematic diagram of the SIBs (based on the PBA cathode and hard carbon anode). (d) Schematic diagram of CV and charge discharge curves for
typical double electron transfer type. (e) Schematic diagram of CV and charge discharge curves for typical single electron transfer type.
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slightly, corresponding to eqn (2). When the second Na+ is
extracted, the low-spin FeII coordinated to C is similarly
oxidized to FeIII. At this point the crystal structure reaches
a relatively stable low-sodium or no-sodium state, which may
show a cubic or other low-symmetry structure that is quite
different from the high-sodium state, such as a smaller unit cell
volume, corresponding to eqn (3) (Fig. 4c). The discharge
process represents the reverse of the charging process. During
this stage, FeIII undergoes sequential reduction to FeII, accom-
panied by the gradual insertion of Na+ into the crystal lattice.
Concurrently, the crystal structure undergoes a series of trans-
formations, transitioning from the low-sodium or sodium-free
state back to the high-sodium rhombohedral phase. This
structural restoration includes the recovery of key features, such
as ion diffusion channels, to their initial conguration. These
sequential processes complete the electrochemical cycle, as
13600 | Chem. Sci., 2025, 16, 13594–13628
described by eqn (4) and (5). Corresponding to the two reaction
platforms in the charge/discharge process described above, DE-
PBA usually has two pairs of anodic/cathodic reaction peaks,
while SE-PBA has one pair of anodic/cathodic reaction peaks.
Fig. 4d and e respectively shows the cyclic voltammetry (CV)
curves and charge discharge curves of typical double electron
transfer type and single electron transfer type. However, it
should be noted that not all DE-PBAs have two pairs of anodic/
cathodic reaction peaks. For example, MnHCF has a high redox
potential due to the strong ligand eld of the low-spin Fe site
coordinated to carbon, with a large 3d-orbital energy level
splitting, and the electron lling of this site. In contrast, the
high-spin Mn site is in a weaker ligand eld, and the 3d-orbital
energy level splitting is small, which results in the decrease of
the redox potential of Mn. This ligand eld difference leads to
a comparable potential between the two, thus converging the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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two possible redox peak pairs into one. However, the intro-
duction of interstitial water molecules can weaken the ligand
eld, whichmay change the above equilibrium state and restore
the two redox peaks.86

3 Challenges to the
commercialization of PBAs

The commercialization of PBAs in SIB applications has achieved
certain success. Fig. 5 shows the development of commercial
products based on PBAs. In 2020, Natron Energy of the United
States pioneered the commercialization of PBAs by launching
the SIB BlueTray™ 4000, which utilizes PBA-based materials.
This system exhibits a high-power utilization rate, occupies only
half the footprint of lead–acid batteries, and achieves a rapid 0–
99% state of charge within 8 minutes. These characteristics
make it suitable for uninterruptible power supply in data
centers, information technology/network cabinets, and other
mission-critical industrial applications. This development
marked the official entry of PBAs into commercial markets. In
2021, Contemporary Amperex Technology Co., Ltd of China
launched its rst-generation SIBs, addressing the capacity
fading issue of Prussian White (PW) materials through inno-
vative charge rearrangement technology. The cells demonstrate
a specic energy of 160 W h kg−1, achieving over 80% capacity
aer 15 minutes of charging at room temperature. Notably, the
cells retain over 90% discharge capacity at −20 °C, with system
integration efficiency exceeding 80%. Furthermore, the thermal
stability of these cells signicantly surpasses national safety
standards. In 2022, Natron Energy expanded its product port-
folio with the BlueRac™ 250 battery cabinet, which demon-
strates remarkable performance characteristics. The system
delivers a sustained discharge power of over 250 kW, enabling
Fig. 5 Commercial product development based on PBAs.

© 2025 The Author(s). Published by the Royal Society of Chemistry
high-power applications. Additionally, it demonstrates excep-
tional fast-charging capabilities, reaching over 99% state of
charge in just 15 minutes. Furthermore, the battery cabinet
shows long cycle life, retaining over 90% capacity retention aer
1000 cycles, making it suitable for high-utilization scenarios.
This system is designed for grid storage, peak load regulation,
load balancing, and mission-critical applications. In the same
year, the Wenzhou University Technology Innovation Institute
for Carbon Neutralization made a signicant advancement in
PBA technology by developing a specialized heat treatment
method to effectively remove crystal water from PBAs. The
innovative heat treatment process not only ensures the
complete removal of crystal water but also maintains the
structural integrity of PBAs, thereby enhancing their cycling
stability and capacity retention. Leveraging this method, the
institute achieved large-scale production of high-quality PBAs.
In 2023, LI-FUN Technology of China, in collaboration with
a number of companies, made the world's rst PBA-based SIB
storage system commercially available, further boosting the
marketability of PBAs. In 2024, Zero One Four Adv. Mater. Co.,
Ltd of China achieved a signicant breakthrough in SIB tech-
nology by developing and mass-producing 46-series full-tab
large cylindrical SIBs. These batteries exhibit a remarkable
capacity of 13.0 Ah and a high discharge rate of 15C, making
them suitable for high-power applications. Notably, the cells
demonstrate exceptional operational stability across an extreme
temperature range of −50 to 80 °C, ensuring reliable perfor-
mance in both frigid and high-temperature environments. This
advancement not only highlights the company's innovative
capabilities in battery design and manufacturing but also
positions their products as a viable solution for demanding
applications in renewable energy storage, electric vehicles, and
industrial power systems. The successful commercialization of
Chem. Sci., 2025, 16, 13594–13628 | 13601
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these batteries marks a pivotal step forward in the development
of next-generation energy storage technologies. With emerging
companies such as Altris of Sweden and Litona of Germany
joining the market, PBAs have a broader future in SIBs, which
will provide more possibilities for renewable energy applica-
tions and power storage.

Despite their potential, several key issues remain in the
future development of PBAs. These issues can be categorized as
follows: crystal water, crystal defects, side reactions, transition
metal dissolution, low conductivity, structural collapse due to
the Jahn–Teller effect, and thermal runaway. Some of these
challenges arise from the bulk phase, while others are associ-
ated with the interface. They affect stability, reduce electro-
chemical performance, and pose safety risks, all of which are
critical factors hindering the commercialization of PBAs and
warrant special attention.

3.1 Crystal water and crystal vacancies

Ideally, the synthesized PBAs should have a perfect crystal struc-
ture without any crystal water or vacancies. However, in practice,
a simplied and accelerated co-precipitation reaction in aqueous
solution is typically employed due to economic reasons. Given the
negligible solubility product constant (Ksp) of PBAs in water, the
nucleation and growth of grains proceed rapidly and simulta-
neously upon mixing of the precursor solutions. This process is
accompanied by the formation of a large number of defects and
vacancies, which are occupied by coordination and interstitial
water. The presence of Fe(CN)6 vacancies reduces the number of
redox-active centers in the lattice, hindering the full activation of
the FeLS redox reaction. This limitation directly reduces the Na+

content and specic capacity of the material. Additionally, these
vacancies compromise the structural integrity of the lattice,
resulting in a distorted framework. Such distortion can lead to the
breaking of chemical bonds during Na+ insertion/extraction,
potentially causing structural collapse over prolonged charge/
discharge cycles, thereby signicantly degrading the cycling
stability of the battery.87 Crystal water primarily resides in Fe(CN)6
vacancies, while interstitial water, which is physically adsorbed on
surfaces or interstitial lattice sites, can be relatively easily
removed.88–90 In contrast, coordination water forms strong bonds
with Fe ions, altering the electronic states around Fe ions or
Fe(CN)6 groups, making its removal challenging. The presence of
crystal water impedes Na+ migration within the lattice, leading to
reduced specic capacity and poor cycling stability. Furthermore,
crystal water may undergo side reactions with the electrolyte
during charge/discharge processes, compromising electrolyte
stability. At high potentials, oxidative decomposition of crystal
water can alter the electrochemical plateau, while interactions
with material components canmodify the crystal structure. These
effects collectively deteriorate the sodium storage performance of
PBAs.91,92

3.2 Side-reactions and thermal runaway

Safety is a non-negligible issue in the commercialization of
electrode materials, and thermal runaway is the most
dangerous safety issue for batteries. Although the theoretical
13602 | Chem. Sci., 2025, 16, 13594–13628
oxygen-free structure of PBAs can avoid the common thermal
runaway pathway associated with oxygen release, the introduc-
tion of crystal water is inevitable in practical applications, as we
have already mentioned in the previous section. Therefore, it is
important to clarify the side-reactions of PBAs in batteries and
to analyze the potential thermal runaway. The current study
points out that the side reaction generation of PBAs during
charging and discharging is mainly divided into two stages.93

Electrolyte decomposition at low potentials, such as organic
carbonate electrolyte decomposition to produce C2H4 and C2H6,
followed by the introduction of large amounts of interstitial
water into the electrolyte. The reaction process is as follows:94

C3H4O3 þNaþ þ e�/
1

2
ðCH2OCOONaÞ2 þ

1

2
C2H4[ (6)

C2H5OCOOC2H5 + Na+ + e− / C2H5OCOONa

+ C2H5 / C2H6[ (7)

At high potentials, the interstitial water at the anode
undergoes a reduction reaction to produce H2, and the elec-
trolyte at the cathode is oxidized, catalytically opening the ring
to produce CO2. The reaction process is as follows:

H2O=ROHþ e�/OH�=RO� þ 1

2
H2[ (8)

C3H4O3 + H2O/OH− / C2H5O2
− + CO2[ (9)

The occurrence of side-reactions consumes the electrolyte on
the one hand, causing degradation of battery performance. On
the other hand, gas generation potentially causes battery
expansion or even explosion.

