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Modeling Potential Energy Surface by Force Fields for
Heterogeneous Catalysis: Classification, Applications, and
Challenges

Chenglong Qiu,? Tore Brinck ** and Jiacheng Wang *2

The concept of the potential energy surface (PES) in computational simulations is essential for studying material properties
and heterogeneous catalytic processes. However, constructing the PES using quantum mechanical methods is
computationally expensive and typically limited to small systems. Force field methods, which rely on quantum mechanical
data, use simple functional relationships to establish a mapping between system energy and atomic positions or charges.
Force field methods are more efficient for handling large-scale systems, such as catalyst structures, adsorption and diffusion
of reaction molecules, and heterogeneous catalytic processes. To further promote in-depth research in this field, this review
introduces the classification, development, and characteristics of various force field methods including: classical force fields,
reactive force fields, and machine learning force fields. It summarizes the forms, fitting methods, and distinct periods of
these force field methods. Additionally, these force field approaches are compared in terms of their applicability, accuracy,
efficiency, and fitting methods. Finally, the optimization and challenges of force field methods in constructing PES are
discussed. It is expected that this review will assist researchers in selecting and applying different force field methods more

effectively to promote the in-depth understanding of catalytic reaction mechanisms and the efficient design of catalysts.

1 Introduction

Computational simulation has emerged as a powerful tool for
investigating chemical reaction processes and the physical and
chemical properties of materials!'6. The potential energy surface
(PES), based on the assumption that electron and nuclear motions
can be separated, is a crucial concept in computational simulations,
representing the total energy of a system in a certain state’- 8. The
PES is widely applied in fields such as physics and chemistry,
particularly in their theoretical subfields. From a geometric
perspective, the energy landscape is the plot of the energy function
over the configuration space of system. It is used to explore
properties of atomic structures, such as determining the minimum
energy configuration of a molecule or calculating reaction rates® 10,
Additionally, in dynamic simulations based on Newton's laws, the
force F; exerted on each atom must be known at each time step for
numerical integration of the equations of motion?!. This force can be
derived from PES by using the relation F; = dE/0r;, where the force
is the negative gradient of the potential energy E with respect to the
atomic position ;. Forces are also used in geometric optimization to
identify the special structure of the system that corresponds to the
critical point on the PES'2 13, For instance, a saddle point represents
a transition state—the peak energy point along the reaction
coordinate, which determines the most energetically favorable path
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between reactants and products. The magnitude of the reaction
energy barrier can be calculated as the energy difference between
the saddle point and the two energy minima it connects. Therefore,
the PES is an essential tool for analyzing reaction processes and
predicting the system evolution. The primary challenge lies in
constructing the PES both efficiently and accurately.

Quantum mechanics (QM) and force field method are the primary
methods for constructing PES (Figure 1a). For smaller systems, PES
constructed by QM can accurately describe molecular properties,
crystal structures and microscopic reactions. Over recent years, QM-
based simulation methods have gained increasing popularity, partly
due to the development of some software packages that facilitate
the generation of PES. For example, periodic density functional
theory (DFT) codes such as VASP and CP2K are flexible for extended
systems, albeit requiring external automation or scripting for
reaction-path sampling% 1>, And codes such as Q-Chem and Gaussian
offer built-in tools for PES scans along reaction coordinates® 7, This
increased availability has proven particularly useful in material
design, where QM often serves as a theoretical guide and screening
tool'® 19, However, the computational cost inherent to QM-level
calculations severely limits the scalability of simulations2°, In QM, the
electronic structure and energy of a system are determined by
solving the Schrédinger equation (Figure 1b), with the analytical
solution applicable only to two-body systems, such as hydrogen
atoms. For multi-atom systems, several methods (e.g., semiempirical
wavefunction?!, density functional theory??, CCSD(T)?3) have been
developed to approximately solve the Schrodinger equation. Despite
these approximations, obtaining a precise numerical solution
remains computationally demanding task. For instance, CCSD(T), a
high-precision ab initio method for electron correlation, scales o< N7
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Figure 1 (a) Methods and applications for constructing potential energy surfaces using quantum mechanics and force field methods. (b)
Principles of calculating system energy using quantum mechanics and force field methods. In quantum mechanics, the electronic structure

and system energy are determined by solving the Schrédinger equation.

In the force field method, the system energy is a mapping of atomic

positions and charges. (c) Comparison of the accuracy and computational cost of various quantum mechanics and force field methods.

with the number of atoms N?*. Consequently, constructing a PES
using QM to model the dynamic evolution of large chemical systems
containing diverse molecules is impractical.

In contrast to QM, the force field method uses a simple functional
relationship to establish the mapping between the system’s energy
and the atomic positions and charges (Figure 1b). Compared to
solving the Schrédinger equation, calculating system energy using
the force field method is significantly less complex, allowing it to
handle large-scale systems (e.g., polymers, biomolecules, and
heterogeneous systems) more efficiently. The force field method
dates back to 19242°, when Jones proposed a molecular model
involving a repulsive force A,r™", and an attractive force A;73.
Building on this, the Lennard-Jones potential function was developed
to describe interactions between non-bonded atoms or molecules?®
27, With the advancement of computational simulations, increasingly
accurate forms of potential functions have been introduced. Based
on their forms and the types of systems they apply to, current force
fields are categorized into three types: classical force fields, reactive
force fields, and machine learning (ML) force fields. The construction
of a force field-based PES primarily relies on energy values calculated
from discrete geometric configurations by QM, followed by fitting a
PES using these discrete data points. Thus, the accuracy of the force
field method is influenced by the quality of the QM calculations.
Additionally, due to errors inherent in the fitting process, the force
field method cannot achieve the precision of QM (Figure 1c).
Consequently, force field methods often trade computational cost
for accuracy, enabling simulations of scales that are orders of
magnitude beyond the reach of QM.

Various types of force fields and their applications have been
extensively reviewed in the literatures. For examples, Wang et al.
summarized the application of different force field methods in

2| J. Name., 2012, 00, 1-3

mechanism  exploration and performance prediction of
electrocatalysis?®. Thomas and Han et al. provided an overview of the
development and application of the ReaxFF reactive force field3® 31,
Oliver et al. presented a detailed mathematical and conceptual
framework of ML force fields, along with their applications and the
chemical insights they offer?®. Additionally, Cheng et al. elaborated
on the principles and application of ML force fields, in conjunction
with global optimization algorithms, to identify in-situ active sites in
heterogeneous catalysis®?. However, most reviews focus on the
application of a single force field?® 30.33-38 and lack the comparison
of different force fields, particularly in terms of fitting methods and
their applicability to various systems3%-4l, Furthermore, the principle
and development of the PES constructed using force field methods
are also inadequately summarized. Therefore, a comprehensive
review is necessary. By summarizing the development trends of force
field methods and the characteristics of different force fields, it can
not only assist researchers in selecting the most suitable force fields
for specific applications, provide valuable theoretical guidance for
experimental work, but also foster innovation in new methods to
accelerate progress in this field.

To this end, this review systematically summarizes the
development and application of these three force field methods
(classical force fields, reactive force fields and ML force fields), and
compares them in terms of applicable systems, computational
accuracy and cost, fitting methods, and other relevant aspects. For
each force field, we discuss its general form in detail and outline the
corresponding parameterization strategies. Examples of various
applications are provided to illustrate the range of systems that can
be modelled with the respective force field. Finally, we discuss future
directions for improvements and potential challenges in constructing
PES using force field method.

This journal is © The Royal Society of Chemistry 20xx
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2 Classification and Comparison of Force Fields
(Classical Force Fields, Reactive Force Fields, and
Machine Learning Force Fields)

2.1 Introduction to Various Force Fields

According to the Born-Oppenheimer approximation, the energy of
a molecule can be expressed as a function of the spatial coordinates
of the individual atoms, each characterized by distinct atomic
properties or parameters’. 42, Consequently, a molecular force field
consists of two components: a functional form that describes the
interactions between atoms and the force field parameters specific
to each atom. Based on their function forms and applicable systems,
current force fields are categorized into three types: classical force
fields, reactive force fields and ML force fields.

The classical force fields calculate a system’s energy using
simplified interatomic potential functions. This approximation is
well-suited for modeling nonreactive interactions, such as bond
stretching and angle bending (represented by harmonic functions),
dispersion force (represented by the Lennard-Jones potential), and
electrostatic interactions (represented by atomic charges). Currently,
a variety of classical force fields with different simplified formulas
have been developed to suit for different types of molecular systems.
Classical force fields typically contain between 10 and 100
parameters, which often possess clear physical meanings and are
relatively easy to interpret (Table 1). However, due to the simplicity
of their formulas, such descriptions are inadequate for modeling
changes in atom connectivity such as bond breaking and formation
during reactions, which also lead to a reduction in calculation
accuracy. Despite this limitation, this method significantly
accelerates computations (Figure 1c). The simulation length scale can
reach 10-100 nm for extended systems, with time scales ranging
from tens to hundreds of nanoseconds, and occasionally extending
to the microsecond range on modern hardware. Therefore, the
classical force fields are particularly suitable for describing the
motions of atoms or molecules driven by their interactions.
Thermodynamic or kinetic properties such as adsorption, diffusion,
dissolution, separation and stress-strain can be further studied

Chemical Science

through statistical analysis of the motion behavior of, particless® >,
For example, the calculation of the diffusionocoefficiertofroin
molecular dynamics (MD) simulations involves simulating particle
motion, extracting the time series of particle positions, and
calculating the root mean square displacement (MSD) over time:
MSD =<3, [ri(©)— r(0)]". The diffusion coefficient is then
extracted using Einstein’s relation: D = lim M6—5;D.
t—oo

The limitations of the classical force fields in describing the
reactive processes motivate the inclusion of connection-dependent
terms, resulting in the development of reactive force fields. Bond
order is a key concept in reactive force fields, describing the strength
and properties of bonds between atoms. The bond order value is
calculated using specific equations, and it is dynamically adjusted
based on the relative positions of atoms and their local environment.
Therefore, reactive force fields can describe the breaking and
formation of chemical bonds, as well as the conversion between
reactants and products, enabling the modeling of reaction processes
on a large scale. Their parameters are derived from a combination of
physical principles and empirical insights, often involving some
degree of abstraction. The number of parameters typically ranges
from 100 to 500. And reactive force fields can incur a relatively high
computational cost (approximately 10-100 x that of classical force
fields). The typical simulation length scale for condensed-phase
reactive systems is 5-20 nm, with accessible time scales of 1-10
nanoseconds for large systems. In particular, ReaxFF, the most widely
used reactive force field, can simulate reaction events at the
interfaces of solid, liquid, and gas phases because the parameters for
each element in the force field can be transferred across different
phases. For example, in the simulation of an oxygen evolution
reaction (OER) catalyzed by a metal oxide, the oxygen atoms use the
same parameters, whether they are in the gas phase as O,, in the
liquid phase within an H,0 molecule, or bound in a solid metal oxide.
Additionally, since the catalytic process involves not only the reaction
but also the migration of molecules, such transferability allows

Table 1 The parameter space complexity of classical force fields, reactive force fields and machine learning force fields.

