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eaction simulations beyond DFT

Yuxinxin Chen ac and Pavlo O. Dral *abc

Density functional theory (DFT) is the workhorse of reaction simulations, but it often suffers from either

prohibitive cost or insufficient accuracy. In this work, we report AIQM2—the universal AI-enhanced QM

method 2—as the first method that enables fast and accurate large-scale organic reaction simulations

for practically relevant system sizes and time scales beyond what is possible with DFT. This breakthrough

is based on the high speed of AIQM2, which is orders of magnitude faster than common DFT, while its

accuracy in reaction energies, transition state optimizations, and barrier heights is at least at the level of

DFT and often approaches the gold-standard coupled cluster accuracy. AIQM2 can be used out of the

box without any further retraining. Compared to pure machine learning potentials, AIQM2 possesses

high transferability and robustness in simulations without catastrophic breakdowns. We showcase the

superiority of AIQM2 compared to traditional DFT by performing an extensive reaction dynamics study

overnight and revising the mechanism and product distribution reported in the previous investigation of

the bifurcating pericyclic reaction.
Introduction

Reaction simulations provide atomistic-level information on
the efficiency and mechanism of chemical transformations,
guiding both experimental reaction design and in silico reaction
planning. The common tools to simulate reactions are based on
the concept of the potential energy surface (PES).1 Critical static
points along the reaction pathway on the PES, such as minima
(reactants, products, intermediates) and rst-order saddle
points (transition states, TS), can be used to derive kinetics and
thermochemical properties. The key challenge is that to ensure
high simulation accuracy, the PES ideally must be evaluated
with chemical accuracy (1 kcal mol−1 error in energies), because
the reaction rate depends exponentially on the Gibbs energy of
activation according to the Eyring equation. Similarly, the
product distribution under thermodynamic control strongly
depends on the difference in the products' Gibbs free energies.

Minor changes to the shape of the PES, including the loca-
tions of critical points, can have large effects on reaction
mechanisms and pathways,2 e.g., synchronous and step-wise
mechanisms in the widely explored Diels–Alder reactions3 and
ambimodal TSs in bifurcating reactions.4 To gain deeper insight
into the conformational changes and energy ow during
chemical transformations, the reaction dynamics must be
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investigated, where bonds breaking and formation are directly
simulated by performing molecular dynamics (MD) trajectory
propagations.5 One example is post-TS MD, which provides
branching ratios and energy partitioning for reactions with
diverging product channels—cases in which traditional Eyring's
TS theory fails.6 While performing MD calculations is highly
desirable for modeling reactions, an ensemble of reactive
trajectories is usually required to obtain statistically robust and
converged results, thus requiring computationally efficient
methods for obtaining PESs.

Thus, the fast generation of well-shaped PES in the reactive
region is required, which is a tall order for traditional quantum
mechanical (QM) methods (Fig. 1a), because, generally, less
expensive calculations are less accurate. For example, methods
that achieve chemical accuracy on barrier heights—e.g.,
coupled-cluster methods and beyond,7 and double hybrid
functionals with large basis sets8—may not be feasible for large
systems and TS structure optimizations. The only practical
solution widely adopted by the community is the combination
schemes. In these schemes, cheaper and less accurate QM
methods, such as commonly employed density functional
theory (DFT) with relatively small basis sets or even semi-
empirical QM methods, are used to obtain the geometries and
frequencies of TS and minima. More expensive methods, such
as the gold-standard CCSD(T),9 are then used to calculate the
single-point energies on these geometries. These combination
schemes are, obviously, approximations assuming that the
geometry does not change much between the levels of theory,
which is not necessarily true.10

The problem of high computational cost is particularly
pertinent in reaction dynamics simulations, where one oen
must sacrice the number of trajectories and, hence, the quality
Chem. Sci.
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Fig. 1 Selected types of methods used for simulating organic reactions. (a) Traditional QM methods exemplified by semi-empirical QM, density
functional theory (DFT), the gold-standard CCSD(T), and universal (machine learning) interatomic potentials (UIPs)—each with its strengths and
weaknesses. (b) AIQM2 proposed in this work eliminates the above weaknesses through careful design. (c) Various applications of AIQM2 in
reaction simulations such as transition state (TS) optimization, reactive dynamics, and the accurate and fast calculation of reaction barriers.
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of the statistical analysis. Indeed, most reported studies prop-
agated too few trajectories, leading to statistically unreliable
product ratios,11 although, in these studies, accuracy has
already been sacriced by using relatively cheap DFT methods.