In terms of thermal runaway, previous studies have indicated
that PBAs display superior thermal safety characteristics. He
et al.95 evaluated the safety performance of the Natron battery, the
rst commercial sodium-ion pluggable battery using PBAs as the
cathode. A short-circuit test found that the battery temperature
returned to ambient levels within 6 minutes aer increasing to
50–60 °C without any signicant thermal runaway. However, Li
et al.96 found a hidden thermal runawaymechanism in PBAs, and
crystal water is also the ‘culprit’ of this thermal runaway mech-
anism, which may cause internal hydrolysis and dismutation of
PBAs. Although PBAs can maintain structural integrity below 200
°C, when the temperature rises to 325 °C, the MA–N and MB–C
bonds will break, leading to signicant release of cyanide groups
and reaction with the electrolyte, resulting in a large amount of
heat generation. Therefore, controlling defects and water content
during the synthesis process is crucial for improving the overall
safety of PBA cathodes. Overall, the exothermic behavior of PBA
based SIBs has signicantly improved compared to traditional
LIBs, but it still needs to be considered as a key factor in large-
scale applications.
3.3 Transition metal dissolution and structural collapse

PBAs face the problems of structural collapse due to the Jahn–
Teller effect and the dissolution of transition metal ions during
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the cycling process. MnHCF is posited as an exemplary cathode
material, exhibiting a high capacity, high operating voltage of
3.5 V (vs. Na+/Na), low raw material cost, and environmental
friendliness.23 A disadvantage of MnHCF is that Mn ions exist in
different oxidation states. During the charging and discharging
process, the electronic conguration of Mn ions may change,
which can result in an uneven distribution of electrons in
different orbitals. This phenomenon is known as the Jahn–
Teller effect.22,97 The Jahn–Teller effect results in the distortion
of the crystal structure of MnHCF. Typically, the original cubic
or tetragonal crystal structure undergoes deformation to
a certain extent, and due to the inherent instability of the
structure, the material is susceptible to collapse aer numerous
cycles. The pristine cubic or tetragonal crystal structures
undergo certain degrees of distortion under repeated Na+

insertion/extraction processes, primarily attributed to their
inherent structural instability. This lattice distortion triggers
irreversible phase transitions, accompanied by microstructural
fractures and active material exfoliation. Concurrently, the
dissolution of transition metal ions leads to the formation of
electrochemically inert compounds, collectively exacerbating
structural degradation and capacity deterioration.98,99 During
this process, the Mn–N6 octahedra transition from a stable
Mn2+ state to an unstable Mn3+ state. The resulting Mn3+ is then
dissolved into the organic electrolyte through a disproportion-
ation reaction:

2Mn3+ / Mn2+ + Mn4+,

which leaves Mn vacancies on the surface.23 Additionally, in the
presence of trace water or elevated temperatures, the electrolyte
or its decomposition products may interact with Mn ions,
leading to further Mn depletion. This results in a reduction in
active material, a decline in capacity and energy density, and
a disruption of the structural integrity of the electrodes, causing
chalking and shedding. Therefore, PBAs must overcome these
critical challenges to achieve successful industrialization.

3.4 Low energy density and power density

Energy density and power density are key indicators for evalu-
ating battery performance.100 Energy density is the amount of
electrical energy stored per unit volume or mass. In practical
applications, higher energy density means higher gram
capacity/volume capacity and miniaturization of battery
volume. The China National Institute of Electronic Technology
Standardization has released the ‘2023 Sodium-ion Battery
Industry Research Report’, which points out that the average
energy density of China's sodium-ion battery industry is 104.1
W h kg−1, with the highest being 129.2 W h kg−1 and the lowest
60W h kg−1, while the energy density of the current mainstream
LIBs can reach 260–300 W h kg−1.101 It can be seen that there is
still a considerable gap between SIBs and LIBs in terms of
energy density. Power density characterizes the rate of energy
output during discharge, which is related to the power perfor-
mance and fast charging capability of the battery. Currently,
some commercial PBA-based SIBs show a high power density
(1250 W kg−1), which is already higher than other batteries,
© 2025 The Author(s). Published by the Royal Society of Chemistry
including LIBs (usually <1000 W kg−1), but still far from
supercapacitors.102

For SIBs to be more competitive in the new energy market,
they need to nd ways to increase energy density and power
density. According to the denitional formula of the two:91

Ed ¼
ðVe

Vs

Q� V dv; Pd ¼
ðVe

Vs

I � V dv

We can nd that to increase the energy density, the key is to
increase the specic capacity and plateau voltage of the battery.
The presence of crystal water in PBAs adversely affects their
crystallinity, which we have described in detail in the previous
section. In general, the presence of crystal water causes sodium
loss, which affects the specic capacity of the material. There-
fore, the amount of crystal water needs to be strictly controlled.
At a certain specic capacity, increasing the plateau voltage can
directly increase the energy density. For PBAs, the platform
voltage can be increased by chemical modication or com-
pounding of materials, for example, compounding with mate-
rials that have a high potential window, such as specic
transition metal oxides or conductive polymers.103 These addi-
tives can change the electrochemical environment of PBAs
during the charging/discharging process, resulting in a positive
shi of the redox potential, thereby increasing the overall
plateau voltage. Power density is then related to current density
and platform voltage. The ionic/electronic conductivity of the
material directly determines the current density.104 In PBAs,
lower ionic/electronic conductivity restricts the rapid transport
of ions and electrons inside the material, resulting in severe
polarization and lower power density during high-current
charging/discharging. To increase the ionic/electronic conduc-
tivity, several strategies can be used. A common approach in
commercial applications is to compound with highly conduc-
tive materials such as carbon nanotubes or graphene.105,106

These materials are able to build a continuous conductive
network in the PBA matrix, which not only provides a fast
transport channel for electrons, but also promotes ion migra-
tion through synergistic effects. Increasing the specic surface
area of PBAs enhances the contact between the electrode and
the electrolyte, promoting the rapid adsorption and desorption
of ions, which is crucial for improving power density. A
straightforward approach to increasing the specic surface area
is to reduce the particle size of the material. However, it is
important to note that excessively small particles may lead to
agglomeration, resulting in poor dispersion. Another effective
approach involves enhancing the electrode compaction density,
which is intrinsically linked to the tapped density of the active
material.107 When the compaction density of the electrode
increases, the amount of active material relatively was increased
accordingly under the same battery volume, thereby improving
the energy density of the battery. At the same time, it can realize
the thinner electrode under high mass loading conditions. This
structural advantage facilitates the preservation of continuous
electrical pathways and efficient ionic transport during
cycling.108
Chem. Sci., 2025, 16, 13594–13628 | 13603

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc02819a


Chemical Science Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
2/

20
25

 1
1:

30
:1

5 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3.5 Engineering challenges

While intrinsic material defects (e.g., crystal water and vacan-
cies) fundamentally limit the electrochemical performance of
PBAs, engineering challenges in large-scale manufacturing pose
equally critical barriers to commercialization. Transforming
laboratory-scale synthesis into industrial production requires
addressing critical issues such as electrode slurry processing.
The hygroscopic nature of PBAs complicates slurry preparation
under ambient humidity, where residual crystal water or
adsorbed moisture reacts with polar solvents in conventional
slurry systems, leading to slurry viscosity instability and inho-
mogeneous particle dispersion.88,109 Furthermore, PBAs
synthesized via rapid co-precipitation methods typically exhibit
irregular morphologies and broad particle size distribution –

issues exacerbated during scale-up. Agglomerated particles
disrupt the rheological properties of slurries, resulting in
coating defects during electrode fabrication. These issues
collectively hinder the uniformity and reproducibility of large-
format electrodes, underscoring the necessity for process
innovations tailored to PBAs' unique physicochemical
characteristics.
4 Bulk phase regulation for PBAs

Bulk phase regulation is a core strategy for optimizing the
performance of PBAs as cathode materials in SIBs. Its signi-
cance lies in addressing key challenges faced by PBAs in
Fig. 6 Issues and countermeasures in the commercialization process o
from ref. 110 Copyright 2022, American Chemical Society. Reproduced w
with permission from ref. 112 Copyright 2024, American Chemical Societ
Chemical Society. Reproduced with permission from ref. 114 Copyright 2
2024, American Chemical Society. Reproduced with permission from r
from ref. 117 Copyright 2021, Elsevier. Reproduced with permission from
ref. 119 Copyright 2024, American Chemical Society.
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practical applications, such as low specic capacity, poor
cycling stability, and low operating voltage, by accurately
modifying the lattice/composition inside the material. By
regulating the bulk phase, the crystal structure, electronic
properties, and ion transport kinetics of PBAs can be nely
tuned, signicantly enhancing their electrochemical perfor-
mance (Fig. 6).
4.1 Heat treatment and the use of chelating agents

Since the discovery of the potential of PBAs as cathode mate-
rials, crystal water and crystal defects have remained as key
issues, and they are also the biggest obstacles to the commer-
cialization of PBAs. Currently, researchers have devised
a number of methods to obtain PBAs with high crystallinity and
minimal crystal water by carefully optimizing various synthetic
conditions. These include adding chelating agents, adjusting
the solution pH, thermal treatment, and employing advanced
synthesis techniques.

