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Modeling Potential Energy Surface by Force Fields for 
Heterogeneous Catalysis: Classification, Applications, and 
Challenges
Chenglong Qiu,a Tore Brinck *b and Jiacheng Wang *a

The concept of the potential energy surface (PES) in computational simulations is essential for studying material properties 
and heterogeneous catalytic processes. However, constructing the PES using quantum mechanical methods is 
computationally expensive and typically limited to small systems. Force field methods, which rely on quantum mechanical 
data, use simple functional relationships to establish a mapping between system energy and atomic positions or charges. 
Force field methods are more efficient for handling large-scale systems, such as catalyst structures, adsorption and diffusion 
of reaction molecules, and heterogeneous catalytic processes. To further promote in-depth research in this field, this review 
introduces the classification, development, and characteristics of various force field methods including: classical force fields, 
reactive force fields, and machine learning force fields. It summarizes the forms, fitting methods, and distinct periods of 
these force field methods. Additionally, these force field approaches are compared in terms of their applicability, accuracy, 
efficiency, and fitting methods. Finally, the optimization and challenges of force field methods in constructing PES are 
discussed. It is expected that this review will assist researchers in selecting and applying different force field methods more 
effectively to promote the in-depth understanding of catalytic reaction mechanisms and the efficient design of catalysts.

1 Introduction
Computational simulation has emerged as a powerful tool for 

investigating chemical reaction processes and the physical and 
chemical properties of materials1-6. The potential energy surface 
(PES), based on the assumption that electron and nuclear motions 
can be separated, is a crucial concept in computational simulations, 
representing the total energy of a system in a certain state7, 8. The 
PES is widely applied in fields such as physics and chemistry, 
particularly in their theoretical subfields. From a geometric 
perspective, the energy landscape is the plot of the energy function 
over the configuration space of system. It is used to explore 
properties of atomic structures, such as determining the minimum 
energy configuration of a molecule or calculating reaction rates9, 10. 
Additionally, in dynamic simulations based on Newton's laws, the 
force 𝐹𝑖 exerted on each atom must be known at each time step for 
numerical integration of the equations of motion11. This force can be 
derived from PES by using the relation 𝐹𝑖 = ∂𝐸 ∂𝑟𝑖, where the force 
is the negative gradient of the potential energy 𝐸 with respect to the 
atomic position 𝑟𝑖. Forces are also used in geometric optimization to 
identify the special structure of the system that corresponds to the 
critical point on the PES12, 13. For instance, a saddle point represents 
a transition state—the peak energy point along the reaction 
coordinate, which determines the most energetically favorable path 

between reactants and products. The magnitude of the reaction 
energy barrier can be calculated as the energy difference between 
the saddle point and the two energy minima it connects. Therefore, 
the PES is an essential tool for analyzing reaction processes and 
predicting the system evolution. The primary challenge lies in 
constructing the PES both efficiently and accurately.

Quantum mechanics (QM) and force field method are the primary 
methods for constructing PES (Figure 1a). For smaller systems, PES 
constructed by QM can accurately describe molecular properties, 
crystal structures and microscopic reactions. Over recent years, QM-
based simulation methods have gained increasing popularity, partly 
due to the development of some software packages that facilitate 
the generation of PES. For example, periodic density functional 
theory (DFT) codes such as VASP and CP2K are flexible for extended 
systems, albeit requiring external automation or scripting for 
reaction-path sampling14, 15. And codes such as Q-Chem and Gaussian 
offer built-in tools for PES scans along reaction coordinates16, 17. This 
increased availability has proven particularly useful in material 
design, where QM often serves as a theoretical guide and screening 
tool18, 19. However, the computational cost inherent to QM-level 
calculations severely limits the scalability of simulations20. In QM, the 
electronic structure and energy of a system are determined by 
solving the Schrödinger equation (Figure 1b), with the analytical 
solution applicable only to two-body systems, such as hydrogen 
atoms. For multi-atom systems, several methods (e.g., semiempirical 
wavefunction21, density functional theory22, CCSD(T)23) have been 
developed to approximately solve the Schrödinger equation. Despite 
these approximations, obtaining a precise numerical solution 
remains computationally demanding task. For instance, CCSD(T), a 
high-precision ab initio method for electron correlation, scales ∝ N7 
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with the number of atoms N24. Consequently, constructing a PES 
using QM to model the dynamic evolution of large chemical systems 
containing diverse molecules is impractical.

In contrast to QM, the force field method uses a simple functional 
relationship to establish the mapping between the system’s energy 
and the atomic positions and charges (Figure 1b). Compared to 
solving the Schrödinger equation, calculating system energy using 
the force field method is significantly less complex, allowing it to 
handle large-scale systems (e.g., polymers, biomolecules, and 
heterogeneous systems) more efficiently. The force field method 
dates back to 192425, when Jones proposed a molecular model 
involving a repulsive force 𝜆𝑛𝑟―𝑛, and an attractive force 𝜆3𝑟―3. 
Building on this, the Lennard-Jones potential function was developed 
to describe interactions between non-bonded atoms or molecules26, 

27. With the advancement of computational simulations, increasingly 
accurate forms of potential functions have been introduced. Based 
on their forms and the types of systems they apply to, current force 
fields are categorized into three types: classical force fields, reactive 
force fields, and machine learning (ML) force fields. The construction 
of a force field-based PES primarily relies on energy values calculated 
from discrete geometric configurations by QM, followed by fitting a 
PES using these discrete data points. Thus, the accuracy of the force 
field method is influenced by the quality of the QM calculations. 
Additionally, due to errors inherent in the fitting process, the force 
field method cannot achieve the precision of QM (Figure 1c). 
Consequently, force field methods often trade computational cost 
for accuracy, enabling simulations of scales that are orders of 
magnitude beyond the reach of QM28. 