The rise of machine learning (ML) promises to speed up
reaction simulations by directly predicting key properties, such
as reaction outcome,12 yields,13–16 barrier heights,17–27 rate
constants,28,29 as well as TS geometry.30–37 However, ideally, we
would like to use the ML models as surrogate models to
describe PES at the QM level. This would allow us to obtain
similar levels of insight and to use existing, mature techniques
for reaction simulations and analysis. Such models are popular
ML interatomic potentials (MLIPs), where either an accurate
description of the system-specic PES is established or
universal interatomic potentials (UIPs) are constructed in the
hope of covering the target chemical space.38

The construction of the system-specic MLIPs requires
considerable effort because it requires careful selection of the
training points on the PES and resource-intensive calculations
with high-level reference QM methods.39 Aer all this work,
these potentials cannot easily be reused for similar systems, and
additional effort is needed to extend their applicability. A highly
desirable alternative is UIPs, which promise to remove the need
for repeated retraining while maintaining adequate accuracy for
molecules outside the training set.

In principle, UIPs are pre-trained MLIP models, but con-
structing UIPs is much more challenging than training
a system-specic MLIP because it requires an ML model with
good transferability capabilities, large and representative data-
sets covering the chemical space of interest, as well as training
Chem. Sci.
and validation strategies ensuring good generalizing ability of
the model, etc. Another important consideration in UIPs is the
quality of the reference data. Most state-of-the-art (SOTA) UIPs
target the DFT level because most of the available data are at the
DFT level with relatively small basis sets.40–46 Hence, such
potentials are bound not just to fail to achieve chemical accu-
racy in most cases but also to be inferior even to the reference
DFT level they were trained on.

Only a few UIPs have gone beyond the DFT level and targeted
the gold-standard coupled cluster level: AIQM1 (ref. 47) and
ANI-1ccx48 are the rst and only successful examples. AIQM1 is
generally more transferable and robust than ANI-1ccx because
AIQM1 is based on a D-learning49 approach, where MLIP is used
only to correct the difference between the target (coupled
cluster) and baseline (semi-empirical) QM levels, while ANI-1ccx
is a pure MLIP model directly trained on the target coupled-
cluster level. One of the major disadvantages of AIQM1 is its
limitation to CHNO elements, which can be mitigated by using
an extrapolative ONIOM approach,50 where AIQM1 is used for
the major core region of the atomistic system, while lower-level
methods such as ANI-2x51 and/or GFN2-xTB52 are used for the
remaining parts containing other elements.

Both AIQM1 and ANI-1ccx generally achieve chemical accu-
racy within the scope of the training data, but we found that
they have subpar performance in describing reaction barriers.53

Hence, until now, no theoretical method has been reported that
can be used for organic reaction simulations—including tran-
sition state search, barrier height calculations, and reactive
dynamics—with the robustness and transferability of DFT
approaches, while being orders of magnitude faster.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Here, we introduce AIQM2, the second-generation general-
purpose AI-enhanced quantum mechanical method, which
approaches gold-standard coupled-cluster level accuracy at the
cost of semi-empirical methods—i.e., beyond those of typical
DFT approaches (Fig. 1b). As we show in this work, AIQM2
consistently improves upon its predecessor AIQM1 and the
related universal ANI-1ccx method, especially for transition
state optimizations and barrier heights. It also outperforms
hybrid and double-hybrid DFT methods with a common
double-z-quality basis set in reaction energies of large systems
and some non-covalent interactions. In contrast to DFT, AIQM2
provides uncertainty estimates for its predictions, increasing
the trustworthiness of the simulations with this method (Fig. 1b
and c).

To showcase the efficiency and robustness of AIQM2, we
propagated thousands of high-quality trajectories for a bifur-
cating pericyclic reaction in parallel on 16 CPUs within one day
and obtained the product distribution at nearly coupled-cluster
level accuracy. This way we effectively revise the original, much
more expensive and less accurate, DFT results. AIQM2 is
publicly available in our open-source soware MLatom54 at
https://github.com/dralgroup/mlatom.