Heat treatment of synthesized PBAs is a simple and efficient
method to remove crystal water. Theoretically, the crystal water
in PBAs can be completely removed at around 220 °C, which can
be obtained by thermogravimetry analysis (TGA). However, it
should be noted that rough heating by high temperature may
damage the structure of the material and lead to the deterio-
ration of its electrochemical properties. Therefore, the appro-
priate treatment temperature and gentle treatment need to be
further explored. Wang et al.49 heat-treated the material at 270 °
f PBAs. All insets are from the literature. Reproduced with permission
ith permission from ref. 111 Copyright 2024, Wiley-VCH. Reproduced
y. Reproduced with permission from ref. 113 Copyright 2017, American
023, Wiley-VCH. Reproduced with permission from ref. 115 Copyright
ef. 116 Copyright 2021, Springer Nature. Reproduced with permission
ref. 118 Copyright 2024, Wiley-VCH. Reproduced with permission from
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Fig. 7 (a) Cycling performance of HT sample at the current density of 5C. (b and c) Capacity storage performance of the pristine and dehydrated
PB after 7 days at 60 °C.49 Copyright 2022Wiley-VCH. (d) The contour plots and (e) the normalized intensity of four peaks corresponding to in situ
H-Raman. (f) In situ H-XRD patterns. (g) TG-MS curves. (h) Thermostatic TG curves at 100, 130, and 180 °C. (i) In situ XRD spectra of PB and PB-
130. (j) The capacitive contribution ratio.120 Copyright 2024, American Chemical Society.
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C under argon protection, which almost completely eliminated
the crystal water inside the material. The heat-treated material
has excellent cycling stability performance (82.5% capacity
retention for 2000 cycles at 5C), while the high-temperature
capacity storage performance of the material has been signi-
cantly improved (Fig. 7a–c). In addition, Ge et al.120 applied the
appropriate dehydration temperature of PB by various online
monitoring techniques. In situ heating Raman spectroscopy (in
situ H-Raman) revealed that the near-surface structure of PB
remained stable between 25 and 130 °C. Upon heating to 130–
150 °C the weak peaks at 2068 and 2107 cm−1 intensied, while
the strong peaks at 2091 and 2126 cm−1 weakened and even-
tually disappeared, indicating the reduction of FeIII under
thermodynamic stress. Beyond 150 °C, the PB structure
underwent continuous degradation (Fig. 7d and e). In situ
heating X-ray diffraction (in situ H-XRD) further conrmed that
the (110)/(104) diffraction peaks began to weaken at 130 °C and
merged at 180 °C, signaling the onset of structural collapse
(Fig. 7f). Thermogravimetric-mass spectrometer technique (TG-
© 2025 The Author(s). Published by the Royal Society of Chemistry
MS) analysis showed that the weight loss between 25 and 100 °C
was attributed to the removal of adsorbed water, while the
signicant weight loss at 130 °C corresponded to the elimina-
tion of a substantial amount of crystalline water, during which
the PB structure remained intact (Fig. 7g). Thermostatic ther-
mogravimetric experiments demonstrated that aer maintain-
ing temperatures at 100 °C, 130 °C, and 180 °C for 12 hours, the
removal rates of crystalline water were 3.8%, 10.9%, and 12.1%,
respectively (Fig. 7h). In situ X-ray diffraction (in situ XRD)
analysis reveals that the PB heated at 130 °C (PB-130) undergoes
a reversible structural transition from rhombohedral to quasi-
cubic phase during charging, while the presence of interstitial
water in the PB sample results in a mixed-phase state of
rhombohedral and cubic phases, limiting its electrochemical
activity (Fig. 7i). Additionally, it provides structural support to
vacancies, enhancing the cycling stability of the material
(Fig. 7j). The results demonstrate that retaining a trace amount
of coordination water not only improves the material's kinetics
Chem. Sci., 2025, 16, 13594–13628 | 13605
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but also alters the coordination environment of FeLS, extending
the high-potential plateau.

Introducing chelating agents to control the crystallinity and
crystal water content of PBAs is a common regulatory method.
Chelating agents can form stable complexes with metal ions,
interfere with normal crystal growth during the crystallization
process, slow down nucleation rate, promote ordered growth of
crystal nuclei, and improve crystallinity. At the same time, the
complex will change the solution chemical environment, so that
the original and water molecules closely bound to the metal
ions by the chelating agent. Water molecules detach from the
coordination structure and become free, making them easier to
remove. Jiang et al.121 successfully prepared low-defect Prussian
blue (LD-PB) using sodium carboxymethylcellulose (CMC) as
the chelating agent. The binding energy of different chelating
agents with Fe3+ was calculated by density functional theory
(DFT), and it was found that the binding energy of CMC was
moderate, which could improve the crystallinity of PB. The rate
performance of LD-PB is excellent, with good capacity and
retention at current densities from 0.5 to 100C (101 mA h g−1 at
100C), and 97.4% capacity retention aer 3000 cycles. Wang
et al.122 employed ethylenediaminetetraacetic acid disodium
(Na2EDTA) as a chelating agent and ascorbic acid (VC) as a pH
regulator to synthesize poly-PBAs. The ‘acid effect’ of VC regu-
lates the chelating ability of the chelating agent with transition
metals and reduces the transition metal vacancies to synthesize
PBAs with high crystallinity (e.g., EDTA-1MVC). X-ray diffraction
(XRD) showed that EDTA-1MVC is a sodium-rich rhombohedral
phase with a crystallinity of 94.7%, which is higher than that of
the comparative sample, sodium citrate-1M VC (Nacit-1MVC)
(65.97%) (Fig. 8a and b). TGA showed a reduction in the water
content of EDTA-1MVC, which was 14.28% (the comparative
sample was 17.10%) (Fig. 8c). Charge/discharge tests showed
that EDTA-1MVC exhibited excellent performance at different
current densities, e.g., a discharge capacity of 82.0 mA h g−1 at 6
A g−1, and a good cycling stability (86.32% capacity retention
aer 10 000 cycles at 6 A g−1) (Fig. 8d and e).

Previous views equated defects with bottom performance,
but recent studies have shown that appropriate defects unex-
pectedly contribute to the performance enhancement of PBAs.
Shang et al.123 achieved a signicant breakthrough in the eld of
PBAs by successfully introducing manganese vacancies (VMn)
into Na2Mn[Fe(CN)6] (NMF). Through the utilization of Na2-
EDTA as a strong chelating agent, they synthesized a novel
compound, Na1.6Mn0.75(,Mn)0.25[Fe(CN)6]$1.57H2O (EDTA-
NMF) (Fig. 8f and g). This pioneering work marked the rst
successful construction of non-conventional cationic vacancies
in PBAs, opening new possibilities for material design and
optimization in this eld. Electron spin resonance (ESR) spec-
troscopy conrmed the increase of VMn (Fig. 8h). The intro-
duction of VMn suppressed Mn–N bonding, which signicantly
mitigated the Jahn–Teller aberration during the cycling process.
It was shown that the initial capacity could go up to 137 mA h
g−1 at a current density of 25 mA g−1. And the capacity retention
rate was as high as 72.3% aer 2700 cycles at a current density
of 500 mA g−1 (Fig. 8i). Besides, Liu et al.30 improved the
capacity and cycling stability of PBAs by introducing
13606 | Chem. Sci., 2025, 16, 13594–13628
a synergistic strategy of Fe vacancy and Cu doping. It was shown
that Fe vacancy and Cu doping improved the Na+ diffusion
kinetics and increased the specic surface area of the material,
as well as stabilized the structure of the material. These
methods of controlling the defect content provide new ways to
improve the performance of PBAs. In addition, there are some
other methods to control the vacancies by improving the
synthesis method that are also feasible for practical applica-
tions. For example, Wan et al.124 proposed a post-synthesis and
in situ vacancy repair strategy to synthesize high-quality FeHCF
in a high-concentration Na4Fe(CN)6 solution, and this in situ
repair method can repair vacancies from the inside out and
activate the reduction reaction at the 24d site.
4.2 Elemental doping

The doping and substitution of ions take advantage of the
adjustable structure and composition of PBAs, by using various
transition metals (TMs) or alkali metals (AMs) for doping in
PBAs, thus exerting the synergistic effect between various
elements.125

4.2.1 Transition metal site doping. In the development of
practical electrode materials for PBAs, TM sites offer a large
number of alternatives. Due to their mixed valence nature and
open three-dimensional backbone structure, PBAs can be
chemically modied without disrupting the overall crystal
structure. When substitution at TM sites occurs, their geometry
typically remains unchanged. The lattice parameters and
channel sizes are linearly related to the ionic radius of the
cation at the TM sites, while the reactive potential of the anionic
sites is inuenced by the ionic potentials (charge to radius
ratios) of the TM, leading to higher insertion potentials.126 This
effect is attributed to increased s-bond polarization and more
pronounced p-back bonding in cyanide ligands, as well as the
lower energy of the t2g orbitals on the R-site ions.127 The regu-
lation method of using various TMs to dope each other and
exert their respective characteristics can effectively regulate the
redox behavior and electronic/ionic properties of PBAs, thereby
improving their electrochemical performance.128