Typical oL
Opt t
Force field type number of Parameter type diversity Interpretability Origin of parameters ptimiza _|on
complexity
parameters
Classical force Mostly physical (e.g., bond High (each term QM datasets/ Low (smooth,
. 10-100 lengths, angles, torsions, LJ corresponds to a Experiments; low-dimensional
fields (e.g. UFF) . . L _
terms, charges) physical quantity) empirical fitting search space)
Mixed physical and
. empirical (e.g., bond-order Moderate (some Moderate (rugged
Reactive force g
. coefficients, terms abstracted QM datasets; parameter landscape
fields (e.g. 100-500 . I .
valence/overlap terms, from physical targeted fitting with many
ReaxFF) . .
van der Waals, charge meaning) cross-couplings)
equilibration)
103-108 M datasets; acti
Machine Mathematical QM aa ase.s, active High (non-convex,
. (standard) . . Low (features/ learning . . .
learning force representations without . high-dimensional
. ) . descriptor hard to A
fields (e.g. fixed physical form (e.g., map to physical Large-scale optimization often
neural network >10° weights in NN layers, rpnea:iny) pretraining (e.g., requiring large
potential) (emerging) descriptor parameters) & OCP, MP); transfer datasets)

learning

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 3


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc02715b

Open Access Article. Published on 21 October 2025. Downloaded on 10/27/2025 3:14:22 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

Chemical Science

ReaxFF to simulate the influence of dynamic factors, such as
solubility and diffusivity, on the catalytic process. As a result, ReaxFF
can simulate systems involving multiphase complex processes.

Classical force fields and reactive force fields rely on predefined
mathematical functions to describe atomic interactions, often
lacking the flexibility and accuracy to model complex chemical
environments. In contrast, ML force fields represent an emerging
class of computational models that use ML algorithms to construct a
system's PES. These data-driven approaches model the PES directly
from data, enabling them to capture intricate interactions and
chemical behaviors with high accuracy. The number of parameters
typically ranges from 10® to 10% (for the emerging
foundational/universal ML force fields, the number of parameters
can even exceed 10°), and they are represented through
mathematical or ML models without fixed physical forms. ML force
fields can achieve quantum-level accuracy within the training domain,
but their performance is constrained by extrapolation limitations and
computational scaling (often 10-100 x the cost of reactive force
fields). This high precision comes at the cost of greater
computational expense compared to the other two force fields. To
reduce the fitting cost, researchers apply transfer learning to
emerging foundational or universal ML force fields by leveraging pre-
trained models, such as those from the Open Catalyst Project (OCP)
and Materials Project (MP). The simulation length scale depends
strongly on descriptor efficiency, generally reaching 2-10 nm in
current implementations. The typical time scale is 0.1-1 nanoseconds
for extended systems, although linear-scaling ML force fields may
extend this range. Nevertheless, ML force fields are more efficient
than QM and are thus applicable to large-scale systems (Figure 1c).
For example, water and aqueous systems often involve complex
interactions, such as hydrogen bonding, that classical force fields
may not accurately capture. As an efficient alternative to QM,
DeepMD employs neural networks to model complex atomic
interactions and construct PES to predict hydrogen bond networks,
solvation effects, and the diffusion behavior of water*® 47. Due to
their accuracy and efficiency, ML algorithms like neural networks,
Gaussian processes, and ridge regression are increasingly applied in
areas such as catalysis, materials science, and drug design*&C.
However, ML force fields also have limitations, including high fitting
costs, poor model generalization, and lack of interpretability.

Considering the current state of force field development, we
believe that no single method currently bridges all relevant catalytic
scales (from atomic events ~fs, A to mesoscale ~ms, um). Therefore,
researchers often adopt hybrid simulation strategies. For example,
the QM/MM approach applies ML force fields or reactive force fields
to the key reactive region, while describing the remaining parts with
classical force fields>t. Another strategy is coarse-graining®!, in which
coarse-grained parameters are derived from atomic-scale ML force
fields or reactive force fields trajectories, thereby extending
simulations to the ps-ms regime or beyond. However, ML force fields
augmented with active learning and hybrid coupling show the most
promise for unifying length- and timescales in heterogeneous
catalysis simulations33 52,

2.2 Development Periods for Force Fields

4| J. Name., 2012, 00, 1-3

After establishing a fundamental understanding @f force Jield
concepts and classifications, we will further eXpl6rétHE deviElopaient
of force field methods. This involves reviewing their evolution
process, analyzing key advancements and breakthroughs across
different periods, and identifying the underlying driving forces
behind their continuous development to help us better understand
the characteristics and applicability of various current force fields.
Lennard-Jones, ReaxFF, and neural networks are selected as
representatives of classical force fields, reaction force fields, and ML
force fields, respectively. Figure 2 shows the number of publications
in molecular simulations that have utilized these approaches. Based
on the trends in published number over time, it can be found that

there are three key nodes (2003, 2011 and 2017) in the development
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= —=&— | ennard-Jones
2 1000 (Typical form in classical force fields)
3
=% ReaxFF
g 800 (Typical form in reactive force fields)
=
©
£ 800
o
]
o
‘s 400
1
@
£

200
5 2003
=

,_,,‘V,VUWMWH:{.VJ‘"

0 G A v e eroPedsteshl :
1980 1985 1990 1995 2000 2005 2010 2015 2020 2025
Year
Figure 2 Publications in molecular simulations that have utilized
Lennard-Jones (typical form in classical force field), ReaxFF (typical

form in reactive force field) and neural networks (typical form in
machine learning force field).

of force fields.

Before the 21st century, force fields were typically based on
simplified potential energy functions to describe atomic interactions.
The classical force fields, represented by the Lennard-Jones
potential, was introduced early on and proved suitable for most non-
bonding interaction due to their simplicity. Building on this
foundation, force fields were further developed to include additional
physical details, such as bond stretching and bond angle bending,
making them more applicable to molecular systems. Several classical
force field models have been developed in this period, such as
AMBER>3, CHARMM®4, OPLS®?, etc. However, during this early stage,
the body of related research was limited. With advancements in
computational power and molecular simulation methods in the 21st
century, classical force fields began to account for more complex
multi-body effects and environmental factors, leading to their
broader adoption. And These force fields were further refined to
include polarization effects between atoms, enhancing both their
accuracy and applicability. Additionally, to better describe reactive
processes, van Duin introduced the ReaxFF force field, based on the
concept of bond order in 2001%. Since then, with ongoing
improvements in ReaxFF parameters, its transferability has become
increasingly evident, making it widely used in fields such as
heterogeneous catalysis, atomic deposition, organic molecule
combustion, and liquid-phase chemistry after 2011.

This journal is © The Royal Society of Chemistry 20xx
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The advent of powerful ML algorithms significantly enhanced the
accuracy of PES construction. Although Blank et al. proposed the use
of neural networks to represent PES for molecule-surface scattering
in 19957, the development of ML force fields progressed slowly due
to computing power limitations. However, in recent years, with
advances in technology, neural network potentials and other ML
force fields have seen rapid growth in their application across
chemistry, physics, and materials science. The evolution of these
force fields reflects a shift from simplified models to more precise,
comprehensive, and adaptable approaches. These advancements
have not only driven research in computational chemistry and
molecular simulations but also facilitated the application of these

methods in fields such as chemical engineering and materials science.

2.3 Fitting Process of Force Field Parameters

The development and evolution of force fields are closely tied to
the parameter fitting method, and the accurate fitting techniques are
crucial for the precision of the PES constructed using force field
method. Currently, many universal force field parameters exist,
particularly in the classical force field, where various combinations of
simplified formulas and corresponding parameters have been
developed to suit different systems. However, for new materials and
complex systems, the accuracy of universal parameters is often
limited. In such cases, it becomes necessary to derive the force field
parameters specific to the system through a fitting approach. The
process of fitting force field parameters generally follows a standard
workflow, which can be summarized in three main steps: (1)
construction of the initial database, (2) selection of the force field
form, and (3) training of the regression model, as shown in Figure 3.
By following these steps, the force field method can be applied to
construct the PES for systems ranging from small to large scales.

In the database construction phase, the structures and
corresponding energies of the systems are obtained using an
appropriate QM method. Since the simulation of PES is both high-
dimensional and complex, and the cost of acquiring high-precision
data from QM is substantial, it is important to build the database
with broad coverage while keeping the data set as representative as

Chemical Science

possible. Sometimes, experimental data are also inclyded,suehas
vibrational frequency data obtained from DRfrdret) 3PeEfe320By
which can be used to fit bond and angle parameters within the
molecule. Additionally, experimentally measured system properties,
such as solubility, elastic modulus, and crystallographic data, can be
employed to calibrate the force field parameters. Regarding data
volume, ML force fields typically require the largest amount of data,
while classical force fields require the least. In addition to manually
constructing databases, various training databases have been
established during the development of force fields, providing high-
quality reference data for fitting accurate PES. Widely used examples
include the QM9 dataset for small organic molecules, ANI datasets
(ANI-1, ANI-2x) for organic chemistry coverage, and MD17 for
molecular dynamics trajectories of small molecules. In materials
science and catalysis, databases such as the MP, OCP, and NOMAD
repository offer large-scale atomistic data for diverse material
classes and catalytic systems. Additionally, specialized datasets such
as the COMP6 benchmark set and the Alexandria database provide
rigorous testbeds for evaluating model performance. These curated
datasets form the foundation for developing transferable, data-
driven force fields capable of capturing complex chemical and
physical interactions across broad domains.

The choice of force field form depends on the simulation
objectives: reaction force fields are preferred for simulating reaction
processes, ML force fields are selected for high structural accuracy,
and classical force fields are chosen for efficiency in simulations. The
regression model training step aims to minimize the difference
between the predicted and true values of energy and atomic forces,
which is crucial for accurately fitting the force field parameters. The
fitting quality is commonly assessed using metrics such as mean
absolute error (MAE) or root mean square error (RMSE).

A growing number of benchmark studies have quantitatively
compared classical, reactive, and ML force fields in terms of accuracy,
generalizability, and computational efficiency. These studies reveal a
clear trade-off between accuracy and interpretability, as well as
between computational cost and flexibility. Classical force fields,
such as Lennard-Jones or harmonic-bond models, typically yield
MAEs of 0.5-2.0 eV in energies and >1 eV/A in forces when

Classical Reactive Machine Learning
Force Fields Force Fields Force Fields

Vo N L N |
Initial d Experiments/ i i |
Database | QM data ' QM data X Large QM dataset :
AN l J ! HEAN l J ! | 1 !
@ . ) . | E e : N | E s , N |
Force Field ! Fix functions I | Complex functions 11 | Flexible ML models |
p ! (Bond, Angle, '} |(Bond order function, | ! | (Mathematical !
orm ! VDW, etc.) r multi-body term) R representations) !
@ ' l Y Mlt'lb't' i l
Regression ' | Empirical / Gradient | 1 ! utrobjective o ML model (e.g., |
Model : Descent Method ' | | Global Optimization | | Neural Network) :
oL ) (Genetic Algorithm) ) 1 !
L - T e 1

Figure 3 General process for fitting force field parameters. Based on the initial database, a suitable regression model (gradient descent
method, genetic algorithm, or neural network) is accordingly selected to derive the desired force field parameters of different force fields
(classical force field, reactive force field, or machine learning force fields).