To facilitate progress in ML-assisted computational chem-
istry, we have included the methods introduced in this work
into the library of Universal and Updatable AI-enhanced QM
foundational models (UAIQM).55 It is an umbrella platform that
collects various models in a coherent library, enabling the
automatic choice of the model according to the user's needs
and, if required, the improvement of the models. UAIQM hosts
both published (e.g., AIQM1 and ANI-1ccx) and unpublished
(e.g., AIQM2, when this work was submitted) models so that the
latest developments can be made accessible to the public
timely.
Results and discussion
AIQM2 design

AIQM2 follows the same principle of D-learning49 as in AIQM1
by applying neural network corrections to the baseline semi-
empirical QM method for higher accuracy at a lower cost. We
have chosen GFN2-xTB52 as the baseline of AIQM2 due to its
robustness and broad applicability in reaction exploration.56 In
this regard, the change of baseline makes AIQM1 and AIQM2
two distinct methods, both in terms of composition and
application preference. An explicit dispersion correction is
added, because neither semi-empirical QM nor local neural
network models can properly describe the long-range non-
covalent interactions on their own.

Specically, AIQM2 consists of 3 parts (Fig. 1b): the semi-
empirical baseline GFN2-xTB* (asterisk indicates the special
version of GFN2-xTB with D4 dispersion corrections57 removed),
the correction predicted by the ensemble of 8 ANI neural
networks,58 and the D4 dispersion correction (for the uB97X59

functional). Thus, the energy predicted by AIQM2 can be
formulated as:

EAIQM2 = EGFN2-xTB* + ENN + ED4(uB97X), (1)
© 2025 The Author(s). Published by the Royal Society of Chemistry
and energy derivative properties are the sum of each term's
derivatives. Note that the Hessians provided by GFN2-xTB* and
D4 are calculated by numerical differentiation on analytical
gradients, while neural networks provide analytical Hessians;
the nal Hessian is the sum of these three Hessians. Other
electronic structure properties, such as partial charges and
dipole moments, are inherited from the baseline GFN2-xTB*
calculations.

Several modications were made to the original architecture
used in ANI-1x and ANI-1ccx. The activation function was
changed from CELU (Continuously Differentiable Exponential
Linear Units) to GELU (Gaussian Error Linear Unit), which has
been shown to provide better performance for higher-order
energy derivatives.60 The angular cutoff in the atomic environ-
ment vector (AEV) was increased from 3.5 Å to 4.0 Å for a better
description of long-range interactions during training and
inference.47

In terms of the training data, the ANI model corrections were
trained on the data derived from the ANI-1ccx and ANI-1x
datasets.61 They were generated using an extrapolated coupled
cluster method termed CCSD(T)*/CBS61 and a popular DFT
method uB97X59/def2-TZVPP,62 respectively. The asterisk in
CCSD(T)* refers to the estimated TightPNO accuracy of DLPNO-
CCSD(T)63 and the complete basis set extrapolation uses the
formula by Halkier64 and Helgaker.65 Details about CCSD(T)*/
CBS can be found in ref. 61. GFN2-xTB* data was generated for
all the data points in both datasets and subtracted from the
reference level to get the D-values49 for training. The models
were rst trained on the differences in energies and forces
between uB97X59/def2-TZVPP62 and GFN2-xTB*. This led to the
AIQM2@DFT* approach approximating the uB97X/def2-TZVPP
level. To approximate the uB97X-D4/def2-TZVPP level with
explicit dispersion corrections, we can add the D4 corrections
for the uB97X functional, yielding the AIQM2@DFT method.
The nal models in AIQM2 were obtained by transfer learning
on the energy difference between CCSD(T)*/CBS and GFN2-
xTB*.61 The D4 corrections for the uB97X functional were
removed from the reference CCSD(T)*/CBS. Removing the D4
corrections during training was necessary because we added the
explicit D4 corrections for the uB97X functional back to the
model when making predictions. In transfer learning, the rst
and the third layers were xed as in ANI-1ccx and AIQM1, which
effectively reduced the number of parameters for training and
prevented overtting to a smaller high-level dataset.