Suitable doping elements can be selected through DFT
calculations. Li et al.26 compared the performance of different
doping elements through DFT calculations. They employed the
integrated crystal orbital Hamilton population (ICOHP) func-
tion to assess the strength of the chemical bond of N–transition
metals (N–TM). Among a series of ICOHP values for N–TM (TM
=Mn, Fe, Co, Ni, Cu, Zn), the Cu–N bond has the lowest ICOHP
value, followed by Zn–N. Although Zn–N also demonstrated
a relatively low ICOHP value, Cu is preferred due to its redox
activity, which contributes to enhanced electrochemical
performance. Density of states (DOS) calculations demon-
strated that Cu doping decreased the bandgap from 2.37 eV to
0.65 eV, thereby improving electronic conductivity. Further-
more, diffusion barrier analysis revealed lower energy barriers
in K-based monoclinic structures compared to Na-based cubic
frameworks, indicating enhanced Na+ transport kinetics in the
K-stabilized conguration. These ndings highlight the poten-
tial of Cu substitution in stabilizing the structure of PBAs and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 (a) Rietveld refinement XRD pattern of EDTA-1MVC (b) Nacit-1MVC. (c) TGA comparison curve in N2. (d) Rate performance of all the
cathodes. (e) Long-term cycling performance of EDTA-1MVC at 6 A g−1 after 10 cycles at 0.1 A g−1.122 Copyright 2024, Wiley-VCH. (f) The
formationmechanism of Mn vacancies in NMF. (g) Etchingmechanism of NMFwith Na2EDTA. (h) ESR spectra of EDTA-NMF obtained at different
reaction times. (i) Cycling performances of two NMFs at 500 mA g−1 and the coulombic efficiency of hexapod EDTA-NMF.123 Copyright 2020,
Elsevier.
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improving their functional properties. Chen et al.110 directly
synthesized Cu-doped FeHCF (Cu–FeHCF) by the co-precipita-
tion method. It was shown that Cu doping signicantly
improved the activity of FeLS, and Cu played an important role
in stabilizing the structure of FeHCF in the process of Na+

insertion/extraction (Fig. 9a). Cu–FeHCF exhibits an initial
capacity of 127.4 mA h g−1 at 100 mA g−1, and the capacity
retention rate was high and the decay rate was low aer 500
© 2025 The Author(s). Published by the Royal Society of Chemistry
cycles at 2 A g−1 (Fig. 9b). Zhang et al.129 investigated the effect of
Zn substitution on the sodium storage performance of Fe-based
Prussian blue (Fe-PB), and they conrmed that Zn substitution
could reduce the energy barrier and band gap of Fe-PB by DFT
calculations (Fig. 9c–e). CV and galvanostatic charge/discharge
tests showed that the increase in the capacity of Zn-
substituted Fe-PB composite (FeZn-PB) originated from the
increase in the activeness of FeLS and FeHS, and that the
Chem. Sci., 2025, 16, 13594–13628 | 13607
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contribution of the capacity of FeLS was signicantly increased
by Zn substitution. Besides, the results of electrochemical
impedance spectroscopy (EIS) and galvanostatic intermittent
titration technique (GITT) further conrmed that Zn substitu-
tion improved the diffusion kinetics of Na+. It is shown that
FeZn-PB exhibits excellent electrochemical performance, with
an initial discharge capacity of up to 145.0 mA h g−1 at 20 mA
g−1, and an impressive capacity aer 500 cycles at 1 A g−1. In
addition, Zhang et al.130 introduced Zn to replace high-spin Fe
in Fe–PBAs (ZnFeHCF) to control the depth of charge and
discharge, leading to a highly reversible phase transition
process and improving cycling stability. By studying the struc-
tural evolution of ZnFeHCF during charge and discharge
Fig. 9 (a) First three charge–discharge corresponding capacity contribut
respectively. (b) Long cycle performance of FeHCF and Cu–FeHCF at 2
barrier profiles of Fe-PB and FeZn-PB, and (d and e) of Fe-PB and FeZn-
colormap surface with projection of MNHCF-1 and MNHCF-3. (h) Schem
MNHCF-3. (i and j) Sequential images of MNHCF-3 from in situ TEM me
2024, American Chemical Society.

13608 | Chem. Sci., 2025, 16, 13594–13628
processes using in situ XRD and in situ Raman spectroscopy (in
situ Raman), it was found that it undergoes a reversible two-
phase transformation (cubic phase and tetragonal phase), with
small volume changes and good structural reversibility, which
is the reason for its excellent cycling stability.

Due to the ‘zero strain’ characteristic of Ni during the
insertion/extraction process of sodium, its doping promotes
excellent structural stability of the lattice, oen used to enhance
the cycling stability of MnHCF, FeHCF, etc.132 Peng et al.131

synthesized Ni substituted Na2Mn0.5Ni0.5[Fe(CN)6] (MNHCF-3)
using an improved chelating agent assisted co-precipitation
method at room temperature, which exhibited excellent elec-
trochemical performance in SIBs, such as a capacity retention
ion diagrams of FeLS and FeHS of FeHCF and Cu–FeHCF at 100 mA g−1,
A g−1.110 Copyright 2022, American Chemical Society. (c) The energy
PB, respectively.129 Copyright 2021, Elsevier. (f and g) In situ PXRD 3D
atic illustration of in situ TEM setup and image of pristine particles of
asurements during desodiation and sodiation processes.131 Copyright

© 2025 The Author(s). Published by the Royal Society of Chemistry
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rate of 88.5% at 3000 mA g−1, a capacity retention rate of 90.1%
aer 10 000 cycles, good climate stability from−10 to 60 °C, and
excellent cycling stability of the entire battery. They revealed the
mechanism of its excellent performance through in situ powder
XRD (in situ PXRD) and in situ Transmission Electron Micros-
copy (in situ TEM). In situ PXRD analysis revealed that Na2-
Mn1[Fe(CN)6] (MNHCF-1) undergoes a phase transition from
monoclinic to cubic and eventually to tetragonal during
charging due to Na+ extraction, while MNHCF-3 exhibits high
reversibility during the cycling process, with a narrow angular
offset, and can return to its original position with strong
intensity during the reverse process (Fig. 9f and g). In situ TEM
observations demonstrated the structural stability of MNHCF-3,
with negligible volume shrinkage (2.3%) during desodiation
and reversible volume recovery during sodiation (Fig. 9h–j).

In summary, by designing the ion doping and substitution
strategies of TM sites, the structure of PBAs can be effectively
optimized to enhance their performance in SIBs, including the
improvement of the conductivity of the electrode materials, the
rate of Na+ migration, as well as the cycling stability and specic
capacity of the materials.

4.2.2 Alkali metal site doping. Doping at AM sites is
a crucial strategy for optimizing the crystal structure of PBAs.
PBAs feature a large cavity structure with numerous interstitial
sites (e.g., 8c, 24d, 32f, and 48g) capable of accommodating AM
cations or water molecules.133 However, the non-stoichiometric
occupation of these cations and the resultant low degree of
lling within the cavities can introduce substantial amounts of
interstitial water, leading to cell expansion. This expansion
adversely affects the initial coulombic efficiency and cycling
stability of the battery.134 Modulating AM sites by introducing
different metal ions can alleviate these issues by altering elec-
tron density and inducing lattice shrinkage.98 Besides, the ionic
radius of inserted metal ions signicantly inuences the
insertion process. Thermodynamically, the radius of the inser-
ted ion determines the free energy of the insertion reaction. As
the ion size increases, the most stable gap within the structure
shis from face-centered to body-centered. DFT calculations
indicate that larger insertion ions, due to stronger steric inter-
actions, result in higher reaction potentials, thereby enhancing
energy density. This phenomenon has been experimentally
validated in compounds like CuHCF, NiHCF, and ZnHCF.135,136

Nevertheless, larger cations exhibit slower migration rates, and
excessively large cation radii can cause signicant structural
distortions, degrading cycling performance. Therefore, select-
ing an optimal cation size is essential to balance thermody-
namic and kinetic properties for achieving superior material
performance.134,137

There have been many studies related to AM doping, but
considering the cost factor and feasibility, we mainly discuss
the element K below.138–140 The larger ionic radius of K+ expands
the backbone of PBAs, acting as a structural “pillar”, thus
enlarging the cell volume for Na+ intercalation and enhancing
specic capacity and cycling stability. A balanced mix of K+ and
Na+ ions not only enlarges the sodium storage space but also
maintains the stability of the PBA framework. Additionally, K+

promotes the formation of a cubic structure with high
© 2025 The Author(s). Published by the Royal Society of Chemistry
crystallinity, which is crucial for maintaining structural integ-
rity during the charge and discharge processes, especially at
high rates.141 Zhang et al.142 developed a potassium-assisted
iron-based PBA (NKPB-3) with low defect and water content by
carefully designing the crystal structure and crystal phase
orientation. It was shown that the introduction of K+ changes
the crystal orientation, reduces [Fe(CN)6]

4− vacancies and
crystal water content. In situ Raman and in situ XRD have
demonstrated that the changes in NKPB-3 during cycling are
highly reversible (Fig. 10a and b). Fig. 10c shows the schematic
diagram of NKPB-3 phase transitionmechanism. NKPB-3 shows
outstanding electrochemical performance with an initial
specic capacity of up to 147.9 mA h g−1 and an energy density
of 450 W h kg−1, which make it comparable to commercial
LiFePO4 battery materials. In addition, NKPB-3 demonstrated
83.5% capacity retention aer 300 cycles over a long period of
time (Fig. 10d). Gao et al.141 synthesized Na2−xFeMn[Fe(CN)6]
(FeMnPBA) and 3% K-doped FeMnPBA (K-FeMnPBA3) using
sodium citrate as the chelating agent (Fig. 10e). The initial
discharge capacity of K-FeMnPBA3 was higher than that of
FeMnPBA (139.1 mA h g−1), and it also possessed a higher
energy density (446.8 W h kg−1). The EIS results indicated that
moderate K+ doping promotes Na+ diffusion, but over doping
hinders diffusion by occupying Na+ storage sites (Fig. 10f).
Meanwhile, they successfully synthesized K-FeMnPBA3 at the
kilogram level in a 50 L reactor (Fig. 10g). The initial discharge
capacity of the pouch battery assembled using K-FeMnPBA3 as
the cathode and Kuraray hard carbon as the anode was 114.3
mA h g−1, and the capacity retention rate was 82.6% aer 600
cycles at 1C, which has the potential for practical application
(Fig. 10h–j).