Various types of force fields and their applications have been 
extensively reviewed in the literatures. For examples, Wang et al. 
summarized the application of different force field methods in 

mechanism exploration and performance prediction of 
electrocatalysis29. Thomas and Han et al. provided an overview of the 
development and application of the ReaxFF reactive force field30, 31. 
Oliver et al. presented a detailed mathematical and conceptual 
framework of ML force fields, along with their applications and the 
chemical insights they offer28. Additionally, Cheng et al. elaborated 
on the principles and application of ML force fields, in conjunction 
with global optimization algorithms, to identify in-situ active sites in 
heterogeneous catalysis32. However, most reviews focus on the 
application of a single force field28, 30, 33-38, and lack the comparison 
of different force fields, particularly in terms of fitting methods and 
their applicability to various systems39-41. Furthermore, the principle 
and development of the PES constructed using force field methods 
are also inadequately summarized. Therefore, a comprehensive 
review is necessary. By summarizing the development trends of force 
field methods and the characteristics of different force fields, it can 
not only assist researchers in selecting the most suitable force fields 
for specific applications, provide valuable theoretical guidance for 
experimental work, but also foster innovation in new methods to 
accelerate progress in this field.

To this end, this review systematically summarizes the 
development and application of these three force field methods 
(classical force fields, reactive force fields and ML force fields), and 
compares them in terms of applicable systems, computational 
accuracy and cost, fitting methods, and other relevant aspects. For 
each force field, we discuss its general form in detail and outline the 
corresponding parameterization strategies. Examples of various 
applications are provided to illustrate the range of systems that can 
be modelled with the respective force field. Finally, we discuss future 
directions for improvements and potential challenges in constructing 
PES using force field method.

Figure 1 (a) Methods and applications for constructing potential energy surfaces using quantum mechanics and force field methods. (b) 
Principles of calculating system energy using quantum mechanics and force field methods. In quantum mechanics, the electronic structure 
and system energy are determined by solving the Schrödinger equation. In the force field method, the system energy is a mapping of atomic 
positions and charges. (c) Comparison of the accuracy and computational cost of various quantum mechanics and force field methods.
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2 Classification and Comparison of Force Fields 
(Classical Force Fields, Reactive Force Fields, and 
Machine Learning Force Fields)
2.1 Introduction to Various Force Fields

According to the Born-Oppenheimer approximation, the energy of 
a molecule can be expressed as a function of the spatial coordinates 
of the individual atoms, each characterized by distinct atomic 
properties or parameters7, 42. Consequently, a molecular force field 
consists of two components: a functional form that describes the 
interactions between atoms and the force field parameters specific 
to each atom. Based on their function forms and applicable systems, 
current force fields are categorized into three types: classical force 
fields, reactive force fields and ML force fields. 

The classical force fields calculate a system’s energy using 
simplified interatomic potential functions. This approximation is 
well-suited for modeling nonreactive interactions, such as bond 
stretching and angle bending (represented by harmonic functions), 
dispersion force (represented by the Lennard-Jones potential), and 
electrostatic interactions (represented by atomic charges). Currently, 
a variety of classical force fields with different simplified formulas 
have been developed to suit for different types of molecular systems. 
Classical force fields typically contain between 10 and 100 
parameters, which often possess clear physical meanings and are 
relatively easy to interpret (Table 1). However, due to the simplicity 
of their formulas, such descriptions are inadequate for modeling 
changes in atom connectivity such as bond breaking and formation 
during reactions, which also lead to a reduction in calculation 
accuracy. Despite this limitation, this method significantly 
accelerates computations (Figure 1c). The simulation length scale can 
reach 10-100 nm for extended systems, with time scales ranging 
from tens to hundreds of nanoseconds, and occasionally extending 
to the microsecond range on modern hardware. Therefore, the 
classical force fields are particularly suitable for describing the 
motions of atoms or molecules driven by their interactions. 
Thermodynamic or kinetic properties such as adsorption, diffusion, 
dissolution, separation and stress-strain can be further studied 

through statistical analysis of the motion behavior of particles43-45. 
For example, the calculation of the diffusion coefficient from 
molecular dynamics (MD) simulations involves simulating particle 
motion, extracting the time series of particle positions, and 
calculating the root mean square displacement (MSD) over time: 

𝑀𝑆𝐷 = 1
𝑁

∑𝑁
𝑖=1 𝑟𝑖(𝑡) ― 𝑟𝑖(0)

2
. The diffusion coefficient is then 

extracted using Einstein’s relation: 𝐷 = lim
𝑡→∞

𝑀𝑆𝐷
6𝑡

.