An advantage of AIQM2 is also that it provides uncertainty
estimates of its predictions, in contrast to DFT approaches. The
uncertainty of the calculation is dened as the standard devia-
tion of the ANI models in the ensemble as is done for both
AIQM1 and ANI-1ccx.66 We can interpret uncertainty as how
different a new system, for which we want to make predictions,
is from the molecules in the training set of AIQM2. The
uncertainties are reported in this work as the error bars of the
predictions, i.e., energy estimates from averaging ANI model
predictions ± standard deviation of the ANI models. The
uncertainty for reaction energies is calculated as the standard
deviation of the relative energies predicted by the ANI models.
We calibrated the uncertainty on the standard CHNO dataset as
Chem. Sci.
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done in the literature66 which yielded the threshold of
0.36 kcal mol−1, i.e., the prediction is deemed reliable if the
uncertainty is less than 0.36 kcal mol−1. From our previous tests
on AIQM1 and ANI-1ccx, we have numerical evidence that
highly uncertain predictions overall lead to bigger errors.66
Revision of the bifurcating pericyclic reaction

Here we demonstrate the power of AIQM2 by revising the earlier
state-of-the-art simulations67 of a paradigmatic pericyclic reac-
tion, by performing resource-intensive downhill molecular
dynamics (MD) simulations (Fig. 2). These simulations involve
thousands of quasi-classical trajectories from the region around
the ambimodal TS, leading to more than one product.

AIQM2 enables extensive explorations: overnight (100 CPU-
hours) on commodity hardware, we could propagate 1000
quasi-classical trajectories, each 500 fs long in both forward and
backward directions with 0.1 fs time step (in total, 10 million
single-point evaluations, see computational details). These
simulations on a smaller scale (only 117 reactive trajectories
with 1 fs time step) were performed earlier67 with a much
costlier DFT method B3LYP-D3/6-31G*, which would take 160
Fig. 2 Energy profile, transition state geometries, and quasi-classical tra
reaction energies in kcal mol−1 obtained with different methods. Energ
methods, except for CCSD(T)*/CBS energies evaluated on the B3LYP-D3
the relative energies given by AIQM2. (b) Critical bond lengths in angstr
rearrangement transition state is not found using GFN2-xTB and AIQM1, t
(a). (c) Distribution of 1000 quasi-classical trajectories starting from the
B3LYP-D3 – B3LYP-D3/6-31G*, CCSD(T)* – CCSD(T)*/CBS, TS-Ambi –

Chem. Sci.
CPU-years for a thousand trajectories with 0.1 fs time step. Even
with such extensive computational resources spent on DFT
calculations, the number of trajectories might still have been
insufficient to draw denite conclusions because of the low
precision and potential for missing rare events, as shown in
a recent analysis.68 AIQM2 simulations with 1000 trajectories,
hence, furnish much higher statistical certainty.

In addition to propagating ten times more trajectories, we
use the time step that is ten times smaller than in the original
DFT study.67 Our AIQM2 simulations with 0.1 fs lead to energy-
conservative dynamics, while we show that the 1 fs time step,
employed in the original study, leads to rather large violations
in energy conservation (Fig. 3b). The total energy uctuations in
1 fs time-step trajectories reach up to several kcal mol−1, which
might inuence the conclusions drawn in the original DFT
study. Indeed, our calculations with the same method, AIQM2,
show that, e.g., for an exemplary trajectory, product P2 is formed
9 fs later when the trajectory is propagated with 0.1 fs.