This journal is © The Royal Society of Chemistry 20xx
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benchmarked against QM references for reactive systems or surface
chemistry®®. A notable exception is the recently developed GFN force
field, which achieves energy MAEs below 0.2 eV>°. Reactive force
fields, such as ReaxFF, generally outperform most classical models
for reactive processes, with reported force MAEs in the range of 0.3-
1.0 eV/A and energy MAEs around 0.1-0.5 eV, depending on the
quality and scope of training®. However, their accuracy varies
significantly across chemical systems, and parameter transfer is
nontrivial. For example, benchmark studies such as Senftle et al.
highlight ReaxFF's success in hydrocarbon combustion but also point
to its failure in accurately capturing certain transition-metal surface
reactions3®. ML force fields demonstrate superior performance
across a range of systems. Widely benchmarked ANI-1x%° and
sGDML®! models report energy MAEs below 20 meV/atom and force
MAEs below 0.1 eV/A for equilibrium and near-equilibrium
configurations. More recent equivariant models like NequlP®? and
Allegro®3, have reduced force MAEs to below 0.03 eV/A and energy
MAEs <10 meV/atom on diverse datasets, including bulk phases,
surfaces, and transition states. These models often approach DFT-
level accuracy with orders-of-magnitude speedup. Nonetheless,
these models depend heavily on the quality and diversity of the
training data, and extrapolation to out-of-distribution chemical
environments remains a challenge. Additionally, the OCP provides a
large-scale, standardized benchmark for catalyst surfaces and
reaction intermediates®2. In OCP leaderboard results, ML Force Fields
such as GemNet®, Allegro®3, and MACE®> outperform both classical
and reactive models by a substantial margin, achieving force MAEs
as low as 0.035 eV/A on surface configurations relevant to catalysis,
compared to >0.2 eV/A for traditional force fields.

The accuracy and efficiency of different regression models vary.
For classical force fields, which typically involve a small number of
parameters, gradient descent methods can quickly fit the
parameters. In contrast, reactive force fields, which involve a larger
set of parameters, are more suited to genetic algorithms. ML force
fields, using algorithms like neural networks, can approximate any
continuous function with arbitrary accuracy. Their strong fitting
capability ensures high precision in constructing PES.

Furthermore, it may be possible to train each one of them on
several out-of-equilibrium configurations to make them more robust
when performing a more global exploration of the PES. In principle,
each can be augmented with out-of-equilibrium training data;
however, their ability to incorporate and benefit from out of
equilibrium configurations differs. For classical force fields,

parameters are usually fitted to equilibrium or near-equilibrium data.

The functional forms are rigid and chemically specific, limiting the
ability to generalize to far from equilibrium configurations. Extending
coverage requires manual re-parameterization. For reactive force
fields, parameters can be optimized against broader training sets,
including strained geometries and transition states. However, the
complexity of cross term interactions can introduce competing
minima in parameter space, making it difficult to incorporate high
energy configurations without sacrificing low energy accuracy.
Achieving robustness away from equilibrium often requires multi
objective fitting and careful weighting of reactive versus non-reactive
configurations. For ML force fields, the flexible functional form
enables accurate interpolation across diverse regions of
configuration space if trained on representative data. Active learning

6 | J. Name., 2012, 00, 1-3

strategies and on-the-fly uncertainty detection can systematically
identify and incorporate under-representedChigh*€AgtgySer2fard
configurations. The latest ML frameworks (e.g., equivariant graph
neural networks®?) can incorporate large, heterogeneous datasets
without hard-coded chemistry assumptions, making them
particularly suited to integrating off-equilibrium data without
manual re-design of the potential.

2.4 Applicability and Limitations of Classical, Reactive, and Machine
Learning Force Fields in Heterogeneous Catalysis

In heterogeneous catalysis, the accurate modeling of active sites,
surface reconstruction, charge transfer, and dynamic electronic
effects remains a significant challenge. Different PES modeling
approaches (classical, reactive, and ML force fields) offer varying
capabilities in addressing these catalysis-specific complexities.

Classical force fields generally rely on fixed atom types, rigid
bonding environments, and static charge assignments. While
computationally efficient, they are not suited to capture phenomena
such as bond rearrangement, changes in oxidation states, or surface
reconstruction. So, their applicability is typically limited to non-
reactive processes or systems where local electronic structure
remains largely invariant.

Reactive force fields, exemplified by ReaxFF, incorporate bond-
order-dependent interactions and dynamic charge equilibration
schemes (e.g., QEq®® or ACKS2%7), enabling them to describe bond
breaking and formation, as well as approximate charge
redistribution. These features allow reactive force fields to model
catalytic reactions, including proton/electron transfer, albeit with
limited accuracy in systems involving subtle electronic effects or
complex charge delocalization. Furthermore, their performance is
often constrained by the parametrization strategy and the empirical
nature of their functional forms.

ML force fields, trained on high-level QM data, exhibit improved
flexibility and generality. When trained on sufficiently diverse
datasets including charged systems, surface reconstructions, and
transition-state geometries, ML force fields can implicitly learn to
model charge transfer, hybridization, and active-site-specific
reactivity. Architectures such as message-passing neural networks
(e.g., DimeNet++%8, Allegro®) or equivariant graph neural networks
(e.g., NequlP®2, MACE®) have demonstrated success in modeling
chemically complex environments with high fidelity. Some models
incorporate  explicit charge awareness (e.g., PhysNet®,
SpookyNet™), while others rely on large training sets to implicitly
encode charge redistribution. Despite their promise, many ML force
fields still face limitations in modeling long-range electrostatics or
variable charge states in heterogeneous systems, and ongoing efforts
aim to combine ML potentials with electrostatic or embedding
schemes to address these gaps.

Collectively, while reactive and ML force fields represent
significant progress toward modeling catalytic complexity, no current
approach offers a fully transferable solution across all catalytic
scenarios. Future developments will likely benefit from hybrid
frameworks that combine data-driven potentials with physical
constraints and electrostatic corrections, tailored for the unique
demands of catalysis.

This journal is © The Royal Society of Chemistry 20xx

Page 6 of 27


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc02715b

Page 7 of 27

Open Access Article. Published on 21 October 2025. Downloaded on 10/27/2025 3:14:22 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(ec)

Furthermore, in heterogeneous catalysis, the explicit modeling of
surfaces introduces several unique challenges beyond those
encountered in bulk or molecular systems. Long-range effects
including dispersion forces, electrostatics, and image charge
interactions, play a crucial role in determining adsorption
geometries, surface reconstructions, and reaction barriers.
Accurately capturing dispersion interactions often requires empirical
or semi-empirical corrections, such as the DFT-D scheme of
Grimme’!, while classical force fields incorporate such effects via
parameterized functional forms’2. For ML force fields, recent
developments in E(3)-equivariant architectures have enabled more
explicit incorporation of long-range information into the learned
potential®2. Another layer of complexity arises from open-shell
systems, which are common in transition-metal surfaces, magnetic
oxides, and adsorbed radical intermediates. These systems require
spin-polarized QM references because their electronic and magnetic
states can change along reaction coordinates. Mapping spin-
dependent interactions into reactive or ML force fields remains
challenging; however, recent ML architectures have begun to
address electronic degrees of freedom and spin explicitly. For
example, SpookyNet introduces electronic-degree-of-freedom and
nonlocal corrections that improve the description of charge and spin
dependent effects’®. More recent works extend ML potentials to spin
and magnetization dynamics, enabling ML modeling of magnetic
materials and nonequilibrium spin forces’ 74. Incorporating these
developments into ML force fields workflows is important for
accurate simulations of catalytic surfaces that exhibit open-shell
character.

To provide readers with a deeper understanding of force fields, the
following sections offer a detailed overview of three types, focusing
on their functional forms, parameter fitting methods, and
applications.

3 Classical Force Fields
3.1 Forms of Classical Force Fields

For classical force fields, the functional forms typically include the
bond term (bond stretching energy, angle bending energy, dihedral
angle torsion energy, inversion energy) and the non-bond term (van
der Waals term, Coulomb term). An example of a universal force field
function is as follows:

kr. . kg. .
0
E = Zbonds_zu (T'ij — rij) + Yangles 2”

“ (0176 — %)
+ Ztorsions%(l — COS (n‘pijkl - ]/))
12 6
+ ZVDW Dii [(:_:) - 2(:_:;) ] + Zcoulombi.qr_f_j (1)
The first term, bond stretching energy, describes the relationship
between two bonded atoms. As atoms oscillate around the
equilibrium bond length, a repulsive force is generated when they
approach each other, and the energy increases as they move apart,
eventually leading to bond dissociation when there is no longer any
interaction between the atoms. The second term, bond bending
energy, refers to the tension in bond angles and represents the
relationship between three bonded atoms. Similar to bond
stretching, the bond angle oscillates around an equilibrium angle.
The third term, bond torsion energy, describes the interaction
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between four bonded atoms, specifically the function,gurve of the
dihedral angle and its associated energy. URNké&OBBAY Btrefehing
dihedral angle torsion cannot be represented by simple harmonic
functions for most cases. Instead, these periodic changes are
typically modeled using Fourier series, which are combinations of
trigonometric functions. The fourth term, the van der Waals energy,
describes the interaction between non-bonded atoms, often
represented by the Lennard-Jones potential. The 12th power term
corresponds to repulsion (positive energy), while the 6th power term
represents attraction (negative energy). At large distances, the 6th
term dominates, creating attractive forces, while at short distances,
the 12th term prevails, leading to repulsion. The fifth term, Coulomb
energy, models the electrostatic interaction between charged atoms
using the classical Coulomb formula, which is inversely proportional
to the distance between atoms. For specialized systems, additional
terms such as hydrogen bonding, torsional terms, and cooperative
terms (such as Urey—Bradley term in CHARMM?> force field) may be
incorporated to improve the precision of the PES.

Different force fields utilize various function forms but can
generally be classified into three main types: periodic function-
based, harmonic potential-based, and tabulated potential-based.
Over time, numerous force field forms have been developed and
applied to different systems (Figure 4a). Examples include the
AMBER’® and CHARMM?’®> force field, which are designed for
simulating biological systems; the OPLS force field®®, which focuses
on simulating condensed phase properties; and the COMPASS force
field”?, which can predict properties of both gaseous and condensed
phases. The DREIDING”® and UFF”? force fields describe interactions
for most elements in the periodic table, although with limited
accuracy. Additionally, the newly developed GFN force field strikes a
balance between computational efficiency and accuracy, enabling
precise large-scale simulations of biomolecular and material
systems®?,

3.2 Fitting Methods of Classical Force Fields

There are three main sources of classical force field parameters: 1)
wave number measured experimentally, from which force constants
can be calculated using the wave number formula; 2) structural,
energy, and frequency data obtained through high-precision
calculations, which are then used for parameter derivation and
fitting; and 3) force constants derived from the first two methods,
which can be further refined using Badger's rule and linear
regression. This paper primarily focuses on the second method for
obtaining force field parameters.

The most widely used non-fitting method is the Seminario method
(Figure 4b), developed by Jorge Seminario in 1996. This method aims
to derive the intramolecular force field parameters, such as the
harmonic functions for bond stretching and angle bending, directly
from the Hessian matrix obtained by QM calculations’®. Currently,
several auxiliary tools support the use of this method to fit force field
parameters, including the AMBER and AuToFF programs. Below is a
brief overview of the method.