The limitations of the classical force fields in describing the 
reactive processes motivate the inclusion of connection-dependent 
terms, resulting in the development of reactive force fields. Bond 
order is a key concept in reactive force fields, describing the strength 
and properties of bonds between atoms. The bond order value is 
calculated using specific equations, and it is dynamically adjusted 
based on the relative positions of atoms and their local environment. 
Therefore, reactive force fields can describe the breaking and 
formation of chemical bonds, as well as the conversion between 
reactants and products, enabling the modeling of reaction processes 
on a large scale. Their parameters are derived from a combination of 
physical principles and empirical insights, often involving some 
degree of abstraction. The number of parameters typically ranges 
from 100 to 500. And reactive force fields can incur a relatively high 
computational cost (approximately 10-100 × that of classical force 
fields). The typical simulation length scale for condensed-phase 
reactive systems is 5-20 nm, with accessible time scales of 1-10 
nanoseconds for large systems. In particular, ReaxFF, the most widely 
used reactive force field, can simulate reaction events at the 
interfaces of solid, liquid, and gas phases because the parameters for 
each element in the force field can be transferred across different 
phases. For example, in the simulation of an oxygen evolution 
reaction (OER) catalyzed by a metal oxide, the oxygen atoms use the 
same parameters, whether they are in the gas phase as O2, in the 
liquid phase within an H2O molecule, or bound in a solid metal oxide. 
Additionally, since the catalytic process involves not only the reaction 
but also the migration of molecules, such transferability allows 

Table 1 The parameter space complexity of classical force fields, reactive force fields and machine learning force fields.

Force field type
Typical 

number of 
parameters

Parameter type diversity Interpretability Origin of parameters Optimization 
complexity

Classical force 
fields (e.g. UFF) 10-100

Mostly physical (e.g., bond 
lengths, angles, torsions, LJ 

terms, charges)

High (each term 
corresponds to a 
physical quantity)

QM datasets/ 
Experiments; 

empirical fitting

Low (smooth, 
low-dimensional 

search space)

Reactive force 
fields (e.g. 

ReaxFF)
100-500

Mixed physical and 
empirical (e.g., bond-order 

coefficients, 
valence/overlap terms, 
van der Waals, charge 

equilibration)

Moderate (some 
terms abstracted 

from physical 
meaning)

QM datasets; 
targeted fitting

Moderate (rugged 
parameter landscape 

with many 
cross-couplings)

103-106 
(standard)

QM datasets; active 
learningMachine 

learning force 
fields (e.g. 

neural network 
potential)

>106 
(emerging)

Mathematical 
representations without 
fixed physical form (e.g., 

weights in NN layers, 
descriptor parameters)

Low (features/ 
descriptor hard to 

map to physical 
meaning)

Large-scale 
pretraining (e.g., 

OCP, MP); transfer 
learning

High (non-convex, 
high-dimensional 

optimization often 
requiring large 

datasets)
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ReaxFF to simulate the influence of dynamic factors, such as 
solubility and diffusivity, on the catalytic process. As a result, ReaxFF 
can simulate systems involving multiphase complex processes.

Classical force fields and reactive force fields rely on predefined 
mathematical functions to describe atomic interactions, often 
lacking the flexibility and accuracy to model complex chemical 
environments. In contrast, ML force fields represent an emerging 
class of computational models that use ML algorithms to construct a 
system's PES. These data-driven approaches model the PES directly 
from data, enabling them to capture intricate interactions and 
chemical behaviors with high accuracy. The number of parameters 
typically ranges from 103 to 106 (for the emerging 
foundational/universal ML force fields, the number of parameters 
can even exceed 106), and they are represented through 
mathematical or ML models without fixed physical forms. ML force 
fields can achieve quantum-level accuracy within the training domain, 
but their performance is constrained by extrapolation limitations and 
computational scaling (often 10-100 × the cost of reactive force 
fields). This high precision comes at the cost of greater 
computational expense compared to the other two force fields. To 
reduce the fitting cost, researchers apply transfer learning to 
emerging foundational or universal ML force fields by leveraging pre-
trained models, such as those from the Open Catalyst Project (OCP) 
and Materials Project (MP). The simulation length scale depends 
strongly on descriptor efficiency, generally reaching 2-10 nm in 
current implementations. The typical time scale is 0.1-1 nanoseconds 
for extended systems, although linear-scaling ML force fields may 
extend this range. Nevertheless, ML force fields are more efficient 
than QM and are thus applicable to large-scale systems (Figure 1c). 
For example, water and aqueous systems often involve complex 
interactions, such as hydrogen bonding, that classical force fields 
may not accurately capture. As an efficient alternative to QM, 
DeepMD employs neural networks to model complex atomic 
interactions and construct PES to predict hydrogen bond networks, 
solvation effects, and the diffusion behavior of water46, 47. Due to 
their accuracy and efficiency, ML algorithms like neural networks, 
Gaussian processes, and ridge regression are increasingly applied in 
areas such as catalysis, materials science, and drug design48-50. 
However, ML force fields also have limitations, including high fitting 
costs, poor model generalization, and lack of interpretability. 

Considering the current state of force field development, we 
believe that no single method currently bridges all relevant catalytic 
scales (from atomic events ~fs, Å to mesoscale ~ms, μm). Therefore, 
researchers often adopt hybrid simulation strategies. For example, 
the QM/MM approach applies ML force fields or reactive force fields 
to the key reactive region, while describing the remaining parts with 
classical force fields51. Another strategy is coarse-graining41, in which 
coarse-grained parameters are derived from atomic-scale ML force 
fields or reactive force fields trajectories, thereby extending 
simulations to the μs-ms regime or beyond. However, ML force fields 
augmented with active learning and hybrid coupling show the most 
promise for unifying length- and timescales in heterogeneous 
catalysis simulations33, 52. 