Most importantly, it is known69 that the quality of the
downhill dynamics is strongly inuenced by the accuracy of the
QM method. Here our AIQM2 approach also has a signicant
jectories of ambimodal reaction. (a) Comparison of barrier heights and
ies are reported on the geometries optimized with the corresponding
/6-31G*-optimized geometries. Values after ± are the uncertainties of
oms (Å) of transition states optimized by various methods. The Cope
hus not presented. The same color scheme is used for eachmethod as
ambimodal transition state (B3LYP product ratio is taken from ref. 67).
ambimodal TS, TS-Cope – Cope rearrangement TS.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Total energies and their standard deviations along quasi-classical trajectories propagated with 1 fs and 0.1 fs using AIQM2. 1 fs was used in
the original DFT study67 and is given here only for comparison; all results in this study are obtained with 0.1 fs time-step trajectories. (a)
Comparison of the standard deviation of total energies in kcal mol−1 on 1000 trajectories propagated with 1 and 0.1 fs. (b) Comparison of total
energy deviations with respect to themean value on representative trajectories for P1 and P2. Figures on the right side show the snapshots where
the products are first observed. Blue represents trajectories with the 1 fs time step, and orange represents those with the 0.1 fs time step. Time 0 fs
corresponds to the initial geometry near the transition state.
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advantage over B3LYP-D3/6-31G* as judged by the analysis of
the PES stationary points. The barrier height of ambimodal TS
at AIQM2 is almost the same as CCSD(T)*/CBS value. Note that
the CCSD(T)*/CBS values are derived from DFT optimized
geometries to avoid potential bias; we cannot compare to the
geometries at the CCSD(T)* level due to its cost and absence of
analytical energy derivatives. TS geometry optimized with
AIQM2 qualitatively resembles that at B3LYP-D3/6-31G* with
some noticeable differences in bond lengths. In comparison,
B3LYP-D3/6-31G* underestimates the barrier by around
© 2025 The Author(s). Published by the Royal Society of Chemistry
3 kcal mol−1. For the minima, the error between AIQM2 and
reference CCSD(T)*/CBS is within ca. 2 kcal mol−1, while both
B3LYP-D3 (ca. 10 kcal mol−1) and GFN2-xTB have huge errors
(more than 25 kcal mol−1) compared to the same reference.
Such large errors in B3LYP-D3 used in the previous study67

certainly inuence the quality of the downhill dynamics.
Having at our disposal (1) a more accurate method, (2) more

trajectories, and (3) better energy conservation, we turn to
analyzing the simulation results. AIQM2 results differ from the
DFT results in two major aspects. First, the product distribution
Chem. Sci.
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changed from 1 : 10 to 1 : 52, showing that the formation of P1
has a much smaller role than previously thought. Second, the
AIQM2 results show that the reaction proceeds via a dynami-
cally stepwise mechanism rather than a concerted mechanism,
as previously thought. The average time gap between the
formation of the rst and second bond is 205 fs for the major P2
product. The DFT study reported a 60 fs time gap. In AIQM2
trajectories leading to P2, the C3–C13 bond formation is
delayed, andmost of the C3–C13 bond lengths oscillate between
2.5 Å and 3 Å. This might potentially be caused by the PES
curvature shaped by the “neighboring” TS corresponding to the
Cope rearrangement connecting the competing products P2
and P1 (Fig. 2a and b). Once the rst C2–C15 bond is formed,
the formed adduct is hot and cannot immediately ‘decide’
which bond to form; eventually, the shorter C3–C13 bond is
formed most of the time because it is typically shorter in the
initial conditions. The role of the nearby TS is supported by the
observation that the Cope rearrangement's barrier height at
B3LYP-D3/6-31G* is much smaller than at AIQM2, which might
explain the difference in product ratio. We did not observe the
transformation of P2 to P1 in AIQM2 trajectories, as the barrier
is rather high (27.24 kcal mol−1) compared to the small barrier
at DFT (10.23 kcal mol−1).

Summarizing the analysis of the quasi-classical trajectories,
we revised the previous state-of-the-art.65 While we leave more
detailed explorations to future research, our dynamics study
showcased the power of the AIQM2 approach, which should be
considered instead of the common DFT methods when per-
forming such simulations.

Several additional remarks are due. The B3LYP-D3/6-31G*
calculations might have suffered from substantial basis-set
superposition error (BSSE), which might have been rather
large in TSs. An advantage of AIQM2 is that it was trained on the
CCSD(T)*/CBS-level data, which were generated using
a complete basis set (CBS) extrapolation scheme. By construc-
tion, CBS does not suffer from BSSE. AIQM2 can, therefore,
provide a more accurate description in cases where BSSE
becomes an issue for common approaches with the medium-
sized basis sets like in B3LYP-D3/6-31G*.