In addition, Xu et al.111 utilized low-grade water (e.g.,
seawater) to synthesize PB, enabling natural ion doping (e.g.,
Mg, K) and achieving low-cost, sustainable preparation. They
employed a chelator-assisted co-precipitation method to
synthesize PB materials (DW-PB, LW-PB, SW-PB, and TW-PB)
using deionized water, lake water, sea water, and tap water,
respectively. Among these, SW-PB exhibited superior electro-
chemical performance, delivering a discharge capacity of 115.8
mA h g−1 at 0.1C and a capacity retention rate of 93.9% aer 500
cycles at 5C. Meanwhile, they proposed a purication strategy
for separating impurity ions from wastewater by precipitation
and ion exchange, and the recovered sodium citrate and Na2SO4

were of high purity; this recycling strategy can signicantly
reduce the average raw material cost, which provides a good
idea for the commercialization of PBAs.

Compared with the general TM site regulation, the research
on AM site regulation provides more opportunities for the
development of new cathode materials for SIBs to improve the
performance. At present, the regulation of AM sites in PBAs is
still a complex and challenging eld. Further study of these ions
may provide more insight into the development of new ESSs.

4.2.3 Anion site doping. In addition to cation doping,
regulating the anionic sites of PBAs is also an important means
to improve material properties. This approach involves
restructuring the coordination chemistry environment of the
material, enabling precise design of both crystal structure and
Chem. Sci., 2025, 16, 13594–13628 | 13609
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Fig. 10 (a) In situ Raman 3D colormap surface with projection. (b) In situ XRD 3D colormap surface with projection. (c) Schematic illustration of
the phase transitionmechanisms of NKPB-3. (d) Cycling performance of NKPB-3.142 Copyright 2023, Wiley-VCH. (e) Schematic illustration of the
synthesis process of as-prepared samples. (f) EIS spectra and fitting data. (g) Large-scale synthesis in kilogram scale of K-FeMnPBA3 (50 L). (h)
Assembling of the pouch cell. (i) The charge–discharge curves of different cycles of the pouch cell. (j) Cycling performance of the pouch cell.141

Copyright 2024, Wiley-VCH.
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electronic properties. The underlying mechanism stems from
the intrinsic inuence of anionic groups on the transition metal
coordination network: introducing anions with distinct coor-
dination capabilities alters their bonding modes with transition
metals (e.g., Fe, Mn), thereby synergistically optimizing lattice
symmetry, electron cloud distribution, and Na+ diffusion
13610 | Chem. Sci., 2025, 16, 13594–13628
pathways.143 Lee et al.144 synthesized manganese hex-
acyanomanganate (Na2Mn[Mn(CN)6], denoted as MnHCMn) as
a cathode material for SIBs through substitution of FeII(CN)6
with MnII(CN)6. The obtained MnHCMn exhibits a monoclinic
structure featuring nonlinear Mn–N and C–Mn bonding
congurations, along with eight large interstitial sites occupied
© 2025 The Author(s). Published by the Royal Society of Chemistry
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by Na+. As shown in Fig. 11a, electrochemical analysis demon-
strates that there were three distinct Na+ insertion stages during
cycling, delivering a reversible capacity of 209 mA h g−1. Han
et al.145 obtained highly stable manganese nitro-
sylpentacyanoferrate (Mn[Fe(CN)5NO]) by introducing nitroso
groups (N]O) to replace some cyanide groups at the anionic
site of MnHCF. This anionic engineering approach reduced the
lattice water content and suppressed volume uctuation during
cycling via an octahedral spatial rotation mechanism (Fig. 11b–
d). DFT calculations revealed that Mn[Fe(CN)5NO] exhibits
lower binding energy with lattice water on its (111)/(110)/(100)
crystalline surfaces compared to MnHCF, indicating reduced
water adsorption. The N]O bond suppresses lattice water
formation during synthesis, lowering material hydration and
enhancing cycling stability, ultimately achieving 82.1% capacity
Fig. 11 (a) The schematic diagrams illustrate the changes in structure for
TG curves of Mn[Fe(CN)5NO] and MnHCF. (c) Volume change of a unit c
and NaxMn[Fe(CN)5NO]. (d) Variation of manganese bond lengths with di
MnHCF at a current density of 100 mA g−1.145 Copyright 2024, Elsevier.

© 2025 The Author(s). Published by the Royal Society of Chemistry
retention aer 400 cycles at 100 mA g−1 (Fig. 11e). The intro-
duction of specic anionic groups can adjust the water
adsorption energy within the lattice framework, effectively
reducing non-active lattice water occupation at sodium storage
sites. At the same time, this optimization can enhance intrinsic
capacity and cycling stability by preserving active sodium
accommodation positions. Such an anionic engineering
strategy provides atomic-level design exibility for constructing
high-performance PBA electrodes, which transcends the
conventional limitations of performance enhancement through
sole reliance on cationic substitution.
4.3 Etching

Etching is an important method used to modulate the structure
and properties of PBAs, which can generally be performed using
MnHCMn during battery cycling.144 Copyright 2014, Springer Nature. (b)
ell with different water contents during Na+ insertion of NaxMnFe(CN)6
fferent sodium contents. (e) Cycle performance of Mn[Fe(CN)5NO] and
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Fig. 12 (a) Scheme of the synthesis process of BTA-PB. (b) SEM images of BTA-PB-1.6. (c) EIS spectra of BTA-PB-1.6 and BA-PB-1. (d) Cor-
responding relationship between Z0 and u−1/2.112 Copyright 2024, American Chemical Society. (e) Schematic diagrams accompanied by FESEM
images of the NiHCF products after the etching time for (e-1) 0 hours, (e-2) 0.5 hours, (e-3) 6 hours. (f) Outside–in diffusion route of Na in
NiHCF-cube and NiHCF-etch. (g) Rate performance of NiHCF-cube and NiHCF-etch.113 Copyright 2017, American Chemical Society.
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acid solutions such as hydrochloric acid or organic reagents
such as tannic acid (TA). The principle of etching to form
specialized structures is based on breaking the coordination
bonds within the PBA framework to produce TM ions and
[Fe(CN)6]

4− ions. The resulting disordered structural domains
or defects manifest themselves in a heterogeneous manner
within metal–organic frameworks or coordination polymer
crystals (even single crystals).146 Defects such as ligands,
amorphous portions and dangling bonds in polycrystal
domains are readily generated during non-classical crystalliza-
tion processes. Heterogeneous distribution of defects inside
PBA crystals induces inhomogeneous etching kinetics depend-
ing on the local concentration of the defects. For instance, the
rate of etching will be greater in regions exhibiting a higher
density of defects. It has been previously reported that the
planar stability of PBAs is lower than that of corners or edges. As
a result, the middle of the outer surface of the cube can dissolve
faster during etching, resulting in a nanoframe-like
morphology. The microstructure of PBAs can be precisely
modied through etching techniques, such as transformation
from solid structures into spherical, hollow, or other
morphologies, thereby enhancing thematerial's specic surface
area. Such structural changes provide more channels and active
sites for the embedding and detachment of ions, which is
conducive to improving the electrochemical performance of the
material in applications such as batteries. Zhao et al.68 modu-
lated the Na2NiFe(CN)6 morphology through ammonia etching
for 3 hours and obtained corner-passivated dice-shaped PBAs
13612 | Chem. Sci., 2025, 16, 13594–13628
(NaNiHCF-3). NaNiHCF-3 showed good cycling stability (94%
retention aer 1000 cycles at 1C). The in situ XRD showed that
the excellent cycling performance was due to the special struc-
ture that suppressed the phase transition during charging/dis-
charging. Meanwhile, they calculated that the Na+ in NaNiHCF-
3 has shorter diffusion paths and lower spreading energy
barriers (0.11 eV) by the climbing image-nudged elastic-band
method, resulting in good reaction kinetics. Wang et al.112 used
1,3,5-benzene tricarboxylic acid (BTA) as the etchant to
synthesize a hollow layered Fe-PB cathode material (BTA-PB-1.6)
by the hydrothermal method (Fig. 12a). For comparison, they
employed benzoic acid (BA) as a substitute for BTA to synthesize
BA-PB composites (BA-PB-1), alongside Fe-PB prepared via
a coprecipitation method. The SEM image displays its hollow
layered structure (Fig. 12b). The hollow layered structure miti-
gates the lattice volume changes induced by the Na+ insertion/
extraction process and maintains the integrity of the crystal
structure aer cycling. Therefore, it exhibits good cycling
performance (80% retention aer 200 cycles at 1C). Meanwhile,
EIS indicates that BTA-PB-1.6 (233.9 U) has a lower Rct than BA-
PB-1 (394.5 U). The results indicate that the hollow layered
structure shortens the diffusion path of Na+ and increases the
Na+ diffusion coefficient of the material (Fig. 12c and d). In
addition, Mai et al.113 prepared etched NiHCF (NiHCF-etch)
through a two-step process, starting with the coprecipitation
synthesis of NiHCF-cube (NiHCF-cube) followed by an alkaline
corrosion process. The morphological evolution at various
etching stages was captured using Field-emission scanning
© 2025 The Author(s). Published by the Royal Society of Chemistry
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electron microscopy (FESEM), as depicted in Fig. 12e. Their
ndings underscore that Na+ diffusion in NiHCF electrodes
predominantly follows an outside–in pathway, with Na+