2.2 Development Periods for Force Fields

After establishing a fundamental understanding of force field 
concepts and classifications, we will further explore the development 
of force field methods. This involves reviewing their evolution 
process, analyzing key advancements and breakthroughs across 
different periods, and identifying the underlying driving forces 
behind their continuous development to help us better understand 
the characteristics and applicability of various current force fields. 
Lennard-Jones, ReaxFF, and neural networks are selected as 
representatives of classical force fields, reaction force fields, and ML 
force fields, respectively. Figure 2 shows the number of publications 
in molecular simulations that have utilized these approaches. Based 
on the trends in published number over time, it can be found that 
there are three key nodes (2003, 2011 and 2017) in the development 

of force fields.
Before the 21st century, force fields were typically based on 

simplified potential energy functions to describe atomic interactions. 
The classical force fields, represented by the Lennard-Jones 
potential, was introduced early on and proved suitable for most non-
bonding interaction due to their simplicity. Building on this 
foundation, force fields were further developed to include additional 
physical details, such as bond stretching and bond angle bending, 
making them more applicable to molecular systems. Several classical 
force field models have been developed in this period, such as 
AMBER53, CHARMM54, OPLS55, etc. However, during this early stage, 
the body of related research was limited. With advancements in 
computational power and molecular simulation methods in the 21st 
century, classical force fields began to account for more complex 
multi-body effects and environmental factors, leading to their 
broader adoption. And These force fields were further refined to 
include polarization effects between atoms, enhancing both their 
accuracy and applicability. Additionally, to better describe reactive 
processes, van Duin introduced the ReaxFF force field, based on the 
concept of bond order in 200156. Since then, with ongoing 
improvements in ReaxFF parameters, its transferability has become 
increasingly evident, making it widely used in fields such as 
heterogeneous catalysis, atomic deposition, organic molecule 
combustion, and liquid-phase chemistry after 2011.

Figure 2 Publications in molecular simulations that have utilized 
Lennard-Jones (typical form in classical force field), ReaxFF (typical 
form in reactive force field) and neural networks (typical form in 
machine learning force field).
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The advent of powerful ML algorithms significantly enhanced the 
accuracy of PES construction. Although Blank et al. proposed the use 
of neural networks to represent PES for molecule-surface scattering 
in 199557, the development of ML force fields progressed slowly due 
to computing power limitations. However, in recent years, with 
advances in technology, neural network potentials and other ML 
force fields have seen rapid growth in their application across 
chemistry, physics, and materials science. The evolution of these 
force fields reflects a shift from simplified models to more precise, 
comprehensive, and adaptable approaches. These advancements 
have not only driven research in computational chemistry and 
molecular simulations but also facilitated the application of these 
methods in fields such as chemical engineering and materials science. 

2.3 Fitting Process of Force Field Parameters

The development and evolution of force fields are closely tied to 
the parameter fitting method, and the accurate fitting techniques are 
crucial for the precision of the PES constructed using force field 
method. Currently, many universal force field parameters exist, 
particularly in the classical force field, where various combinations of 
simplified formulas and corresponding parameters have been 
developed to suit different systems. However, for new materials and 
complex systems, the accuracy of universal parameters is often 
limited. In such cases, it becomes necessary to derive the force field 
parameters specific to the system through a fitting approach. The 
process of fitting force field parameters generally follows a standard 
workflow, which can be summarized in three main steps: (1) 
construction of the initial database, (2) selection of the force field 
form, and (3) training of the regression model, as shown in Figure 3. 
By following these steps, the force field method can be applied to 
construct the PES for systems ranging from small to large scales. 

In the database construction phase, the structures and 
corresponding energies of the systems are obtained using an 
appropriate QM method. Since the simulation of PES is both high-
dimensional and complex, and the cost of acquiring high-precision 
data from QM is substantial, it is important to build the database 
with broad coverage while keeping the data set as representative as 

possible. Sometimes, experimental data are also included, such as 
vibrational frequency data obtained from infrared spectroscopy, 
which can be used to fit bond and angle parameters within the 
molecule. Additionally, experimentally measured system properties, 
such as solubility, elastic modulus, and crystallographic data, can be 
employed to calibrate the force field parameters. Regarding data 
volume, ML force fields typically require the largest amount of data, 
while classical force fields require the least. In addition to manually 
constructing databases, various training databases have been 
established during the development of force fields, providing high-
quality reference data for fitting accurate PES. Widely used examples 
include the QM9 dataset for small organic molecules, ANI datasets 
(ANI-1, ANI-2x) for organic chemistry coverage, and MD17 for 
molecular dynamics trajectories of small molecules. In materials 
science and catalysis, databases such as the MP, OCP, and NOMAD 
repository offer large-scale atomistic data for diverse material 
classes and catalytic systems. Additionally, specialized datasets such 
as the COMP6 benchmark set and the Alexandria database provide 
rigorous testbeds for evaluating model performance. These curated 
datasets form the foundation for developing transferable, data-
driven force fields capable of capturing complex chemical and 
physical interactions across broad domains.

The choice of force field form depends on the simulation 
objectives: reaction force fields are preferred for simulating reaction 
processes, ML force fields are selected for high structural accuracy, 
and classical force fields are chosen for efficiency in simulations. The 
regression model training step aims to minimize the difference 
between the predicted and true values of energy and atomic forces, 
which is crucial for accurately fitting the force field parameters. The 
fitting quality is commonly assessed using metrics such as mean 
absolute error (MAE) or root mean square error (RMSE). 