Obviously, among the zoo of DFT functionals, there is always
a high chance of nding a better functional than B3LYP/6-31G*.
Particularly, M06-2X is now commonly used in the pericyclic
reaction simulations because benchmarks showed its better
accuracy for such simulations. For this particular reaction, M06-
Table 1 Comparison of various methods on energy profiles of ambimo
trajectories with the 0.1 fs time step

CCSD(T)*/CBS//
B3LYP-D3/6-31G*

AIQM2//
AIQM2

Barrier (TS-Ambi) 19.1 19.0 � 1.7
Reaction energy (P1) −18.5 −16.4 � 2.5
Barrier (TS-Cope) 16.9 15.3 � 1.8
Reaction energy (P2) −13.3 −11.9 � 1.8
Time cost estimate
for 1000 trajectories

— 100 CPU-hours

Chem. Sci.
2X/6-31G* is more accurate than B3LYP-D3/6-31G* according to
our comparison with CCSD(T)*/CBS (Table 1) and achieves
similar accuracy to AIQM2. It does not help that M06-2X is even
slower than B3LYP-D3, which would strongly hamper the
extensive evaluation of many trajectories with small time steps.
AIQM2 also provides error bars, allowing users to at least get an
idea of how far the predictions might be from the target
CCSD(T)/CBS values, while none of the DFT approaches offer
such a handy feature.

Finally, our approach has another huge advantage over
common composite schemes, such as when semi-empirical
methods are used for pre-screening possible transition states
and calculating their ensembles, followed by renement with
the DFT methods. In our example of the pericyclic reaction,
AIQM2 could nd both the ambimodal and Cope rearrange-
ment TSs, while the popular semi-empirical GFN2-xTB failed to
locate the latter. In addition, GFN2-xTB has huge errors (more
than 25 kcal mol−1) for the minima too. It means that the
composite schemes relying on the semi-empirical methods are
likely missing key conformers and TSs. Our approach is a big
step forward in replacing the need for composite approaches by
providing an all-in-one solution for all steps of the workow
from geometry optimization and ensemble sampling, to
dynamics and ultimately reliable energetics.

Overall AIQM2 performance

It is imperative to judge the quality of universal models by
evaluating their performance on independent tests that are
closer to the real-world applications. We impose a strict
requirement on our new method to be applicable for perform-
ing molecular simulations with higher speed and with accuracy
at least comparable to, or better than, DFT. Hence, we evaluate
our newmethod on the GMTKN55 benchmark8 – a standard test
for DFT methods. This benchmark covers various sizes of
molecules and types of relative energies, which provides
a comprehensive evaluation of AIQM2 beyond reaction prop-
erties. The reference values in the GMTKN55 benchmark are
taken from high-level QM calculations which are expected to
have errors within 1 kcal mol−1 relative to experiment. Hence,
our evaluation will show the errors that might be expected when
compared to the experiment.

We compare the performance of AIQM2 to that of the DFT
methods commonly used in practice, i.e., B3LYP-D4/6-31G* and
uB97X-D4/def2-TZVPP; we also include a double-hybrid
dal reaction and the estimated CPU time required to propagate 1000

B3LYP-D3/6-31G*//
B3LYP-D3/6-31G*

M06-2X/6-31G*//
B3LYP-D3/6-31G*

M06-2X/6-31G*//
M06-2X/6-31G*

16.6 17.8 17.6
−7.0 −20.3 −19.7
16.6 15.5 15.4
−1.5 −14.2 −13.6
160 CPU-years — 200 CPU-years

© 2025 The Author(s). Published by the Royal Society of Chemistry
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functional representative DSD-BLYP-D4/6-31G*. As is shown in
Fig. 4, AIQM2 gives overall much better results than B3LYP-D4/
6-31G* and DSD-BLYP-D4/6-31G* in terms of WTMAD-2, which
is a weighted metric used to balance the different scales of
various reaction energies. Note that the double-hybrid func-
tional DSD-BLYP was recommended in the original GMTKN55
benchmark based on the evaluation with a much more expen-
sive def2-QZVP, which is rarely used in practice. We instead
choose the 6-31G* basis set for this functional from a practical
perspective as one of the most commonly used in DFT studies,
which is not intended for rigorous evaluation of the functional
itself. Compared with the hybrid functional uB97X with the
more expensive triple-z basis set, AIQM2 can achieve
Fig. 4 Performance assessment of AIQM2 compared to universal ML
a selection of QM methods on the GMTKN55 data. Results are shown fo
designed to target coupled cluster accuracy on such types of molecules.
subset so that green corresponds to the smallest and red – to the large
deviation-2 in kcal mol−1 as defined in ref. 8. Time is reported in CPU ho
follow the original GMTKN55 benchmark paper;8 note that our benchm
formed them with commonly used, smaller basis sets.