For a system with N atoms, the force 6F of the 3N component due
to a displacement 6x can be expressed as a second-order Taylor
series expansion:

OF = — [k]6x (2)
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where tensor [k] is the 3N x 3N Hessian matrix. And [k] used here is
defined in unweighted Cartesian coordinates, without mass-
weighting. This is because force field fitting aims to reproduce the
second derivatives of the PES, which are independent of atomic
masses. In contrast, vibrational frequencies and normal modes
require mass-weighted and projected Hessians, which are not
directly involved in the force field parameterization. Then, Eq. (2) can
be written as

9%E 9°E 92E
a2
OF, a7 2575V |1 oxs
SFZ 0x;x1  0x3 0x3X3y 5X2
6F3N 02E 92E 53{31\]
6x3Nx1 Ox3nX2 ang

The tensor [k] represents the intramolecular force field up to
second order for small displacements 6x, and it can be obtained from
QM calculation. The eigenvalues A; of [k] correspond to the 3N force
constants, which are associated with the 3 translational, 3 rotational
and 3N-6 vibrational modes of the molecule. By analogy with Eq. (2),
the force O6F, = (8FXA,8FyA,6FZA) on atom A due to a
displacement érg = (6xp,6yp,0zp) of atom B is given by 6F 4 = —
[kap]675. The tensor [kas] can be written as

0°E 0°E 0°E
6xéx3 Bxéyg axéz,;
a
[kas] = — Oyaxp  0ysyp 0yszp )
J%E 0%E 0%E
0zaxp 0zZpYyp 0ZaZp

The bond stretching constant can be obtained from the
projections of the eigenvectors onto the unit vector, 1148
= XL A{P 1P - vP| (5)
where 14 and 745 are eigenvalues and eigenvectors, respectively.
For the derivation of angle bending constant ky, first, a unit vector

1y is defined as perpendicular to the plane ABC:

ﬁCBXﬂAB

x| (6)
The unit vectors perpendicular to the bonds AB and CB on the

plane ABC can be obtained:

‘&N:
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uPA = {iy x 148 (7)

UPC = 1CB x iy (8)

The force constants kpy and kpc are then defined as the

corresponding constants derived by projecting the eigenvectors of
the partial Hessian matrix onto these two vectors:

kpa = Xizg ALP[0P4 - 1P (9)
kpe = X3, ACB|0PC - 6B (10)

And the angle bending constant is then given by
o ! (11)

k_B - rinPA rz-Ekpc
where ryg and rgg are the two bond lengths.

Consider the dihedral defined by the atoms A, B, C, and D which
are linked by bonds AB, BC, and CD. The approach used to determine
the dihedral force constant is similar to that for bond and angle. The

dihedral force constant is given by
1 1
E =

2 15 N 3 ,4B|s ~AB
T3alllapXipc|2 Xisg A |uNABC i
1

(12)

replipeXiicp |2 X, AzpclﬁNBCD'f’li)C|
The premise of the Seminario method for deriving force field
parameters is that the change in energy associated with the
displacement of atom A along the direction #4 will only affect the
A-B-C angle. However, in a complex system, neighboring angles may
also be altered due to changes of A-B-C angle. This often leads to an
overestimation of bond angle parameters. To address this issue,
Allen at al. modified the Seminario method by rescaling the value of
kpa with a factor that accounts for the geometry of the molecule®°. In
addition to the Seminario method, Hirao et al. proposed other rapid
force field parameterization schemes, such as partial Hessian fitting
(PHF), full Hessian fitting (FHF) and internal Hessian fitting (IHF).
These methods are based on the idea of minimizing the Hessian
matrix of molecular force fields and quantifying the differences in the
Hessian matrix8 82,
Numerical fitting methods are commonly applied to fit van der
Waals parameters. The process begins by scanning the PES

This journal is © The Royal Society of Chemistry 20xx
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generated from changes in the interatomic distance based on QM
calculations. An appropriate van der Waals interaction expression
(e.g., Lennard-Jones or Morse) is then selected and used to fit the
PES. The fitting process involves iteratively adjusting parameters
such as the potential well depth and zero-energy distance until the
sum of the squared differences between the two PES is minimized
(Eg. 13). Once the optimization is complete, the van der Waals
interaction parameters can be obtained.

mgin](@) = Yit1 (Eg — Eo)? (13)

Various methods can be used to adjust the force field parameters
to minimize J(8), with one of the most straightforward approaches
being gradient descent. The process primarily involves two primary
steps: first, an initial set of force field parameters is provided, which
may be randomly assigned; second, the parameters are iteratively
adjusted in the direction of the negative gradient until the loss
function converges to a predefined value. As illustrated in Figure 4c,
the red areas represent higher values of J(), and as the parameters
are updated, the value of J(9) decreases, eventually reaching the
deep blue regions. The core idea behind gradient descent is to move
in the direction of the negative gradient of the current position. To
further accelerate convergence, the method was further extended
into the steepest descent method, where the step size for parameter
adjustment reduces as the gradient diminishes. This leads to slower
progress as the optimization nears the target value.

However, the final point reached by gradient descent may not
always correspond to the global minimum, but rather to a local
minimum, especially when dealing with force fields that involve a
large number of parameters. To overcome this challenge, a common
strategy is to initialize multiple sets of parameters and perform
gradient descent along several different paths. The optimal
parameters are then selected from these paths, allowing for a more
robust approach to global optimization (Figure 4c).

Atomic charge is a critical component of classical force field
parameters, and various methods have been developed to fit atomic
charges, including Merz-Kollman®, CHELPG®4, and RESP. Among
these, the RESP method, proposed by Kollman et al., effectively
addresses issues such as conformational dependence, numerical
instability, and atomic equivalence of internal atomic charges,
making RESP charges widely used. The principle behind RESP involves
iteratively adjusting atomic charges using the least squares method
until the error between the calculated classical potential and the QM
potential is minimized. To avoid unreasonable charge distributions,
the RESP method introduces constraints, such as the neutral
constraint (which ensures the sum of molecular charges is zero) and
a penalty term that controls the charge distribution. Programs such
as AmberTools® and Multiwfn® make it easy to fit RESP charges.

3.3 Applications of Classical Force Fields

In this section, we highlight selected studies that utilize classical
force field methods, focusing on their application in heterogeneous
catalysis rather than providing a comprehensive literature review.
Specifically, we explore how classical force fields are used to study
catalyst interface properties, particularly in areas like metal particle

morphology and molecular diffusion. These applications

This journal is © The Royal Society of Chemistry 20xx
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demonstrate the strengths of classical force fields,;in, efficiently
simulating the dynamics of heterogeneous irtetfd€e)39/D55C027158

The morphology of metal catalysts (specifically the size, shape, and
distribution of metal particles) plays a crucial role in determining
catalytic performance?® 891, The size and shape directly influence
the number of active sites on the catalyst surface. For example, Hu
et al. investigated the size effect on the atomic structure of
amorphous systems originating from a CugsZrse particle (containing
50-5000 atoms) using MD simulations with an embedded atom
method (EAM) potential®2. Their findings show that particle size
strongly impacts the local atomic structure, with CugsZrsg particles
exhibiting core-shell structures. The shell component of the particle
has a lower average coordination number, shorter bond lengths,
higher ordering, and lower packing density compared to the core,
due to Cu segregation on the shell. Given that metal nanoparticles
often exhibit high surface energy, they tend to aggregate during
catalytic processes, which can lead to catalyst deactivation. To
mitigate this, metal nanoparticles are commonly dispersed on
support surfaces to enhance stability®3. In a study by Wang et al., the
effect of metal-support interactions on the stability of metal
nanoparticles was examined using a Morse force field for
parameterization®* 5. Their simulations revealed that the melting
point of Pt nanoparticles supported on a substrate was significantly
higher than that of unsupported nanoparticles, and the melting point
increased as the metal-support interaction strengthened. In addition
to improving stability, the support material also affects the
morphology of the metal nanoparticles. The simulations indicated
that increasing the metal-support interaction leads to a higher
number of unsaturated coordination atoms in the nanoparticle.
Notably, when Pt nanoparticles were supported on bare MXene, a
film-like structure formed on the substrate surface. Wang et al.
further explored this by tuning the nanoparticle structure through
variations in the surface functional groups of MXene®®. Their results
showed that when the surface functional groups on Nb,C MXene
transitioned from -Cl, -Br, and -O to partial -O, the supported Pdse
nanoparticle exhibited a distinct morphological shift from 3D to 2D
(Figure 5a), consistent with electron microscopy observations (Figure
5Sb). Initially, a monolayer of Pd preferentially formed on the exposed
Nb sites, followed by the creation of a second Pd layer upon
encountering oxygen functional groups, ultimately exposing the
(111) facet. Based on these findings, they constructed Pd metalenes
supported on Nb,C MXenes, which demonstrated efficient selective
hydrogenation of phenylacetylene at room temperature.

Classical force fields are also commonly employed to simulate the
dynamic behavior of molecular systems, including the diffusion,
adsorption, and desorption processes of reactants, intermediates,
and products, and their impact on catalyst performance®”1%, To
improve the catalytic performance of N, electroreduction (NRR) on
metal surfaces, hexanethiol (HEX) was selected as a modifier to
inhibit the competitive adsorption of water molecules in the
hydrogen evolution reaction (HER). Chen et al. studied the effects of
HEX on the diffusion and adsorption behaviors of H,O and N,
molecules on the Cu surface through MD simulations'®t, The study
involved 100 nitrogen molecules and 5000 water molecules, based
on the solubility of N, in water. The results revealed that on the HEX-
modified Cu surface, N» molecules could diffuse to the catalyst
surface, while HO molecules were blocked by the HEX layer (Figure
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GO membranes [Reprinted with permission from ref. 43. Copyright 2015 American Chemical Society].

5c). In contrast, the non-HEX Cu surface is predominantly covered by
H,0 molecules. After HEX modification, the number of N, molecules
adsorbed on the Cu surface increased significantly from 24 to 48,
while the number of H,0 molecules adsorbed decreased from 700 to
23 (Figure 5d). Additionally, the calculated potential of mean force
indicated that the presence of HEX notably raised the equilibrium
position of H,0 (from 0.18 nm to 0.54 nm). After HEX modification,
the Faraday efficiency of various metal catalysts (Cu, Au, Pd, Pt, and
Ni) prepared by experimental collaborators was significantly
enhanced, confirming the hydrophobicity of HEX on the metal
surface and its effective role in promoting N, adsorption.

For the diffusion properties of molecules in porous materials, Xu
et al. presented MD simulation on the gas diffusion in the interlayer
gallery of graphene and graphene oxides (GO) membranes, and
elucidated the mechanisms of gas selective separation (Figure 5e).
They found that both the layer spacing and the chemical modification
of the membrane surface significantly influenced the selective gas
penetration*3. For example, for GO membranes, the He/CO,
selectivity can reach as high as 30, compared to 4.5 for CH,/ CO, and
between 2-3 for CO/CO,, N,/CO,, and 0,/CO,. In contrast, for
graphene layers, the selectivity for N,/CO,, CO/CO,, 0,/CO, are

10 | J. Name., 2012, 00, 1-3

relatively low, ranging from 1 to 3. (Figure 5f). To further explore the
correlation between pore properties and molecular diffusion
coefficients, Wang et al. studied the interlayer diffusion of CO in
graphene supported with Pt nanoparticles as a model system. They
found that the diffusion energy barrier is related to the distribution
of CO molecules in the system, which in turn is influenced by factors
such as temperature, pressure, interlayer distance, and the
properties of the supported metal. High temperature, low pressure,
and fewer surface atoms were found to facilitate the diffusion of gas
molecules. To quantify the relationship between the diffusion
coefficient and the environmental and structural properties of the
system, a generalized formula for confined diffusion of CO in the
supported system is derived based on the simulation data®’. Further
simulations of interlayer diffusion of CO, were conducted to study
the effects of the metal-molecule interaction on the adsorption and
diffusion properties of molecules**. The results showed that the
difference in the adsorption amounts of CO and CO, on Pt
nanoparticles correlates with the adsorption site and exhibits a
volcanic trend with respect to temperature. The metal-gas
interaction and the surface atomic number of metal nanoparticles
have great influence on the diffusion of gas molecules, especially at

This journal is © The Royal Society of Chemistry 20xx
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low temperatures. The simulation data further validate the accuracy
and generality of the generalized formula.