A growing number of benchmark studies have quantitatively 
compared classical, reactive, and ML force fields in terms of accuracy, 
generalizability, and computational efficiency. These studies reveal a 
clear trade-off between accuracy and interpretability, as well as 
between computational cost and flexibility. Classical force fields, 
such as Lennard-Jones or harmonic-bond models, typically yield 
MAEs of 0.5-2.0 eV in energies and >1 eV/Å in forces when 

Figure 3 General process for fitting force field parameters. Based on the initial database, a suitable regression model (gradient descent 
method, genetic algorithm, or neural network) is accordingly selected to derive the desired force field parameters of different force fields 
(classical force field, reactive force field, or machine learning force fields).
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benchmarked against QM references for reactive systems or surface 
chemistry58. A notable exception is the recently developed GFN force 
field, which achieves energy MAEs below 0.2 eV59. Reactive force 
fields, such as ReaxFF, generally outperform most classical models 
for reactive processes, with reported force MAEs in the range of 0.3-
1.0 eV/Å and energy MAEs around 0.1-0.5 eV, depending on the 
quality and scope of training56. However, their accuracy varies 
significantly across chemical systems, and parameter transfer is 
nontrivial. For example, benchmark studies such as Senftle et al. 
highlight ReaxFF's success in hydrocarbon combustion but also point 
to its failure in accurately capturing certain transition-metal surface 
reactions30. ML force fields demonstrate superior performance 
across a range of systems. Widely benchmarked ANI-1x60 and 
sGDML61 models report energy MAEs below 20 meV/atom and force 
MAEs below 0.1 eV/Å for equilibrium and near-equilibrium 
configurations. More recent equivariant models like NequIP62 and 
Allegro63, have reduced force MAEs to below 0.03 eV/Å and energy 
MAEs <10 meV/atom on diverse datasets, including bulk phases, 
surfaces, and transition states. These models often approach DFT-
level accuracy with orders-of-magnitude speedup. Nonetheless, 
these models depend heavily on the quality and diversity of the 
training data, and extrapolation to out-of-distribution chemical 
environments remains a challenge. Additionally, the OCP provides a 
large-scale, standardized benchmark for catalyst surfaces and 
reaction intermediates52. In OCP leaderboard results, ML Force Fields 
such as GemNet64, Allegro63, and MACE65 outperform both classical 
and reactive models by a substantial margin, achieving force MAEs 
as low as 0.035 eV/Å on surface configurations relevant to catalysis, 
compared to >0.2 eV/Å for traditional force fields.

The accuracy and efficiency of different regression models vary. 
For classical force fields, which typically involve a small number of 
parameters, gradient descent methods can quickly fit the 
parameters. In contrast, reactive force fields, which involve a larger 
set of parameters, are more suited to genetic algorithms. ML force 
fields, using algorithms like neural networks, can approximate any 
continuous function with arbitrary accuracy. Their strong fitting 
capability ensures high precision in constructing PES.

Furthermore, it may be possible to train each one of them on 
several out-of-equilibrium configurations to make them more robust 
when performing a more global exploration of the PES. In principle, 
each can be augmented with out‑of‑equilibrium training data; 
however, their ability to incorporate and benefit from out of 
equilibrium configurations differs. For classical force fields, 
parameters are usually fitted to equilibrium or near‑equilibrium data. 
The functional forms are rigid and chemically specific, limiting the 
ability to generalize to far from equilibrium configurations. Extending 
coverage requires manual re‑parameterization. For reactive force 
fields, parameters can be optimized against broader training sets, 
including strained geometries and transition states. However, the 
complexity of cross term interactions can introduce competing 
minima in parameter space, making it difficult to incorporate high 
energy configurations without sacrificing low energy accuracy. 
Achieving robustness away from equilibrium often requires multi 
objective fitting and careful weighting of reactive versus non-reactive 
configurations. For ML force fields, the flexible functional form 
enables accurate interpolation across diverse regions of 
configuration space if trained on representative data. Active learning 

strategies and on‑the‑fly uncertainty detection can systematically 
identify and incorporate under‑represented high‑energy or rare 
configurations. The latest ML frameworks (e.g., equivariant graph 
neural networks62) can incorporate large, heterogeneous datasets 
without hard‑coded chemistry assumptions, making them 
particularly suited to integrating off‑equilibrium data without 
manual re‑design of the potential. 

2.4 Applicability and Limitations of Classical, Reactive, and Machine 
Learning Force Fields in Heterogeneous Catalysis

In heterogeneous catalysis, the accurate modeling of active sites, 
surface reconstruction, charge transfer, and dynamic electronic 
effects remains a significant challenge. Different PES modeling 
approaches (classical, reactive, and ML force fields) offer varying 
capabilities in addressing these catalysis-specific complexities.

Classical force fields generally rely on fixed atom types, rigid 
bonding environments, and static charge assignments. While 
computationally efficient, they are not suited to capture phenomena 
such as bond rearrangement, changes in oxidation states, or surface 
reconstruction. So, their applicability is typically limited to non-
reactive processes or systems where local electronic structure 
remains largely invariant.

Reactive force fields, exemplified by ReaxFF, incorporate bond-
order-dependent interactions and dynamic charge equilibration 
schemes (e.g., QEq66 or ACKS267), enabling them to describe bond 
breaking and formation, as well as approximate charge 
redistribution. These features allow reactive force fields to model 
catalytic reactions, including proton/electron transfer, albeit with 
limited accuracy in systems involving subtle electronic effects or 
complex charge delocalization. Furthermore, their performance is 
often constrained by the parametrization strategy and the empirical 
nature of their functional forms.