© 2025 The Author(s). Published by the Royal Society of Chemistry
comparable accuracy while maintaining the cost of a semi-
empirical method. Overall, AIQM2 offers an outstanding cost-
accuracy trade-off for predicting thermochemical, kinetic, and
noncovalent properties: it is signicantly faster than DFT
approaches while maintaining competitive accuracy.

Considering the performance in each category, AIQM2
exhibits the lowest WTMAD-2 value of 1.57 kcal mol−1 among
all tested methods for isomerization reaction energies of large
systems. This is partly due to the good extensibility of the ANI
neural network70 and the rich conformers presented in the
training data, as exemplied in the performance of ANI-1ccx on
the ISOL24 dataset. However, in cases where strong effects come
from atoms outside the cutoff, such as the conjugated system,
models ANI-1ccx and AIQM1 targeting coupled cluster accuracy and
r neutral, closed-shell CHNO-containing compounds, as AIQM2 was
Numbers are mean absolute errors in kcal mol−1, color-coded for each
st errors (green – the best). WTMAD-2 is the weighted mean absolute
urs. Notations and definitions of the reaction and interaction energies
arks for DFT methods differ from the original ones, because we per-

Chem. Sci.
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Fig. 5 Representative reactions in BHPERI and their transition state structures. For the first three reactions, the reference barrier heights are
approximated with the composite scheme to approach the CBS limit on the CCSD(T)/cc-pVTZ optimized geometries.71 The latter 3 reactions
adopted reference values from the BHPERI dataset of the GMTKN55 2017 version, i.e., barriers are calculated with W1–F12 and W2–F12 (ref. 72)
methods on geometries from the CBS-QB3 (ref. 73) protocol. Orange is used for reference barrier heights, and blue for AIQM2. Barrier heights of
AIQM2 are calculated using reference geometries to be consistent with the GMTKN55 benchmark. RMSD in Ångstrom shows the structural
difference between the reference and the AIQM2-optimized TS. The same color scheme is used when overlapping their structures.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/2

6/
20

25
 1

1:
51

:2
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the ANI neural network may not work properly. Thus, baseline
GFN2-xTB plays another important role in the robustness and
accuracy of AIQM2. For example, in the C60ISO dataset, GFN2-
xTB provides a good starting point for AIQM2 to approach mean
absolute error (MAE) as low as 3.18 kcal mol−1, considering the
average reaction energies in C60ISO are ca. 100 kcal mol−1. In
the generally problematic non-covalent interactions, AIQM2 can
even improve on some difficult cases for DFT, such as those in
the WATER27 dataset, due to the extensive representation of
water clusters in the training data, as known for the ANI-1ccx48

and AIQM1 (ref. 47) methods.
Performance of AIQM2 for transition states and barrier
heights

Another signicant improvement of AIQM2 over related
methods lies in its prediction of barrier heights. This presents
a big challenge for AIQM1 and ANI-1ccx, as shown in the
previous study,53 although they all target the CCSD(T)/CBS level.
Compared to AIQM1, the WTMAD-2 of AIQM2 decreased from
5.45 to 2.24 kcal mol−1 for the datasets benchmarking the
barrier heights (Fig. 4).

The most prominent change is in the BHPERI dataset, where
the overall MAE is the lowest among the tested methods. Thus,
we dive into the details of BHPERI and check whether AIQM2
can produce accurate geometries for TSs. Representative reac-
tions in BHPERI and the comparison of barrier heights and TS
geometries are shown in Fig. 5, which also demonstrates that
Chem. Sci.
the uncertainty of AIQM2 predictions is lower than that of the
less accurate AIQM1.53 All TS structures were successfully found
by AIQM2 and exhibited one imaginary frequency, with the
normal mode vibration corresponding to the correct reaction.