mobility being the critical determinant of reaction efficacy
(Fig. 12 f). Specically, in NiHCF-cube, the extended diffusion
pathways for Na+ lead to insufficient utilization of reaction
centers in the core region. Conversely, the NiHCF-etch variant
markedly diminishes this diffusion length. Such architectural
renement ensures comprehensive accessibility to reaction
sites, thereby optimizing the utilization of the central zone and
augmenting the electrode's overall functionality. The surface-
activated NiHCF-etch cathode, achieved through preferential
etching, demonstrates exceptional rate performance with
a specic capacity of 71.0 mA h g−1 at 44.4C, making it a highly
promising candidate for long-lasting, high-power SIBs (Fig. 12
g).

Evidently, the etching method typically enhances the specic
surface area of the material, shortens the Na+ diffusion path,
and enhances its diffusion kinetics, effectively addressing the
poor ionic/electronic conductivity of PBAs, and thus is worthy of
in-depth investigation.
5 Interface regulation for PBAs

Aer obtaining high-quality PBAs with low crystal water and
crystal defects through bulk phase regulation, the inuence of
the interface on the material gradually dominated.147 The
interface issues of PBAs can be divided into surface issues and
electrolyte interface issues. Metal ions on the surface of PBAs
have limited chemical stability in the electrolyte and can
dissolve from the material surface. The dissolution of surface
metal ions and the depletion of the electrolyte deteriorate the
interface, ultimately leading to electrode failure. At the same
time, during the cycling process, PBAs react with the electrolyte,
leading to the formation of a cathode–electrolyte interface (CEI)
lm. An excessively thick CEI lm hinders ion transport and
exacerbates polarization.148 Therefore, regulating the interface
to control these factors is crucial for constructing high-perfor-
mance PBAs.
5.1 Surface coating

In nature, many so and fragile objects possess protective shells
on their surfaces, a feature that has evolved to counteract
external threats. For surfaces exposed to such threats, applying
a protective layer is a logical solution, this approach is known as
surface coating technology. Surface coatings offer a straightfor-
ward method to address interface-related issues. By applying
various materials as a physical barrier on the surface of PBAs,
they have the following functions. First, they isolate thematerial
from direct contact with external elements such as electrolytes,
air, and water. Second, they help mitigate the material's volume
expansion during cycling. Additionally, if the coating materials
selected have superior electrical conductivity compared to the
PBAs themselves, such as carbon or conductive polymers, they
can enhance the overall electrical conductivity. This improve-
ment, in turn, boosts the material's electrochemical
© 2025 The Author(s). Published by the Royal Society of Chemistry
performance. Certain coatings, such as conductive polymer
coatings, effectively suppress the dissolution of TM ions.85 The
nitrogen and sulfur-containing heteroatoms in these polymers
(e.g., pyrrolic N in polypyrrole, imine N in polyaniline, and
thiophene S in PEDOT) form strong coordination bonds with
TM ions, substantially increasing the energy barrier for TM ion
detachment from the lattice.149 This enhanced chemical
anchoring inhibits ion migration. Additionally, the dense
coating layer acts as a physical barrier, isolating the PBA surface
from direct electrolyte contact, thereby reducing the solvation
erosion of TM ions by H2O/H

+. Concurrently, it buffers the
interfacial pH to suppress Mn3+ disproportionation reactions.
Xu et al.114 constructed a CoxB coating layer on the surface of
MnHCF by a simple room temperature chemical wet coating
method. TEM and energy dispersive X-ray spectroscopy (EDS)
conrmed the successful introduction of the CoxB coating layer
(Fig. 13a). The CoxB coating effectively inhibited the dissolution
of Mn between MnHCF and the dielectric, and buffered the
volume change of MnHCF during charging and discharging
(Fig. 13b). The MnHCF modied with 5 mol% CoxB (MnHCF-
5%CoxB) exhibited excellent cycling stability (81% capacity
retention aer 450 cycles at 1C and 74% capacity retention aer
2500 cycles at 10C) (Fig. 13c). Fu et al.150 successfully con-
structed a conductive polymer perylene tetracarboxylic dianhy-
dride (PTCA) coating on the surface of Fe-PB. Compared with
Fe-PB (3.406 m2 g−1), PTCA-coated Fe-PB (Fe-PB@PTCA) (13.654
m2 g−1) has a larger specic surface area (Fig. 13d). EIS indicates
that the Rct of Fe-PB@PTCA decreased from 353.8 U to 285.7 U,
and it has higher Na+ diffusion coefficient (DNa+) than Fe-PB.
The rst discharge capacity of Fe-PB@PTCA is 145.2 mA h g−1 at
100 mA g−1, and 73.4% capacity retention aer 1000 cycles at 1
A g−1 current density (Fig. 13e and f).

In addition. Zhang et al.115 constructed ZnO coating on the
surface of PW with the aim of improving the air stability of PW.
X-ray photoelectron spectroscopy (XPS) and TGA showed that
the ZnO coating reduced the formation of surface hydroxyls, Fe–
O compounds, sodium loss and PW decomposition in humid
air. The soaking experiments further conrmed that the PW
modied with 5 wt% ZnO (PW-5 wt%@ZnO-E) surface had
fewer degradation products. The ZnO coating improves the
cycling performance of PW by promoting the formation of ZnF2-
rich CEI, maintaining structural stability, reducing the genera-
tion of microcracks, and isolating the effects of humid air (PW-5
wt% ZnO: 91.5% capacity retention aer 200 cycles at 0.3C. PW:
65.5% capacity retention aer 200 cycles at 0.3C.) and air
stability.
5.2 Ion exchange

Ion exchange, as a commonly used modication, is the use of
cations or anions to transform a material into something else
with the help of solid–liquid reactions, depending on the
solubility of the candidate material.151 For example, the highly
soluble Na2−xMnFe(CN)6 (Ksp z 8 × 10−13 molar per L) can be
converted to the less soluble HCF by ion exchange. With the ion
exchange process, a special structure is formed in which a high
specic capacity core component is combined with
Chem. Sci., 2025, 16, 13594–13628 | 13613
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Fig. 13 (a) TEM and EDS element mapping of MnHCF-5%CoxB. (b) Schematic illustration of the proposed protective mechanism of CoxB to
suppress the Mn dissolution and generation of microcracks of the MnHCF cathode. (c) The cycling stability of several electrodes at 1C.114

Copyright 2023, Wiley-VCH. (d) N2 adsorption–desorption isotherms of Fe-PB and Fe-PB@PTCA. (e) Charge/discharge profiles of Fe-PB@PTCA
at 100 mA g−1. (f) Long cycle performance of two samples at 1 A g−1.150 Copyright 2024, Wiley-VCH.

13614 | Chem. Sci., 2025, 16, 13594–13628 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 (a) Schematic illustrating the preparation of core–shell NNiFCN/NFFCN. (b) AFM topography images, phase images, and stiffness
tomography images of NFFCN-0.002MNiCl2 and NFFCN-0.005MNiCl2 (from up to down). (c) Electrostatic potential of NFFCN before and after
Na+ intercalation.116 Copyright 2021, Springer Nature. (d) Schematic illustration of the synthesis process of the PBM@PBN sample. (e)
Measurement of Mn dissolution in the electrolyte after a long-term cycle. (f) Cycling performance of PBM@PBN and PBM at 1C.117 Copyright
2021, Elsevier.
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a structurally stable outer surface, which contributes to the
construction of a stable EEI and thus improves cathode
stability. Cheng et al.152 prepared high-performance sodium
manganese hexacyanoferrate (MnFe-PB) coated with sodium
copper hexacyanoferrate (CuFe-PB) (MnFe-PB@CuFe-PB) by the
ion exchange method through the introduction of Cu element,
which is a low-cost raw material and environmentally friendly.
The CuFe-PB coating improved the structural stability of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
material, inhibited the dissolution of Mn, and had a very good
protective effect on the material. Meanwhile, XRD and XPS
conrmed that the CuFe-PB coating did not change the struc-
ture and elements of MnFe-PB. Sun et al.116 synthesized a core–
shell structure of nickel hexacyanoferrate (NNiFCN) coated with
iron hexacyanoferrate (NFFCN) (NNiFCN/NFFCN) using an in
situ solvent-thermal method (Fig. 14a). Multifrequency atomic
force microscopy (MAFM) proves that when using NNiFCN as
Chem. Sci., 2025, 16, 13594–13628 | 13615
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the outer shell, stress is generated in the NFFCN core (Fig. 14b).
Meanwhile, the DFT calculation results indicate that a built-in
electric eld is induced in the NNiFCN/NFFCN framework,
which facilitates Na+ diffusion and leads to a higher Na+ diffu-
sion coefficient (Fig. 14c).