Compared to the above classical force fields, the newly developed
GFN-FF force field demonstrates superior generality and accuracy,
approaching the precision of QM methods in certain cases. For
instance, metal-organic frameworks (MOFs), widely used in
heterogeneous catalysis, typically have few available force fields
(such as UFF), these are often inadequate for describing conjugated
systems and metal coordination. In contrast, GFN-FF enables
accurate geometric optimization of MOF structures. For example, for
a Goldberg polyhedra composed of 46 Pd?* ions and 96 organic
ligands, with a total of 3888 atoms, the RMSD of the heavy atoms in
the GFN-FF optimized structure is only 0.75 A, which is in excellent
agreement with experimental results. Similar accuracy can be
achieved for other metal-organic polyhedra and MOFs*.
Additionally, water, as the most common liquid, is notoriously
difficult to describe accurately, leading to the development of
various force field models, including rigid, flexible, and polarizable
force fields. Molecular dynamics simulation of water using GFN-FF
force field shows that, while the calculated self-diffusion coefficient
(2.06x10° cm?/s) is remarkably close to the experimental value
(2.35x10° cm?/s), its density is significantly overestimated (1.23
g/cm3 compared to the experimental value)'%2. Therefore, while
GFN-FF offers a fast and accurate classical force field, like all universal
force fields, it may not always provide the most accurate results.

From above cases, it is evident that classical force fields remain
valuable tools for modeling heterogeneous catalysis, particularly
when large system sizes and long simulation times are required.
Their computational efficiency enables exploration of phenomena
such as adsorbate diffusion, nanoparticle sintering, and solvent-
mediated surface restructuring over length and time scales
inaccessible to QM methods. In supported catalyst systems, classical
force fields have been successfully applied to investigate
nanoparticle morphology evolution, interfacial interactions between
support and active phase, and adsorption-desorption equilibria
under realistic reaction conditions.

However, the inherent limitations of classical force fields arise
from their fixed topologies, predefined interaction functional forms,
and parameter sets that are typically tuned for narrow chemical
spaces. These constraints hinder their ability to capture bond
formation/breaking, charge transfer, and polarization effects, which
are central to catalytic processes. Furthermore, the lack of explicit
electronic degrees of freedom makes it challenging to describe
surface reactions involving variable oxidation states, adsorbate-
induced reconstruction, or metal-support charge redistribution.
Transferability across different surfaces, phases, and chemical
environments is often limited, necessitating reparameterization for
each new system.

Future developments should aim to improve the accuracy and
transferability of classical force fields for catalysis by integrating
more flexible interaction terms (e.g., polarizable force fields),
incorporating long-range electrostatics more rigorously, and
systematically coupling classical descriptions with reactive or ML
force fields in hybrid schemes. Such approaches could preserve the
efficiency of classical force fields while extending their applicability
to the complex, reactive, and dynamically evolving environments
characteristic of heterogeneous catalysis.
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4 Reactive Force Fields
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DOI: 10.1039/D55C02715B
4.1 Forms of Reactive Force Fields

The reactive force field is typically based on bond order to
construct the system’s PES. In the early stage of development, its
form was designed specifically for the bonding situation in a specific
reaction system, making it difficult to generalize. For example, based
on the relationship between Pauling bond length and bond order,
Johnston developed the BEBO force field to study the reactive PES of
the H+H, system'93, Besides BEBO force field, several other reactive
force fields have been developed to address bond formation and
breaking in specific systems. The AIREBO (Adaptive Intermolecular
Reactive Empirical Bond Order) potential'®, an extension of the
REBO model'%, is designed for hydrocarbons and carbon-based
materials and has been widely used in simulations involving
graphene, CNTs, and organic reactions. COMB3 (Charge-Optimized
Many-Body) potentials® enable the simulation of metal-ceramic
interfaces and allow for dynamic charge transfer using a charge
equilibration scheme, making them suitable for oxide-based
catalysts and interfacial systems. The Environment-Dependent
Interatomic Potential (EDIP)7 is tailored for covalent materials,
particularly silicon, and can model defect formation and surface
reconstructions with relatively low computational cost. While these
models have not yet seen widespread application in complex
catalytic reactions, they offer valuable tools for studying specific
materials and interfaces under reactive conditions.

Currently, ReaxFF, developed by van Duin et al. in 2001, is the
most widely used reactive force field due to its parameter
transferability. The initial version of ReaxFF (2001) was focused on
hydrocarbons and used the same dissociation energy for C-C single,
double, and triple bonds, which worked well for hydrocarbons but
was limited for more complex systems. In 2003, the ReaxFF
functional form was extended to systems containing Si, O, and H,
with separate parameters for single, double, and triple bond
dissociation energies. This extension also introduced a lone-pair
energy term to handle the formation and dissociation of oxygen lone
pairs. The 2003 extension was further improved to handle more
complex group chemistries, such as the conjugation term for -NO,
group chemistry in nitramines and a triple-bond stabilization term for
better describing terminal triple bonds'%, By 2005, the ReaxFF
functional form stabilized®, and the general form now includes
terms for:

Esystem = Ebond + Eover + Eunder + Eval + Etors + Econj
+ Evdw + ECoulomb + EH—bond + Erest (14)
where the terms of bonding interactions include bond, valence
angle, lone pair, conjugation, and torsion angle, and the terms of
nonbonding interactions include van der Waals, Coulomb
interaction, and hydrogen bond. In addition, to deal with special
systems, additional terms will be introduced into the formula, such
as angle bending terms for Mg-Mg-H zero-degree angles!l® and
double-well angular terms for aqueous transition metal ions1?,

As mentioned above, the ReaxFF is categorized into bond-order-
dependent and bond-order-independent contributions. Bond order
(BO) a function of interatomic distance r;;, which is divided into the
contribution of single bond (BOY;), double bond (BO7;), and triple
bond (BOF"):
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Based on the bond order formula, interactions such as bond and
valence angle terms can be derived through a series of
transformations; for details, see the work of van Duin et al',
Additionally, this bond order formula accounts for long-distance
covalent interactions in transition state, enabling the ReaxFF to
accurately predict reaction barriers.

For the Coulomb interaction, the QEq method is used to calculate
and adjust the charge distribution of each atom in the system®®, This
method achieves charge distribution through electronegativity
equilibration, accounting for both atomic interactions and the
dynamic changes occurring during chemical reactions. During a
reaction, the electronegativity of each atom varies as its local
environment changes. Atoms with higher electronegativity tend to
attract electrons, while those with lower electronegativity tend to
lose electrons.

Initially, the ReaxFF parameters were developed exclusively for
organic systems®®. Subsequently, the parameters gradually
incorporated metallic elements!'® 112 113 gnd other non-metallic
elements% 114 further expanding the applicability of ReaxFF in a
wider range of systems. Currently, the ReaxFF method has been
successfully applied to simulate various reaction dynamics, including
hydrocarbon organic small molecule systems®®, polymer systems!1>
116 high energy material systems!'’. 118 metal oxide systems!® 120

Sciencer: =il

C
>

Journal Name

processes, such as explosion and combustion, can alsgbg simulated
using ReaxFF parameters!?. 118, 122 Additiordllly, 1 @HE REQRFF 73l
Monte Carlo reaction kinetics method has been employed to
investigate experimental structures that are difficult to resolve
experimentally!’® 120 catalytic reactions in fuel cell electrode
materials'?3 124, and catalytic processes in porous materials!'4 125, To
date, ReaxFF parameters for various elements in the periodic table
have been developed, as shown in Figure 6a3°. However, in the
specific study, the transferability of these parameters is limited, and
it is impossible to simply combine these parameters to get
satisfactory results. Depending on the different O/H atomic and bond
parameters, there are currently two main categories of ReaxFF
parameter sets that are intra-transferable with one another: the
combustion group and the aqueous group. Additionally, there are
several independent groups whose parameters often require more
extensive refitting. For specific details on grouping, refer to the
summary by Thomas et al.3°

4.2 Fitting Methods of ReaxFF parameters

Compared to the classical force field, the ReaxFF function is more
complex and has a greater number of parameters, making it more
challenging to develop. During the development of ReaxFF, it is often
not possible to fit all parameters. Some validated force field
parameters can be obtained from existing parameter libraries or
theoretical literature, and relevant parameters can be selected for
fitting based on the system under study. Two main methods are
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Figure 6 (a) Elements described in available ReaxFF parameter sets. (b) General flowchart of ReaxFF parameters fitted using a genetic
algorithm. (c) Software architecture of GARFfield [Reprinted with permission from ref. 125. Copyright 2014 American Chemical Society].
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commonly used for fitting process: successive one-parameter search
and genetic algorithm.

Successive one-parameter search is the earliest method used for
ReaxFF parameter fitting’?®. The method assumes a parabolic
relationship between a single parameter value and the total fitting
error, determining the optimal parameter value by calculating the
total error at three distinct parameter values. However, because
most parameters in ReaxFF are interdependent, a change in one
parameter will cause the optimal values of others to shift. Therefore,
the parameters must be optimized iteratively to ensure that the
fitting error is minimized. This method offers certain advantages for
fitting processes with many parameters, as the fitting process can be
interrupted if a parameter appears an unrealistic value. However, its
fitting efficiency is relatively low.

For ReaxFF with multiple parameters, in addition to the fitting
efficiency issue, the fitting process is a high-dimensional, non-
separable optimization problem with multiple minima. As a result,
the fitting results often converge to local optima. While deterministic
global optimization techniques are available, they encounter
significant practical challenges in high-dimensional search spaces
and with computationally expensive objective functions, both of
which are typical of the present problem. Viable alternatives include
nondeterministic search heuristics, such as genetic algorithms
(GA)27.

GA are optimization techniques inspired by the process of natural
evolution. The two primary concepts underlying genetic algorithms
are natural selection and genetic dynamics. Natural selection
involves choosing individuals with greater fitness to pass their traits
to the next generation, based on superior performance. The goal of
the genetic algorithm is to maximize fitness as the generations
progress. A simplified depiction of the genetic algorithm, illustrating
the key steps, is shown in Figure 6b. First, based on parameters from
the literature, multiple sets of parameters are generated through
mutation operations to form the initial population, with each set
representing an individual. The fitness function is then used to assess
the quality of each individual, typically defined by the difference
between the system energy calculated from the parameters and the
system energy obtained from QM calculations. Next, a selection
operation is applied to the current population, with methods such as
rank-based selection used to retain individuals with higher fitness.
These selected high-fitness individuals undergo crossover
operations, simulating genetic recombination to produce offspring.
To enhance population diversity and prevent premature
convergence to a local optimum, mutation operations are employed
to randomly alter specific force field parameters, thereby generating
new individuals. By applying selection, crossover, and mutation
operations, a new generation is created to replace the old one,
followed by a fitness evaluation of the new population. After each
generation, a check is made to determine whether the termination
criteria have been met. Common termination criteria include
reaching the maximum number of iterations or achieving a
predefined fitness threshold. If the termination criteria are satisfied,
the individual with the best fitness in the current population is
selected as the final solution.