Unfortunately, we cannot evaluate the quality of the TS
geometry using the BHPERI dataset because it does not contain
accurate reference geometries (which were optimized at B3LYP/
6-31G* level). As a non-representative comparison, we report
only the root-mean-square deviations (RMSDs) of three AIQM2-
optimized TS structures relative to the CCSD(T)/cc-pVTZ
geometries reported in a more recent work71 (Fig. 5): the
Diels–Alder reaction starting from s-cis-butadiene and ethylene,
the electrocyclic ring-opening reaction starting from cyclo-
butene, and the sigmatropic rearrangement originating from
the E-isomer of 1,3-pentadiene. This recent work also reported
higher-level energetics achieved with hierarchical focal point
analyses (FPA), extrapolating to the ab initio limit. AIQM2 agrees
well with the reference TS structures, with the RMSDs less than
0.1 Å.
Conclusions and outlook

In this work, we report the second-generation general-purpose
AI-enhanced Quantum Mechanical Method (AIQM2). AIQM2
offers remarkable speed and accuracy for reaction simulations
by providing robust results for various applications out of the
box. The overall accuracy of AIQM2 is rivaling the established
DFT approaches, but the simulations are orders of magnitude
© 2025 The Author(s). Published by the Royal Society of Chemistry
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faster. As we show, this can be exploited for efficient TS opti-
mizations and extensive dynamics investigations of reaction
mechanisms.

We exploited AIQM2's excellent performance to li the
accuracy in the quasi-classical downhill molecular dynamics,
providing more statistically signicant results with trajectories
featuring energy conservation. This enabled us to obtain a new
chemical insight into a bifurcating pericyclic reaction previ-
ously studied with fewer, non-energy-conserving trajectories
obtained with a much slower and less accurate DFT approach.
We show that this reaction proceeds via a stepwise mechanism
rather than a concerted one, as previously believed. We also
revise the product distribution in this ambimodal reaction to
show that the minor product plays a much smaller role, which
we attribute to the proximity of another TS corresponding to the
Cope rearrangement, not described properly by B3LYP.

AIQM2 has an overall improved accuracy compared to its
predecessor AIQM1, particularly for TSs and barrier heights,
which are important for the quantum chemical reaction simu-
lations. AIQM2 already has a growing track record of successful
applications in real-world simulations beyond organic reac-
tions, due to its universality, high speed, and accuracy. This
method has been shown to provide outstanding IR spectra for
a broad range of chemical compounds.74 Recently, it has also
been used in the investigation of large systems, where AIQM2
enabled fast and accurate optimizations (e.g., within 90 minutes
on 32 GPUs for a 714-atom noncovalent complex), leading to
high-quality UV/vis spectra calculated on these optimized
geometries.75

All the power of AIQM2 is publicly available in MLatom at
https://github.com/dralgroup/mlatom under the permissive
MIT license, which lis any limitations on the reuse of the
method. The method is also included in the Aitomic
package76 and can be used to perform online calculations on
the Aitomistic Hub at https://aitomistic.xyz and XACS
platform at https://XACScloud.com, further enhancing its
availability.

Computational details

All calculations were performed with the MLatom program.54

The D4 dispersion corrections were calculated via MLatom's
interface to the dd4 program,77,78 the ANI contributions via the
interface to TorchANI,58 and the GFN2-xTB(*) calculations were
performed via the interface to the locally modied xtb
program.79 AIQM1 calculations require the ODM2* contribu-
tions which were calculated with the MNDO program80 inter-
faced to MLatom. MLatom was used for the B3LYP (VWN5) and
uB97X calculations via the interface to PySCF81–83 and DSD-
BLYP via the interface to Orca program.84,85 Additional
CCSD(T)*/CBS calculations were performed following the
methodology in ref. 61 using the open-source MLatom imple-
mentation,54 where the required energy components were
calculated via the interface to the Orca program.84,85

In the simulations of the bifurcating pericyclic reaction, we
followed the simulation setup and analysis protocol analogous
to those in the original study,67 i.e., initial conditions for quasi-
© 2025 The Author(s). Published by the Royal Society of Chemistry
classical trajectories were sampled from the harmonic quantum
Boltzmann distribution starting at the ambimodal transition
state, as implemented86 in MLatom.54 The trajectories were
started near the TS region and essentially led to “downhill”
dynamics to either products or reactants; forward and backward
trajectories were launched from the same initial conditions,
differing only in the sign of the initial velocities. Each set of
such forward and backward trajectories, starting with the same
initial conditions, yields a combined trajectory, where the time
steps in the backward trajectories are reversed. Reactive
trajectories were dened as those combined trajectories that
contain reactants and one of the products; nonreactive
combined trajectories contain either only reactants or only one
of the products.
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