In addition, Feng et al.117 synthesized sodium manganese
hexacyanoferrate coated by sodium nickel hexacyanoferrate
(PBM@PBN) electrodes by solution precipitation and in situ ion
exchange (Fig. 14d). Inductively coupled plasma mass spec-
trometry analysis demonstrates that the PBN coating effectively
suppresses Mn ion dissolution, thereby enhancing the cycling
stability of the material. As a result, the PBM@PBN composite
exhibits outstanding cycling performance, maintaining 74.3%
capacity retention aer 800 cycles at 1C rate, as evidenced in
Fig. 14e and f.
5.3 Electrolyte additive

In SIBs, the electrode–electrolyte interface (EEI) plays a crucial
role in the stability of the electrode material and the diffusion of
Na+.153,154 An unstable EEI implies an increase in harmful side
reactions, structural damage aer cycling, and dissolution of
transition metal ions during cycling. Electrolyte additives are
a simple, efficient and economical means of improving inter-
facial stability. During battery cycling, the additives are able to
preferentially undergo oxidation reactions, based on which in
situ modication of the electrode surface is achieved.155,156 By
rationally adjusting the type and concentration of electrolyte
additives, it is possible to construct a CEI on the surface of PBAs
that meets the specic needs, or replace the easily dissolved
excess TM with a more stable TM, thus enhancing the electro-
chemical performance of the battery. Additionally, most prac-
tical applications of PBA-based SIBs employ low-cost carbonate-
based electrolytes. However, these electrolytes suffer from poor
thermal stability and high ammability, posing signicant
safety risks under extreme conditions such as thermal shock,
overcharging, and short circuits.157,158 To alleviate these issues,
various non-ammable electrolyte additives have been
designed. Non-ammable electrolyte additives function
through dual mechanisms. They release phosphorus/halogen
radicals to quench reactive oxygen species in combustion chain
reactions. Simultaneously, thermal decomposition generates
dense carbonized layers that isolate oxygen and suppress elec-
trolyte vaporization. This combined action effectively mitigates
the exothermic reactions driving battery thermal runaway.159

Liu et al.118 prepared a base electrolyte (G2) by dissolving
a stoichiometric amount of NaPF6 in diethylene glycol dimethyl
ether (DEGDME) solvent with a xed molar concentration of 1.0
M. Subsequently, a stable EEI was engineered through the
incorporation of sodium diuorooxalato borate (NaDFOB) as
a functional additive into the G2 electrolyte system. NaDFOB
preferentially oxidized and strengthened the CEI layer at the
cathode, preventing the oxidative decomposition of the elec-
trolyte and dissolution of the TM, and preserving the stability of
the material. The electrochemical performance of a self-
assembled FeMnHCF‖hard carbon (HC) 18650 cylindrical
battery was evaluated in the G2+NaDFOB electrolyte. The results
13616 | Chem. Sci., 2025, 16, 13594–13628
revealed that the initial coulombic efficiency (ICE) reached
85.4% with the NaDFOB additive, representing a signicant
improvement compared to the 70.9% ICE observed in pure G2
electrolyte. This enhancement demonstrates that NaDFOB
effectively suppresses the oxidative decomposition of the
solvent, thereby improving the initial charging efficiency of the
battery system, as illustrated in Fig. 15a. By observing the HC
anode surface through ex situ computed tomography (CT), no
additional substances were observed during the charging
process of the G2+NaDFOB electrolyte, indicating that NaDFOB
plays a key role in stabilizing the EEI and suppressing contin-
uous sodium precipitation (Fig. 15b). Meanwhile, due to the
stable CEI layer and the inhibition of the dissolution of TM, the
battery has good cycling stability (89.3% capacity retention aer
100 cycles) (Fig. 15c). In addition, Kuang et al.119 investigated
the effect of the sulfur-containing additive sulfolane (SL) on the
EEI. DFT calculations showed that SL has a higher highest
occupied molecular orbital (HOMO, −7.79 eV) and a lower
lowest unoccupied molecular orbital (LUMO, 0.42 eV) than the
commonly used carbonate solvents, suggesting the preferential
decomposition of SL to form the sulfur-containing EEI
(Fig. 15d). TEM and XPS demonstrated that the addition of SL
on the one hand enabled the PB to indicate the generation of
a thin and homogeneous CEI aer cycling, and on the other
hand inhibited electrolyte decomposition and structural
deformation of the PB (Fig. 15e and f).

Besides, Liang et al.23 inhibited the dissolution of Mn during
cycling by introducing sodium ferrocyanide (Na4Fe(CN)6) as an
electrolyte additive. This was mainly attributed to the fact that
Fe(CN)6

4− in Na4Fe(CN)6 can encapsulate on the surface of
NaFeMnF particles, trapping migrated Mn in situ. Cycled EDS
revealed that the addition of Na4Fe(CN)6 resulted in almost
unchanged Mn content in the PB, whereas Mn in the blank
electrolyte was signicantly reduced. The cycling stability of the
battery was signicantly improved by the addition of Na4-
Fe(CN)6 (the capacity retention aer 600 cycles was signicantly
increased from 54.6% to 95.6%). Yang et al.160 developed a non-
ammable sodium-ion battery electrolyte based on triethyl
phosphate (TEP) by incorporating 5 wt% vinylene carbonate
(VC) and regulating ion–dipole interactions. In Prussian
blue‖hard carbon pouch cells, this electrolyte demonstrated
exceptional performance (96% capacity retention aer 50 cycles
at 50 mA g−1 with energy densities reaching 221.7 W h kg−1).
Additionally, it exhibited superior safety characteristics,
including a high ash point (141 °C) and self-extinguishing
behavior.

Overall, the interfacial modulation of PBAs plays a crucial
role in their electrochemical and safety performance enhance-
ment. A good EEI implies a stable interface, fewer side reac-
tions, and almost no dissolution of TM, which implies an
improvement in the cycling stability performance of the battery.
5.4 Co-regulation of the bulk and interface

The PBAs aer bulk phase regulation have a good crystal
structure and sufficient sodium storage sites, which enable Na+

to migrate smoothly within the bulk phase. The optimized
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 (a) Charge and discharge profiles (inset: a digital photo of self-assembled FeMnHCF‖HC 18650 cylindrical batteries). (b) Overall
reconstruction of 18650 cylindrical batteries in the G2+NaDFOB electrolyte scanned by X-ray CT (accelerating voltage 150 kV) and cross-
sections of jelly roll during the charge and discharge process (C: charge, CC: charge completed, D: discharge, DC: discharge completed). (c)
Cycling stability with G2 and G2+NaDFOB electrolyte.118 Copyright 2024, Wiley-VCH. (d) HOMO and LUMO energy levels of NaPF6 salts,
commonly used solvents/additives, and SL. (e) TEM images of cycled PB in a commercial ester-based electrolyte with added SL. (f) Atomic ratio of
CEI on the PB surface after 100 cycles.119 Copyright 2024, American Chemical Society.

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2025, 16, 13594–13628 | 13617
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Fig. 16 (a) SEM and EDS of HQ-MnCoNi-PB. (b) Schematic crystal structure of the PB framework (the blue, orange, green, red and pink spheres
respectively represent occupied sites of FeLS, C, N, Na and FeHS including partial doping of MnHS, CoHS and NiHS, as well as the purple pyramid
exhibiting octahedral configurations of FeLS and FeHS). (c) Schematic diagram of bare Na+ and hydrated Na+ migration in the HQ-MnCoNi-PB
cathode. (d) Cycling performance of HQ-MnCoNi-PB with and without 1 wt% AlCl3 electrolyte additive at 1C.161 Copyright 2019, Elsevier. (e) N2