To enable efficient and rapid parallel optimization of parameters,
Goddard et al. developed GARFfield (genetic algorithm-based
reactive force field optimizer method), a hybrid multi-objective

This journal is © The Royal Society of Chemistry 20xx
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Pareto-optimal parameter development scheme combjning. gepgtic
algorithms,  hill-climbing  routines  an8©°!: toAfIgaPEEradient
minimization!?8. The software architecture is illustrated in Figure 6c.
The core of the GA search mechanism is stochastic gradient search,
which requires the evaluation of the objective function’s fitness for
each generation. A drawback of this method is the significant time
cost associated with the repetitive search and fitness evaluation. To
address this, a hybrid algorithm combining artificial neural networks
(ANN) and GA has been proposed and accepted for fitting the ReaxFF
parameters!?® 130, The ANN reads and analyzes the data and total
error values generated during the GA process, thereby enhancing the
efficiency and reducing the time cost of the heuristic search.

4.3 Applications of ReaxFF

Modeling catalytic processes requires consideration of bond
breaking and formation, yet the time and length scales inherent in
nanoscale interface reactions cannot be addressed with QM. The
bond order concept, coupled with the low computational cost,
enables ReaxFF to bridge the gap between QM and non-reactive
force fields. In this context, we focus on the application of ReaxFF to
metal catalysts and their oxides to highlight the methodological
strength of ReaxFF: modeling reactive chemistry at heterogeneous
interfaces, rather than providing a comprehensive review of the
literature.

Transition metals are widely used in heterogeneous catalysis
reactions due to their unique electronic structures, with their
geometric structures closely influencing their properties!31-134. The
simulation scale achieved by ReaxFF is well-suited for modeling
catalytic processes on metal surfaces and clusters, particularly at
defect sites or unsaturated sites. Iron-based catalysts play a
significant role in the water-gas shift and Fischer-Tropsch synthesis
reactions. Based on ReaxFF fitted by genetic algorithm, Wen et al.
studied the structure-activity relationship of Fe nanoparticles in CO
activation®®®. The results showed that CO dissociation can be
effectively promoted by introducing line dislocation and vacancies on
Fe nanoparticles. Furthermore, four mechanisms of CO, formation
catalyzed by Fe nanoparticle were analyzed through adsorption and
activation of surface carbon in MD simulation trajectories (Figure 7a-
d). They found that, at the initial stage of the reaction, CO molecules
adsorb on the surface of Fe nanoparticle and dissociate. At this point,
the oxygen concentration on the surface is low, and the probability
of CO, formation via the Langmuir-Hinshelwood (LM) mechanism
(adsorbed O atom reacts with gas CO molecule) is minimal. However,
some CO molecules adsorb on the Fe surface without dissociation are
more likely to react with gas CO molecules, forming CO, through the
Eley-Rideal (ER) mechanism. As the reaction progresses, O atoms
accumulate on the surface of the nanoparticles, and the surface also
contains undissociated CO molecules, which can form CO, through
the LM mechanism. Additionally, adsorbed undissociated CO
molecules can also react with each other to form CO,. According to
the above analysis, it can be concluded that both the ER and LH
mechanisms play crucial roles at different stages of CO, formation
catalyzed by Fe, with the ER mechanism primarily dominates in the
early reaction stages, while the LH mechanism becomes more
prominent in the later stages. For metal-catalyzed carbon nanotube
(CNT) growth, the process involves the dissolution and migration of
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Figure 7 (a) E-R mechanism 1: adsorption of a molecule leading to CO, formation. (b) E-R mechanism 2: adsorption of an atom leading to CO,
formation. (c) L-H mechanism 1: adsorption of two molecules leading to CO, formation. (d) L-H mechanism 2: Adsorption of one atom and
one molecule leading to CO, formation [Reprinted with permission from ref. 128. Copyright 2019 Elsevier]. (e) Reactive MD simulation of
methane light-off over an embedded PdO, cluster. (f) Simulated methane light-off curves comparing supported and embedded cluster
models. (g) Reactive MD snapshot at methane activation light-off (pink arrow) over the embedded PdO, cluster model in panel (e) [Reprinted
with permission from ref. 131. Copyright 2016 American Chemical Society].

carbon atoms within the metal. CNT growth is initiated by the
adsorption and dissociation of hydrocarbons on the metal surface.
To investigate the factors influencing this process, Mueller et
al.developed a ReaxFF reactive force field to describe the interaction
between hydrocarbons and the Ni surface'?’. They found that
surface defects play a key role in the decomposition rate of CHs,
particularly in the final step, where CH decomposes into C and H.
Furthermore, due to the transferability of ReaxFF parameters, the
Ni/C/H parameter set was utilized by Neyts et al. to elucidate the
influence of ion bombardment on CNT formation3®, The simulation
results showed that the energy of the impacting ion can be adjusted
to break low-coordination C-C bonds, leading to the formation of
new bonds in the network, which facilitates guided growth.

The ReaxFF formula combines bond order and charge transfer
formalisms, making it particularly well-suited for describing the
evolution of the reaction process in metal oxide materials, which
exhibit both covalent and ionic interactions. For example,
Chenoweth et al. developed a V/O/C/H ReaxFF parameters aimed at
describing the interaction of hydrocarbons with vanadium oxide!*
120,137 Based on the MD simulation with this ReaxFF parameter set,
they investigated the dissociation process of methanol on the surface
of V,0s. On a defect-free surface, C-H dissociates more easily than O-
H. On the defect surface, oxygen atom in methanol binds to the
reduced vanadium defect site, lowering the energy barrier of O-H
dissociation. Additionally, they observed the desorption of water
molecule formed on the hydroxylated V surface, which leads to
interlayer bonding between two metal atoms of different oxidation
states, transitioning from V¥ and V"' sites to two V'V sites. Metal oxide
materials typically exhibit partial, mixed, and irregular metal
occupations at various crystallographic sites. To obtain the lowest-
energy structure, the researchers employ the combined Monte Carlo

14 | J. Name., 2012, 00, 1-3

method to explore possible metal oxide configurations. For example,
Janik et al. used ReaxFF-based Grand Canonical Monte Carlo (GCMC)
simulations to construct thermodynamically stable Pd/CeO, surface
models under reaction conditions'3%. Based on the equilibrium
configuration, they further simulated methane activation using
reactive MD to evaluate the catalytic performance of different
interface morphologies. By counting the number of reactive species,
it was found that a sharp decrease in the number of gas CH,
molecules was accompanied by an increase in adsorbed H atoms at
approximately 1440 K, indicating that methane was activated (Figure
7e). By comparing methane activation on Pd and PdO, clusters that
are both supported on and embedded in the CeO, lattice (Figure 7f),
they found that the supported metal clusters facilitate methane
activation more efficiently, with C-H bond break occurring at the
unsaturated coordination sites on the cluster edges. But in the
embedded model, methane activation is slower because CH,; has
limited access to these sites. In contrast, PdO, clusters in the
embedded structure are more likely to activate methane. This can be
attributed to the reduced exposure of edge sites in the embedded
clusters, while the PdO,/Ce0, interface mixing generates unique
active sites (Figure 7g). These studies demonstrate the utility of
ReaxFF in modeling catalytic processes on metal and metal oxides, as
it can simulate large-scale reaction processes that are not achievable
through QM.

In summary, reactive force fields such as ReaxFF, provide a
powerful framework for simulating bond-breaking and bond-forming
events at scales relevant to heterogeneous catalysis. They have been
widely applied to investigate surface reaction mechanisms, catalyst
activation and deactivation, support-metal interfacial chemistry, and
degradation pathways under realistic temperature and pressure
conditions. By explicitly accounting for variable bond orders and
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dynamic charge equilibration, reactive force fields enable the
exploration of catalytic cycles beyond the reach of classical force
fields, while maintaining computational tractability for systems
containing thousands of atoms.

Despite these strengths, several limitations hinder their predictive
reliability. The accuracy of reactive force fields strongly depends on
the breadth and quality of the parameterization dataset, which must
adequately sample relevant reactive configurations, surface
reconstructions, and intermediates. Transferability remains a
challenge, as parameters optimized for one catalytic material or
reaction type may not generalize to others without significant re-
fitting. Current charge equilibration schemes (e.g., QEq) often fail to
capture non-local charge transfer, polarization under strong electric
fields, or complex redox processes, limiting their applicability in
electrocatalysis and photocatalysis. Furthermore, the high
dimensionality of parameter space makes systematic optimization
difficult, and the lack of rigorous error estimation complicates the
assessment of model reliability.

Future directions for reactive force fields in catalysis include the
development of next-generation reactive potentials with improved
electrostatic and polarization models, the incorporation of machine
learning-assisted parameter optimization to accelerate and improve
transferability, and the construction of large, diverse, and surface-
specific training datasets. Hybrid simulation schemes that couple
reactive force fields with on-the-fly QM calculations or ML force
fields may offer a promising pathway to combine chemical reactivity
with long-timescale dynamics, thereby bridging the accuracy-
efficiency gap for realistic catalytic environments.

5 Machine Learning Force Fields
5.1 Forms of Machine Learning Force Fields

The application of ML methods in the construction of PES dates
back to 1992, when Bobby et al. innovatively introduced neural
networks to model and predict the energy of molecular systems,
thereby describing the behavior of polymer molecules in vibrational
modes!3. Subsequently, in 1995, Blank et al. used neural networks
to approximate the PES for hydrogen formation reactions on silicon
surfaces®’. This work marked a significant milestone in PES modeling
and paved the way for the application of ML methods to model
complex chemical reactions!40-142,

Unlike classical force fields and reactive force fields, which rely on
specific formulas, ML force fields do not have a predefined functional
form. Instead, ML force fields use atomic local environments as
descriptors and are trained using ML algorithms, such as neural
networks or Gaussian regression, to construct the PES of a system.
By moving away from intuitive, physics-based expressions, ML force
fields can offer more accurate PES.

Designing appropriate descriptors to represent the
environment of atoms is crucial for the effectiveness of ML force

local

fields. The local chemical environment refers to the interactions
between an atom and its neighboring atoms within a specified cutoff
radius rqy, as illustrated in Figure 8a. Behler et al. introduced the
concept of locality approximation33 143, which asserts that atomic
interactions are primarily determined by the local chemical
environment of the central atom, rather than by the influences of all

This journal is © The Royal Society of Chemistry 20xx
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other atoms in the system. This approximation,redyuces
computational costs while maintaining the nidfdens {easferabilie)>8

Building upon the locality approximation, the ML force field
further assumes that the total potential energy E of the system can
be expressed as the sum of the energjes f?i of individual central
atoms, as shown in Eq. (16). The energy E| is determined by the local
chemical environment of atom i.

E=3L Elc(R)] (16)

In a neural network force field, each atom is represented by a
neural network (Figure 8b), with the input corresponding to the
information about its local chemical environment and the output
representing the atomic energy term Ei. The total potential energy E
of the system is obtained by summing the outputs of the neural
networks for all atoms. This approach constructs the model at the
atomic level rather than for the entire system, ensuring its scalability.
It is important to emphasize that the atomic potential energy f?i is
not a predefined label but rather an intermediate variable
introduced based on the potential energy decomposition
assumption. The total potential energy E is the direct target of model
training.

Although the types and coordinates of atoms in the system can
fully describe the PES, directly using these as inputs to the ML force
fields is not appropriate. On the one hand, atoms do not have
absolute coordinates, and the overall translation and rotation of the
system, while altering the coordinates of individual atoms, do not
affect the system's potential energy. On the other hand, regarding
atom types, exchanging positions of identical atoms in the system
has no effect on its properties, meaning that changing the atomic
index order does not influence the system's behavior. Therefore, it is
necessary to transform the atomic coordinates and type information
into suitable descriptors for ML, which can then be used as inputs to
the ML force fields model.