ML force fields, trained on high-level QM data, exhibit improved 
flexibility and generality. When trained on sufficiently diverse 
datasets including charged systems, surface reconstructions, and 
transition-state geometries, ML force fields can implicitly learn to 
model charge transfer, hybridization, and active-site-specific 
reactivity. Architectures such as message-passing neural networks 
(e.g., DimeNet++68, Allegro63) or equivariant graph neural networks 
(e.g., NequIP62, MACE65) have demonstrated success in modeling 
chemically complex environments with high fidelity. Some models 
incorporate explicit charge awareness (e.g., PhysNet69, 
SpookyNet70), while others rely on large training sets to implicitly 
encode charge redistribution. Despite their promise, many ML force 
fields still face limitations in modeling long-range electrostatics or 
variable charge states in heterogeneous systems, and ongoing efforts 
aim to combine ML potentials with electrostatic or embedding 
schemes to address these gaps.

Collectively, while reactive and ML force fields represent 
significant progress toward modeling catalytic complexity, no current 
approach offers a fully transferable solution across all catalytic 
scenarios. Future developments will likely benefit from hybrid 
frameworks that combine data-driven potentials with physical 
constraints and electrostatic corrections, tailored for the unique 
demands of catalysis.
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Furthermore, in heterogeneous catalysis, the explicit modeling of 
surfaces introduces several unique challenges beyond those 
encountered in bulk or molecular systems. Long-range effects 
including dispersion forces, electrostatics, and image charge 
interactions, play a crucial role in determining adsorption 
geometries, surface reconstructions, and reaction barriers. 
Accurately capturing dispersion interactions often requires empirical 
or semi-empirical corrections, such as the DFT-D scheme of 
Grimme71, while classical force fields incorporate such effects via 
parameterized functional forms72. For ML force fields, recent 
developments in E(3)-equivariant architectures have enabled more 
explicit incorporation of long-range information into the learned 
potential62. Another layer of complexity arises from open-shell 
systems, which are common in transition-metal surfaces, magnetic 
oxides, and adsorbed radical intermediates. These systems require 
spin-polarized QM references because their electronic and magnetic 
states can change along reaction coordinates. Mapping spin-
dependent interactions into reactive or ML force fields remains 
challenging; however, recent ML architectures have begun to 
address electronic degrees of freedom and spin explicitly. For 
example, SpookyNet introduces electronic-degree-of-freedom and 
nonlocal corrections that improve the description of charge and spin 
dependent effects70. More recent works extend ML potentials to spin 
and magnetization dynamics, enabling ML modeling of magnetic 
materials and nonequilibrium spin forces73, 74. Incorporating these 
developments into ML force fields workflows is important for 
accurate simulations of catalytic surfaces that exhibit open-shell 
character.

To provide readers with a deeper understanding of force fields, the 
following sections offer a detailed overview of three types, focusing 
on their functional forms, parameter fitting methods, and 
applications.

3 Classical Force Fields
3.1 Forms of Classical Force Fields

For classical force fields, the functional forms typically include the 
bond term (bond stretching energy, angle bending energy, dihedral 
angle torsion energy, inversion energy) and the non-bond term (van 
der Waals term, Coulomb term). An example of a universal force field 
function is as follows:

𝐸 = ∑𝑏𝑜𝑛𝑑𝑠
𝑘𝑟𝑖𝑗

2
𝑟𝑖𝑗 ― 𝑟0

𝑖𝑗 + ∑𝑎𝑛𝑔𝑙𝑒𝑠
𝑘𝜃𝑖𝑗𝑘

2
𝜃𝑖𝑗𝑘 ― 𝜃0

𝑖𝑗𝑘                

+ ∑𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠
𝑘𝜑𝑖𝑗𝑘𝑙

2
1 ― cos 𝑛𝜑𝑖𝑗𝑘𝑙 ― 𝛾                                  

+ ∑𝑉𝐷𝑊 𝐷𝑖𝑗
𝜎𝑖𝑗

𝑟𝑖𝑗

12
― 2 𝜎𝑖𝑗

𝑟𝑖𝑗

6
+ ∑𝑐𝑜𝑢𝑙𝑜𝑚𝑏

𝐶𝑞𝑖𝑞𝑗

𝜀𝑟𝑖𝑗
            (1)

The first term, bond stretching energy, describes the relationship 
between two bonded atoms. As atoms oscillate around the 
equilibrium bond length, a repulsive force is generated when they 
approach each other, and the energy increases as they move apart, 
eventually leading to bond dissociation when there is no longer any 
interaction between the atoms. The second term, bond bending 
energy, refers to the tension in bond angles and represents the 
relationship between three bonded atoms. Similar to bond 
stretching, the bond angle oscillates around an equilibrium angle. 
The third term, bond torsion energy, describes the interaction 

between four bonded atoms, specifically the function curve of the 
dihedral angle and its associated energy. Unlike bond stretching, 
dihedral angle torsion cannot be represented by simple harmonic 
functions for most cases. Instead, these periodic changes are 
typically modeled using Fourier series, which are combinations of 
trigonometric functions. The fourth term, the van der Waals energy, 
describes the interaction between non-bonded atoms, often 
represented by the Lennard-Jones potential. The 12th power term 
corresponds to repulsion (positive energy), while the 6th power term 
represents attraction (negative energy). At large distances, the 6th 
term dominates, creating attractive forces, while at short distances, 
the 12th term prevails, leading to repulsion. The fifth term, Coulomb 
energy, models the electrostatic interaction between charged atoms 
using the classical Coulomb formula, which is inversely proportional 
to the distance between atoms. For specialized systems, additional 
terms such as hydrogen bonding, torsional terms, and cooperative 
terms (such as Urey–Bradley term in CHARMM75 force field) may be 
incorporated to improve the precision of the PES.