adsorption–desorption isotherms of samples. (f) Pore size distribution curves of samples. The inset in panel (f) is the corresponding enlarged
view. (g) Na+ diffusion coefficients during the discharge process obtained from the GITT curves.162 Copyright 2022, American Chemical Society.
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interface environment, achieved through interface control
engineering, facilitates rapid Na+ transport across the EEI
during both charge and discharge processes, while simulta-
neously minimizing interfacial side reactions. By regulating
both the bulk phase and the interface of PBAs at the same time,
the advantages of both can be brought into full play, and PBAs
with high efficiency of Na+ transport and storage can be ob-
tained. Xie et al.161 obtained HQ-MnCoNi-PB by using Mn, Co,
Ni co-doping assisted by citric acid and the Lewis acid AlCl3 as
an electrolyte additive. EDS conrms the successful introduc-
tion of Mn, Co, and Ni (Fig. 16a). The doping of TMs regulated
the lattice expansion, balanced the internal stresses, and
stabilized the lattice framework (Fig. 16b). The Lewis acid AlCl3
on the other hand, can capture the ligand water in situ and form
13618 | Chem. Sci., 2025, 16, 13594–13628
a protective layer of Al2O3$3H2O on the cathode (Fig. 16c). Aer
synergistic modulation, the cycling stability of the composites
was enhanced (81.8% retention aer 500 cycles) (Fig. 16d).
Chen et al.162 prepared a Cu-modied Fe-PB composite (FeCu-
PB@CuO) by modulating the crystal structure of Fe-PB through
Cu doping and introducing a CuO coating for surface engi-
neering. N2 adsorption desorption isotherms indicate that the
CuO coating increases the specic surface area (Fig. 16e).
Calculation by the Barrett–Joyner–Halenda method shows that
FeCu-PB@CuO has more mesopores, causing more Na+ migra-
tion pathways (Fig. 16f). GITT proves the improvement of Na+

diffusion coefficient (Fig. 16g). The initial capacity of FeCu-
PB@CuO reached 123.5 mA h g−1 at 0.1 A g−1 and remained
at 108.7 mA h g−1 aer 200 cycles, and the capacity was
© 2025 The Author(s). Published by the Royal Society of Chemistry
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59.1 mA h g−1 aer 1500 cycles at 2 A g−1. Xu et al.163 prepared
FeMnCu Co-doped PB by a double iron source coprecipitation
method, and coated it with the conductive polymer polyaniline
(PANI) to form the core–shell structure FeMnCu@PANI. As the
cathode material of SIBs, the electrochemical performance of
the material is signicantly improved. A two-pronged approach
that combines the strengths of both regulations might be
a promising approach to the challenges of PBA commerciali-
zation (Table 2).

6 Summary and outlook

Low-cost SIBs have come into prominence today with the focus
on carbon neutrality and new energy development. As a prom-
ising cathode material among SIBs, PBAs show signicant
development potential due to their tunable structure, simple
synthesis and low cost. This paper reviews the structure (crystal
structure and phase structure), morphology and reaction
mechanism of PBA materials. It then analyzed the current
challenges to the commercialization of PBAs. These challenges
include: crystal water and crystal defects, side reactions and
thermal runaway, transition metal dissolution and structural
collapse, as well as limitations in both energy density and power
density. To address the above issues, the mainstream and low-
cost modulation methods that can be practically applied to
industrialization are reviewed, including bulk phase regulation,
interface regulation and co-regulation of the bulk and interface.
Bulk phase regulation is a critical strategy for enhancing the
electrochemical performance of PBAs, addressing challenges
such as low specic capacity, poor cycling stability, and low
operating voltage through precise control of crystal structure,
electronic properties, and ion transport kinetics. Through ion
doping, it exerts precise control over the crystal structure of
PBAs. Additionally, by regulating synthesis conditions, such as
temperature and reaction rate, it can effectively reduce crystal
defects and optimize crystallinity. These improvements
enhance electronic conductivity and ion migration capability.
Consequently, it substantially increases specic capacity,
notably improves cycling stability, and signicant boosts rate
performance. Interface regulation also plays a pivotal role in
enhancing battery performance by mitigating side reactions,
optimizing CEI lm formation, and inhibiting surface metal ion
dissolution. Firstly, through precise interface engineering,
undesirable side reactions can be effectively suppressed,
leading to signicant improvements in both cycling stability
and safety. Secondly, interface modication facilitates the
controlled formation of a stable and uniform CEI layer, which
not only minimizes interfacial resistance but also promotes
efficient ion transport, thereby enhancing rate capability and
capacity retention. Furthermore, a well-designed interface
effectively prevents the dissolution of metal ions from the
cathode surface, reducing the loss of active materials and
extending the overall lifespan of the battery. Co-regulation of
the bulk and interface optimizes the crystal structure and
interface environment of PBAs through the combination of two
regulation methods, achieving better comprehensive perfor-
mance. This regulatory approach is receiving increasing
13620 | Chem. Sci., 2025, 16, 13594–13628
attention and is expected to play an important role in the
industrialization process of PBAs.

Although the current research on PBAs has made some
progress, there are still some challenges for their large-scale
industrialization. Future prospects for the development of PBAs
in energy storage are as follows:

6.1 Exploration of the intrinsic mechanism of PBAs

In the eld of SIBs, PBAs have many unclear mechanisms, such
as the details of sodium storage mechanisms, the specic
coordination environment of Na+ in the lattice and its impact
on sodium storage performance. It is unclear whether the
mechanism of high-temperature calcination activation of low-
spin Fe under nitrogen is universal in the reaction process of
low-spin Fe, and whether its redox activity, spin state, and other
changes in long-term cycling are clear. At the bulk phase level,
further exploration is needed for the specic mechanisms and
dynamic changes of different forms of crystal water, as well as
the formation mechanisms, distribution patterns, and regula-
tion methods of vacancies. As for the electrode interface, the
mechanism of side reactions, as well as the formation process
and growth mechanism of CEI lms, require further study. At
the same time, the specic mechanism of capacitance attenu-
ation under high current density and the mechanism of
performance optimization strategies such as surface coatings
and composite materials urgently need further research.

6.2 Exploration of large-scale and low-cost synthesis and
coating processes

The low cost of raw materials and simple preparation are the
key reasons why PBAs stand out among mainstream cathode
materials. In future development, scaling up production while
ensuring low cost is crucial. Developing green synthesis tech-
nology, simplifying the synthesis process (e.g., washing-free
mechanochemical method) and exploring the use of renewable
resources (e.g., waste recycling) as a source of raw materials are
all elements that need to be explored, as shown in Fig. 17. At the
same time, innovative coating processes such as dry coating
should be actively explored, as their solvent-free processing
characteristics can effectively avoid the pollution risks of
traditional wet processes, while reducing equipment complexity
and improving manufacturing efficiency.

6.3 Responding to extreme conditions in practical
applications

In practical battery applications, various extreme operational
conditions must be considered. Low temperature will increase
the viscosity of the electrolyte inside the battery, reducing the
rate of ionic conduction; high temperature will accelerate the
rate of chemical reaction inside the battery, so that the battery
generates a lot of heat; undulating steep slopes require the
battery to have a strong power output stability and durability.
Stable operation under such extreme conditions will be the
distinguishing feature of PBAs compared to other materials
(Fig. 17). In this regard, it is necessary to pay attention to the
thermal stability of the material and explore suitable
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 17 Future prospects for the commercialization process of PBAs.
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electrolytes to improve the interfacial stability. Improvements
in rate performance can also be achieved by optimizing particle
size, morphology and electrode conguration (e.g., thin lm
electrodes).
6.4 Combining theoretical calculations with advanced
characterization techniques

In the process of exploring the intrinsic mechanism of PBAs and
designing suitable optimization methods, theory and practice
can be combined. At the same time, advanced characterization
techniques can be used to realize the detailed analysis of PBAs.
As shown in Fig. 17, DFT calculations can be used to predict the
migration paths and active sites of Na+ in PBAs, guiding the
optimization of material structural design and establishing
more accurate theoretical models by combining with experi-
mental data. In situ XRD and in situ TEM can monitor changes
in the material's crystal structure during charging and dis-
charging in real time, revealing the reaction mechanism. And
neutron scattering can be used to further investigate the specic
embedding locations and channels of Na+. In the future, it can
also be combined with multi-scale characterization techniques
to systematically study the performance of the materials and
provide theoretical and experimental basis.
6.5 Combination of laboratory and production line

It is crucial to match the performance indicators of materials
with industrial requirements. In the absence of practical
application, the true value of materials science research
through studying materials cannot be realized. Researchers
should not only be able to apply advanced equipment to analyze
materials, but also focus on the production line information,
such as the median particle size of the material, porosity,
compaction density and vibration density, surface density and
so on. By integrating both laboratory data and production line
© 2025 The Author(s). Published by the Royal Society of Chemistry
information, the research results of materials science can be
effectively transformed into marketable products.

6.6 Articial intelligence-driven PBA material engineering

The development of PBAs could be revolutionized through the
integration of articial intelligence (AI) and high-throughput
computational screening. Machine learning models trained on
quantum chemistry datasets can predict formation energies,
Na+ migration barriers, and interface stability with unprece-
dented efficiency. This predictive capability accelerates the
discovery of novel doping elements and electrolyte additives.
Additionally, generative adversarial networks (GANs) enable
inverse design of PBAs with tailored vacancy distributions and
controlled water content. Combined with AI driven autonomous
laboratory design experiments to optimize synthesis parame-
ters, non-traditional preparation pathways beyond traditional
chemical intuition may be discovered.

In the past, solely regulating the bulk phase or interface of
PBAs oen addressed only one issue, thereby limiting their
broader commercial applications. Recent studies have inte-
grated bulk phase and interface regulation, showing enhanced
electrochemical performance. Future research is expected to
demonstrate that the joint regulation of the bulk phase and
interface will likely play a signicant synergistic role. This
review provides valuable insights and strategic guidelines for
the rational design of high-performance PBA cathodes toward
practical implementation. With continued research efforts and
technological advancements, PBAs are anticipated to realize
their full potential as promising candidates for next-generation
energy storage and conversion systems.
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