Therefore, the descriptors should adhere to the principle of
symmetry, meaning they must be invariant under translation,
rotation, and permutation of atomic indices. More precisely, the
descriptors should have a bijective relationship with the atomic
structure and type information, ensuring that for any given system
configuration, there is a unique descriptor corresponding, and
different structures have distinct descriptors. In addition to fulfilling
these requirements, a good descriptor should also exhibit continuity,
low computational cost, and high representational efficiency. Several
methods for constructing descriptors have been proposed, including
the Smooth Overlap of Atomic Positions (SOAP)#4, Coulomb Matrix
(CM)™5, Atom-Centered Symmetry Functions (ACSF)43, Spherical
Harmonics'#6, Many-Body Tensor Representation'#’, Bispectrum
features48 149, and others.

In addition to atomic environment descriptors, another crucial
aspect of the ML force fields is the ML algorithms themselves. With
advancements in ML techniques and the widespread use of GPU
computing, numerous ML force fields models have been developed,
as shown in Figure 8c. Early ML force fields primarily relied on
traditional ML techniques, such as Gaussian Approximation
Potentials (GAP)8 149 and fully connected neural network
architectures like Atom-Centered Symmetry Functions (ACSF)143. As
algorithms have advanced, more sophisticated ML force fields have
emerged, including GDMLS!, ANI®S0. 151 DPMD* and others!52158,
Recently, ML force fields based on graph neural network (GNN)
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Figure 8 (a) Workflow for fitting a force field using machine learning algorithms. (b) Framework of the neural network algorithm used in force
field construction. (c) Timeline of the development of machine learning force field models.

architectures have gained traction, with models like NequlP%? and
Allegro®. These models do not require explicit descriptor
construction; instead, they represent the entire system as a graph
and incorporate the effects of the chemical environment through a
message-passing mechanism. Given the wide variety of ML force
fields, this review focuses on introducing the more widely used
neural network force field. This emphasis does not imply that other
models are less effective. For example, GAP based on Gaussian
Process Regression, sGDML rooted in Nuclear Ridge Regression, and
other linear and kernel-based methods such as Moment Tensor
Potential (MTP)!*® and Atomic Cluster Expansion (ACE)'0, offer
interpretable and systematically improvable representations of the
PES. These approaches typically require less training data than deep
neural networks and permit rigorous error estimation, making them
particularly appealing for catalytic studies where generating high-
fidelity training datasets is computationally expensive.

5.2 Fitting Methods of Neural Network Force Field

Neural networks are mathematical models that mimic the
structure and functioning of neurons in the human brain. Typically,
these models consist of an input layer, hidden layers, and an output
layer, with each hidden layer containing a set of interconnected
neurons. Figure 8b illustrates a simple neural network model, where
each input is progressively transformed through neurons in the
hidden layers before reaching the output. The conversion between
neurons is achieved by the following formula:

Y = f(WX +b) = f(Zity wix; + b) (17)
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where x represents the input from the preceding layer, w denotes
the weights, b is the bias term, and f signifies the activation function.

In neural network force field, the input consists of the localized
chemical environment information of each atom, and the
corresponding atomic energy is obtained through the mapping
between neurons, as shown in Eq. (18-20).

Yy = f(W:X +by) = f(Z, wlx; + by) (18)
Y2 = f(W2Y1 +ba) = f(Zis wfyi +b2) (19)
E = f(WsY, + b3) = f(Tiy wiy? + bs) (20)

A notable approximation in this method is the restriction of atomic
interactions within a cutoff sphere. The resulting short-range
potential is well-suited for describing local bonding, even in complex
atomic environments. However, for many systems, long-range
interactions (e.g., electrostatic and dispersion forces) are also
important. To address this issue, like the environment-dependent
atomic energies, the atomic charges also depend on vectors of ACSFs
that describe the atomic environments, and are obtained as outputs
of the atomic charge neural networks. These charges are then used
to calculate the long-range electrostatic energy using standard
methods, such as Coulomb’s law or the Ewald summation. PhysNet®®
is a prototypical example of this class of methods. Although this
method incorporates electrostatic interaction calculations, it relies
on atomic charges determined solely by the local chemical
environment, which limits its accuracy in describing non-local effects.
To overcome this limitation, methods such as charge equilibration
neural network technique (CENT)!®! have been developed to
determine atomic charges based on the global environment,
effectively addressing non-local interaction challenges. This method
also uses ACSF vectors to describe the atomic environment as input

This journal is © The Royal Society of Chemistry 20xx
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to the neural network. The key difference lies in its output, which is
the electronegativity values that are subsequently used in a charge
equilibration scheme to determine atomic charges.

Compared to traditional neural network force fields that rely on
manually designed fixed descriptors, graph neural network force
fields developed recently demonstrate superior generalization
capabilities and dynamically adapt to varying topological structures.
NequlP exemplifies this approach by employing an E(3)-equivariant
architecture to accurately model atomic interactions®?. In this
framework, atoms serve as nodes, while edges represent
interactions between a central atom and its neighbors within a cutoff
radius, forming an atomic graph. NequlP operates directly on these
graphs, with features that transform equivariantly under three-
dimensional rotations, translations, and reflections. This geometric
equivariance allows the network to inherently respect physical
symmetries, enhancing data efficiency and prediction accuracy.
Through multiple layers of equivariant message passing that update
node and edge features, NequlP effectively captures complex many-
body interactions and anisotropic effects essential for realistic
molecular and materials simulations. Similar to NequlP, methods
such as MACE®® and Allegro®? are also graph-based architectures that
model interatomic interactions through message passing schemes,
enabling the explicit treatment of many-body effects.

During the training process of neural network, the weights W; and
biases b; are initialized randomly and optimized to minimize a loss
function that quantifies the difference between the predicted values
and the reference data. The primary focus is typically on two
indicators: the system's potential energy and the atomic forces.
Commonly used loss functions include the MAE and RMSE. The
smaller the MAE or RMSE on the test set, the more accurate the
model's predictions.

In some cases, additional terms are included based on the
system’s properties; for example, for solid material systems, a stress-
related loss function term may be added. In addition to the weights
W; and biases b; that are determined during training for a given data
set, model training also involves selecting hyperparameters, such as
the number of hidden layers and neurons per layer. In theory, if the
number of hidden layers and neurons per layer is sufficiently large,
the model can output energy with arbitrary precision. However, too
many hidden layers and neurons can significantly increase the
computational cost. Therefore, selecting appropriate
hyperparameters is crucial for the accuracy and efficiency of the
model. Hyperparameters are typically optimized using exhaustive
search schemes like grid search or random search, often combined
with informed guesses for suitable search ranges. Currently, for
many hyperparameters, model performance remains fairly robust
for small changes, and defaults perform well across different data
sets.

Before optimizing any hyperparameters, the test set must be
separated from the available reference data, and the remaining data
is then divided into training sets and validation sets. This separation
is essential because, in force field applications, the structures are not
included in the training data, so the model must be trained capable
of predicting unseen data. Therefore, for each trial combination of
hyperparameters, the model is trained on the training data, and its
performance is evaluated on the validation set to estimate the
generalization error. The best-performing model is then selected. To
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enhance the model's generalization ability, k-fold cress-validation
method is also used. For more complex ne@talWERREPRSATAENS
additional considerations are required, and further detailed can be
found in the summary by Tokita et al.162

Training ML force fields often relies on large amounts of high-
quality data, which typically demands expensive QM calculations. To
reduce training costs, several methods for optimizing data
acquisition have been developed. One approach is to generate initial
data using less expensive classical molecular dynamics simulations,
followed by selecting a minimal subset for more computationally
expensive ab initio calculations'®3. Additionally, strategies such as
active learning and enhanced sampling can further improve
efficiency%4. Active learning significantly reduces data requirements
by intelligently selecting the most informative data points for
labeling, while enhanced sampling techniques (e.g., meta-dynamics,
umbrella sampling) can effectively capture rare events and improve
the coverage of reaction paths. By combining these methods, data-
efficient ML force fields can be developed, enabling construction of
high-precision PES with limited data conditions.

The ML force field models typically rely on local structural
information, such as interatomic distances and angles, to predict the
PES. However, the traditional model tends to overlook long-range
electrostatic interactions between charged particles in the system.
As a result, traditional models based on local structural features still
faces challenges when studying systems (such as clusters, interfaces,
and gas-phase systems) that are significantly influenced by long-
range electrostatic interactions. To address this, researchers have
incorporated a long-range electrostatic interaction term into the
traditional model, learning the hidden variables in the local atom
descriptor and applying Ewald summation to account for these
interactions!®>167, This approach has been successfully validated in
systems such as charged polar molecules and biological
macromolecules. Additionally, another challenge with ML force
fields is that the system's structural features can change under
different environmental conditions. For example, variations in
coordination atoms, temperature, pressure, or solvents can
significantly affect the structure and interactions of molecules,
making it challenging for a model trained under one set of conditions
to transfer efficiently to another. In contrast to the parameter
transferability observed in classical force fields and the ReaxFF force
field for similar systems, ML force fields, particularly those based on
neural networks, generally lack parameter transferability. As a result,
the model needs to be retrained for new systems.

To improve learning efficiency and accuracy on new systems or
tasks while reducing reliance on expensive high-quality training data,
transfer learning strategies have proven effective. This process
mainly includes pretraining followed by fine-tuning, incremental
learning, and active learning—assisted transfer. Typically, foundation
models such as MACE-MP-0'%8 are first pretrained on large-scale
general datasets, like the Open Catalyst Project, to capture universal
physicochemical features. They are then fine-tuned to rapidly adapt
to specific systems, thereby reducing the demand for high-quality
training data. Additionally, incremental learning enables continuous
model updates as new data become available, preventing the
forgetting of previously learned knowledge. Active learning
incorporates uncertainty evaluation to selectively sample high-value
data, enhancing training efficiency'®®. These strategies, when
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combined, effectively facilitate the rapid deployment and efficient
application of ML force fields across diverse catalytic and materials
systems.

5.3 Applications of Machine Learning Force Fields

The advantage of ML force fields lies in their ability to achieve
accuracy comparable to that of QM, while being significantly faster
than QM methods. These simulations have been widely applied to a
variety of systems, including molecular clusters’?, solid materials’
172 solutions!’® 174, and biomolecules®. Additionally, ML force fields
are particularly well-suited for simulating reactive dynamic
processes. To illustrate the potential of ML force fields in catalysis,
this paper will focus on three primary application cases: the stability
of supported metals, catalytic reaction processes, and material
structure prediction.

The surface energy of metal nanoparticles in the heterogeneous
catalytic reaction is high, making sintering more likely, which
subsequently leads to catalyst deactivation. A common solution is to
disperse the nanoparticles on the surface of a substrate. The
construction of PES by neural networks offers comparable accuracy
to QM but are several orders of magnitude faster, making it suitable
for long-term simulations of nanoparticle sintering processes. To
explore the influence of substrate on sintering behavior, Li et al.
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simulated the agglomeration process of gold nanoparicles.en silica
and ceria surfaces using neural networkstbdséd 1eedpopetentid
molecular dynamics (DPMD)5, The DPMD simulation results (Figure
9a) showed that small gold nanoparticles are more likely to migrate
on the surface of silica and rapidly merge with large nanoparticles.
Similarly, on the flat CeO,., (111) surface, small gold nanoparticles
also migrate and agglomerate. In contrast, gold nanoparticle at the
step site of CeO,, (111) is highly stable, with no significant migration
during the simulation period. Further analysis revealed that the
migration of the small particles is affected by the interaction
between the metal and the support. Similar to hydrophilic behavior,
gold nanoparticles on ceria exhibit smaller contact angles compared
to silica, especially on step site of surface. These simulation results
were also verified by the experimental characterization. The rapid
migration of gold nanoparticles on the surface of silica was observed
using sequential high-resolution TEM (HRTEM), where all
nanoparticles merged into a single particle. Conversely, Au
nanoparticles on the surface of ceria were stabilized at the step site.

The precision and speed with which PES is constructed using
neural networks enable the simulation of more MD trajectories for
the reaction process. For example, Jiang et al. investigated the
equilibration dynamics of hot oxygen atoms following the
dissociation of O, on Pd(100) and Pd(111) surfaces using MD
simulations based on a scalable neural network force field'’¢. By
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Figure 9 (a) Snapshot images from DPMD simulations of Auj,g+Aus,+Aus,/SiO, at 500 ps and Auqys+Aus,+Aus,/Ce0,.,-step at 10 ns. (b) Time-
resolved HRTEM images showing Au/Ce0,(111) image at 120 s and Au/SiO, at 416 s [Reprinted with permission from ref. 168. Copyright
2022 American Chemical Society]. (c) Evolution of atomic oxygen positions during representative trajectories of postdissociation dynamics
of O, on Pd(111) and Pd(100) at 160 K, leading to different equilibrated distances [Reprinted with permission from ref. 169. Copyright 2023
American Chemical Society]. (d) Ternary Zn-Cr-O phase diagram. The green region indicates compositions with the spinel-type skeleton
structure as the global minimum; the blue circles labelled by numbers represent the composition. Only the spinel ZnCrO phases in the red
dashed triangle are thermodynamically favored (see f). (e) Structure motifs of the spinel ZnCr,04 and Zn3Cr305 bulk phases. (f) Convex hulls
for all the ZnCrO structures indicated by the blue line. The blue triangles and black circles represent structures with negative and positive
formation energy relative to the ZnO and CrO, phases, respectively [Reprinted with permission from ref. 171. Copyright 2019 Springer
Nature].
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analyzing hundreds of trajectories, they found that, on both surfaces,
oxygen atoms produced by oxygen dissociation tend to neighboring
sites and perform a random-walk-type motion. This mechanism
results in a finite distance distribution of equilibrium atoms, which is
consistent with experimental observations. And the initial molecular
orientation and surface thermal fluctuations have significant effects
on the overall dissociation kinetics. Similarly, a study on the
decomposition dynamics of formate (HCO,) on Cu surfaces
demonstrated the application of neural network force field in
catalytic process'”’. Based on globally accurate high-dimensional PES
fitted with density functional theory data, the study predicted the
mean translational energy distribution and angular distribution of
desorbed CO, on Cu(111) and Cu(100) surfaces. Additionally, the
decomposition of HCOOH on different Cu surfaces is structurally
sensitive due to different surface repulsion. These studies represent
a significant advancement in modeling surface reactions using ML
force fields, providing a more comprehensive understanding of the
state of reactive species on catalyst surfaces and improving theory-
experiment agreement.

ML force fields can also be used to predict the composition and
structure of materials. For example, the thermodynamic phase
diagram of metal oxide alloys remains largely unknown due to their
compositive variability and associated atomic structural complexity,
as does the catalytic kinetics on different surfaces of different
compositions. By combining a global neural network potential with
stochastic surface walking global optimization, Liu et al. investigated
the relationship between the structure of ternary zinc-chromium
oxide (ZnCrO) catalysts and the performance of syngas (CO/H,)
conversion'’®, They explored the PES structure under different
components (ZnCr,0) and constructed the ternary Zn-Cr-O phase
diagram (Figure 9d). Further calculation of the formation energy
revealed the presence of a small, stable composition island in phase
diagram, where the oxide alloy crystallizes primarily in a spinel phase
(Figure 9e-f). Two representative crystal phases (ZnCr,0; and
Zn3Cr30g) were selected for further analysis of the syngas conversion
mechanism. Reaction kinetics results indicated that a planar [CrO,]
site, dynamically formed under reaction conditions, is the active
center for methanol production. This planar [CrO,] is only present
when Zn:Cr exceeds 1:2, after the appearance of [ZnOg],
demonstrating that ZnCrO catalysis is highly sensitive to the Zn:Cr
ratios. This work highlights the role of ML force fields in predicting
the composition and structure of materials, providing valuable
insights into the connection between atomic structure and its
properties.

Overall, ML force fields have rapidly emerged as a transformative
tool for heterogeneous catalysis, offering near-quantum accuracy at
a lower computational cost. By learning from large and diverse QM
datasets, ML force fields can capture complex chemical
environments, including surface reconstructions, multi-element
active sites, adsorbate-induced electronic effects, and reaction
pathways, while enabling simulations at scales inaccessible to direct
QM methods. Recent advances in equivariant graph neural networks
(e.g., MACE, NequlP, GemNet) and databases (e.g., MP, OCP) have
further improved data efficiency, accuracy, and transferability across
different catalyst surfaces and reaction intermediates. Notably,
MACE-OFF7® represents a significant advance by extending the
MACE architecture to a large-scale pretraining paradigm, analogous
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to foundation models in natural language processing, MAGEQEF;is
trained on millions of atomic environméhXts 18PaANREShivérse
elements, bonding motifs, and structural phases. By leveraging this
pretraining, the model can be adapted to new catalytic systems with
minimal fine-tuning or, in some cases, without any additional
retraining. And MACE-OFF has demonstrated near-DFT accuracy
across a range of downstream tasks, including molecular dynamics,
adsorption energy predictions, and surface reaction energetics, with
orders-of-magnitude lower data requirements compared to
conventional task-specific ML force fields. Moreover, SO3LR!&
further pushes the frontier by combining SO(3)-equivariance with
explicit long-range interaction modeling. This architecture allows the
model to capture electrostatics, polarization, and other nonlocal
effects that are critical in catalytic environments but often neglected
in standard ML force fields. Unlike most equivariant graph neural
networks, which focus primarily on short-range many-body
interactions, SO3LR incorporates efficient formulations of long-range
physics directly into the network, enabling accurate treatment of
charged surfaces, polar adsorbates, and extended catalytic interfaces.
Importantly, SO3LR achieves these capabilities while remaining
computationally scalable to large systems, positioning it as a
promising candidate for modeling realistic catalytic reactors or
electrochemical interfaces.

Despite their promise, ML force fields face significant challenges.
Their predictive power is fundamentally limited by the quality,
diversity, and representativeness of the training data, making out-of-
distribution generalization a key bottleneck. Transferability across
phases, surface terminations, and adsorbate coverages often
requires retraining or fine-tuning, and constructing high-quality
datasets for reactive, charged, or open-shell catalytic systems can be
computationally prohibitive. Moreover, most current ML force fields
lack explicit treatment of long-range electrostatics, charge transfer,
and excited-state effects, which are critical in electrocatalysis,
photocatalysis, and plasmon-assisted catalysis. Benchmarking across
relevant catalyst classes and establishing rigorous uncertainty
quantification protocols remain underdeveloped.

Looking forward, the integration of active learning, transfer
learning, and foundation models (e.g., those developed in the OCP)
offers a promising route to enhance data efficiency and
generalization. Hybrid simulations that couple ML force fields with
reactive force fields or on-the-fly quantum refinement can provide a
balanced description of reactivity and long-timescale dynamics.
Furthermore, expanding benchmark datasets to include realistic
catalytic conditions such as solvent effects, applied potentials, and
high coverage regimes, will be essential to closing the gap between
ML force field predictions and experimental observables, thereby
enabling their widespread adoption in predictive catalyst design.

6 Summary and Outlook

In summary, this review provides an introduction to the principles
of force field-based PES, highlighting three main types of force fields,
their corresponding fitting methods and application. The evolution
of force field-based PES reflects a progression from simplified models
to more precise, comprehensive, and adaptable approaches.
Furthermore, this review offers a detailed comparison of the
strengths and limitations of each type, alongside a discussion of their
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applicability to different systems, with a particular focus on
heterogeneous catalysis. These advancements encompass studies on
supported metal nanoparticle morphology, interfacial molecule
distribution and diffusion, catalytic reaction processes, and the
prediction of catalytic materials, though they do not represent an
exhaustive list of all possible examples. By leveraging the cost-
effectiveness of force field methods, researchers have overcome the
limitations of QM, enabling simulations of previously inaccessible
phenomena and significantly advancing scientific understanding.

Although force field methods have seen widespread application,
they still face several challenges that lead to the inconsistency
between the experimental results and the computational
simulations. The key to solve this issue lies in improving the precision
of constructing PES by force field. The first challenge is in database
construction. Since experimental data are often costly to obtain,
force field fitting typically relies on more readily available
computational data. However, computational data often involves
too much simplification, which can compromise the accuracy of the
PES. To address this, a hybrid dataset can be built, where
computational data are used to fit the force field, and the resulting
model is validated and fine-tuned using experimental data, thereby
reducing the gap between simulation and experiment. The second
challenge concerns the architecture of force field model. QM
methods achieve accuracy through electronic-level descriptions,
while force field methods still have shortcomings in electrostatic
interactions. For example, the QEq method, which is primarily used
for static charge distribution estimation, but it cannot deal well with
the redistribution and transfer of electrons in non-equilibrium
systems such as chemical reactions. Therefore, future force field
models should aim to improve charge equilibration methods, so as
to explicitly consider electrostatic interactions and non-local effects.
Furthermore, the tradeoff between the accuracy and computational
cost in force field fitting needs to be considered. Force field fitting
typically requires significant computational resources and data,
especially for high-precision fitting. Traditional fitting methods may
require thousands of simulations to adjust and optimize parameters,
making the process time-consuming. As a solution, the concept of
meta-learning could be introduced to fit force fields for new systems.
By selecting optimal algorithm and parameter configurations based
on knowledge acquired from historical fitting tasks, the meta-
learning model can provide effective fitting effect and strong
generalization capabilities, even in the case of sparse data.

Beyond the general limitations discussed above, several catalysis-
specific challenges remain urgent. First, the transferability of force
fields, particularly ML force fields, across different phases, chemical
compositions, and surface states is often limited by the diversity of
their training data. Addressing this requires multi-fidelity and
transfer learning strategies that leverage both large general-purpose
datasets (e.g., MP, OCP, MD17) and system-specific fine-tuning.
Second, long-range electrostatics and charge transfer remain difficult
to capture accurately in heterogeneous environments, especially
under dynamic or reactive conditions. Extensions such as polarizable
models and explicit charge equilibration schemes within ML
frameworks show promise. Third, electrochemical environments,
involving applied bias or constant potential conditions, introduce
additional complexity for reactive force fields and ML force fields,

necessitating integration with constant potential molecular
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dynamics and implicit/explicit solvation models. Rourthi.fitting
procedures and data generation for high-dipfidAsierdiDpotentialk
remain computationally expensive, and active learning, data
selection, and meta-learning approaches offer routes to reduce cost
without sacrificing accuracy. Finally, benchmark datasets such as the
OCP, MD17, and MP are critical not only for training but also for
enabling reproducible model comparisons, helping guide community
progress toward more robust and transferable force fields.
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