Different force fields utilize various function forms but can 
generally be classified into three main types: periodic function-
based, harmonic potential-based, and tabulated potential-based. 
Over time, numerous force field forms have been developed and 
applied to different systems (Figure 4a). Examples include the 
AMBER76 and CHARMM75 force field, which are designed for 
simulating biological systems; the OPLS force field58, which focuses 
on simulating condensed phase properties; and the COMPASS force 
field77, which can predict properties of both gaseous and condensed 
phases. The DREIDING78 and UFF72 force fields describe interactions 
for most elements in the periodic table, although with limited 
accuracy. Additionally, the newly developed GFN force field strikes a 
balance between computational efficiency and accuracy, enabling 
precise large-scale simulations of biomolecular and material 
systems59. 

3.2 Fitting Methods of Classical Force Fields

There are three main sources of classical force field parameters: 1) 
wave number measured experimentally, from which force constants 
can be calculated using the wave number formula; 2) structural, 
energy, and frequency data obtained through high-precision 
calculations, which are then used for parameter derivation and 
fitting; and 3) force constants derived from the first two methods, 
which can be further refined using Badger's rule and linear 
regression. This paper primarily focuses on the second method for 
obtaining force field parameters.

The most widely used non-fitting method is the Seminario method 
(Figure 4b), developed by Jorge Seminario in 1996. This method aims 
to derive the intramolecular force field parameters, such as the 
harmonic functions for bond stretching and angle bending, directly 
from the Hessian matrix obtained by QM calculations79. Currently, 
several auxiliary tools support the use of this method to fit force field 
parameters, including the AMBER and AuToFF programs. Below is a 
brief overview of the method.

For a system with N atoms, the force δF of the 3N component due 
to a displacement δx can be expressed as a second-order Taylor 
series expansion:

𝛿𝐹 = ― [𝑘]𝛿𝑥                                              (2)
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where tensor [k] is the 3N × 3N Hessian matrix. And [k] used here is 
defined in unweighted Cartesian coordinates, without mass-
weighting. This is because force field fitting aims to reproduce the 
second derivatives of the PES, which are independent of atomic 
masses. In contrast, vibrational frequencies and normal modes 
require mass-weighted and projected Hessians, which are not 
directly involved in the force field parameterization. Then, Eq. (2) can 
be written as

𝛿𝐹1
𝛿𝐹2

⋮
𝛿𝐹3𝑁

= ―

∂2𝐸
∂𝑥2

1

∂2𝐸
∂𝑥1𝑥2

∂2𝐸
∂𝑥2𝑥1

∂2𝐸
∂𝑥2

2

⋯
∂2𝐸

∂𝑥1𝑥3𝑁
∂2𝐸

∂𝑥2𝑥3𝑁
⋮ ⋱ ⋮

∂2𝐸
∂𝑥3𝑁𝑥1

∂2𝐸
∂𝑥3𝑁𝑥2

⋯ ∂2𝐸
∂𝑥2

3𝑁

𝛿𝑥1
𝛿𝑥2

⋮
𝛿𝑥3𝑁

           (3)

The tensor [k] represents the intramolecular force field up to 
second order for small displacements δx, and it can be obtained from 
QM calculation. The eigenvalues λi of [k] correspond to the 3N force 
constants, which are associated with the 3 translational, 3 rotational 
and 3N-6 vibrational modes of the molecule. By analogy with Eq. (2), 
the force 𝛿𝐹𝐴 = 𝛿𝐹𝑥𝐴,𝛿𝐹𝑦𝐴,𝛿𝐹𝑧𝐴  on atom A due to a 
displacement 𝛿𝑟𝐵 = (𝛿𝑥𝐵,𝛿𝑦𝐵,𝛿𝑧𝐵) of atom B is given by 𝛿𝐹𝐴 = ―
[𝑘𝐴𝐵]𝛿𝑟𝐵. The tensor [kAB] can be written as

[𝑘𝐴𝐵] = ―

∂2𝐸
∂𝑥𝐴𝑥𝐵

∂2𝐸
∂𝑥𝐴𝑦𝐵

∂2𝐸
∂𝑥𝐴𝑧𝐵

∂2𝐸
∂𝑦𝐴𝑥𝐵

∂2𝐸
∂𝑦𝐴𝑦𝐵

∂2𝐸
∂𝑦𝐴𝑧𝐵

∂2𝐸
∂𝑧𝐴𝑥𝐵

∂2𝐸
∂𝑧𝐴𝑦𝐵

∂2𝐸
∂𝑧𝐴𝑧𝐵

                               (4)

The bond stretching constant can be obtained from the 
projections of the eigenvectors onto the unit vector, 𝑢𝐴𝐵:

𝑘𝑟 = ∑3
𝑖=1 𝜆𝐴𝐵

𝑖 |𝑢𝐴𝐵 ∙ 𝑣𝐴𝐵
𝑖 |                                     (5)

where 𝜆𝐴𝐵
𝑖  and 𝑣𝐴𝐵

𝑖  are eigenvalues and eigenvectors, respectively.
For the derivation of angle bending constant kθ, first, a unit vector 

𝑢𝑁 is defined as perpendicular to the plane ABC:
𝑢𝑁 = 𝑢𝐶𝐵×𝑢𝐴𝐵

|𝑢𝐶𝐵×𝑢𝐴𝐵|
                                             (6)

The unit vectors perpendicular to the bonds AB and CB on the 
plane ABC can be obtained:

𝑢𝑃𝐴 = 𝑢𝑁 × 𝑢𝐴𝐵                                           (7)
𝑢𝑃𝐶 = 𝑢𝐶𝐵 × 𝑢𝑁                                            (8)

The force constants kPA and kPC are then defined as the 
corresponding constants derived by projecting the eigenvectors of 
the partial Hessian matrix onto these two vectors:

𝑘𝑃𝐴 = ∑3
𝑖=1 𝜆𝐴𝐵

𝑖 |𝑢𝑃𝐴 ∙ 𝑣𝐴𝐵
𝑖 |                              (9)

𝑘𝑃𝐶 = ∑3
𝑖=1 𝜆𝐶𝐵

𝑖 |𝑢𝑃𝐶 ∙ 𝑣𝐶𝐵
𝑖 |                            (10)

And the angle bending constant is then given by
1

𝑘𝜃
= 1

𝑟2
𝐴𝐵𝑘𝑃𝐴

+ 1
𝑟2

𝐶𝐵𝑘𝑃𝐶
                                     (11)

where rAB and rCB are the two bond lengths.
Consider the dihedral defined by the atoms A, B, C, and D which 

are linked by bonds AB, BC, and CD. The approach used to determine 
the dihedral force constant is similar to that for bond and angle. The 
dihedral force constant is given by

1
𝑘𝜑

= 1

𝑟2
𝐵𝐴|𝑢𝐴𝐵×𝑢𝐵𝐶|2 ∑3

𝑖=1 𝜆𝐴𝐵
𝑖 |𝑢𝑁𝐴𝐵𝐶∙𝑣𝐴𝐵

𝑖 |                                   
+ 1

𝑟2
𝐶𝐷|𝑢𝐵𝐶×𝑢𝐶𝐷|2 ∑3

𝑖=1 𝜆𝐷𝐶
𝑖 |𝑢𝑁𝐵𝐶𝐷∙𝑣𝐷𝐶

𝑖 |                         (12)

The premise of the Seminario method for deriving force field 
parameters is that the change in energy associated with the 
displacement of atom A along the direction 𝑢𝑃𝐴 will only affect the 
A-B-C angle. However, in a complex system, neighboring angles may 
also be altered due to changes of A-B-C angle. This often leads to an 
overestimation of bond angle parameters. To address this issue, 
Allen at al. modified the Seminario method by rescaling the value of 
kPA with a factor that accounts for the geometry of the molecule80. In 
addition to the Seminario method, Hirao et al. proposed other rapid 
force field parameterization schemes, such as partial Hessian fitting 
(PHF), full Hessian fitting (FHF) and internal Hessian fitting (IHF). 
These methods are based on the idea of minimizing the Hessian 
matrix of molecular force fields and quantifying the differences in the 
Hessian matrix81, 82.

Numerical fitting methods are commonly applied to fit van der 
Waals parameters. The process begins by scanning the PES 

Figure 4 (a) Types and applications of classical force fields. (b) Derivation of force field parameters using the Seminario method [Reprinted 
with permission from ref. 80. Copyright 2018 American Chemical Society]. (c) Numerical fitting methods for force field parameters: gradient 
descent and global optimization methods.
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generated from changes in the interatomic distance based on QM 
calculations. An appropriate van der Waals interaction expression 
(e.g., Lennard-Jones or Morse) is then selected and used to fit the 
PES. The fitting process involves iteratively adjusting parameters 
such as the potential well depth and zero-energy distance until the 
sum of the squared differences between the two PES is minimized 
(Eq. 13). Once the optimization is complete, the van der Waals 
interaction parameters can be obtained.

min
𝜃

𝐽(𝜃) = ∑𝑚
𝑖=1 (𝐸𝜃 ― 𝐸0)2                                 (13)

Various methods can be used to adjust the force field parameters 
to minimize J(θ), with one of the most straightforward approaches 
being gradient descent. The process primarily involves two primary 
steps: first, an initial set of force field parameters is provided, which 
may be randomly assigned; second, the parameters are iteratively 
adjusted in the direction of the negative gradient until the loss 
function converges to a predefined value. As illustrated in Figure 4c, 
the red areas represent higher values of J(θ), and as the parameters 
are updated, the value of J(θ) decreases, eventually reaching the 
deep blue regions. The core idea behind gradient descent is to move 
in the direction of the negative gradient of the current position. To 
further accelerate convergence, the method was further extended 
into the steepest descent method, where the step size for parameter 
adjustment reduces as the gradient diminishes. This leads to slower 
progress as the optimization nears the target value.

However, the final point reached by gradient descent may not 
always correspond to the global minimum, but rather to a local 
minimum, especially when dealing with force fields that involve a 
large number of parameters. To overcome this challenge, a common 
strategy is to initialize multiple sets of parameters and perform 
gradient descent along several different paths. The optimal 
parameters are then selected from these paths, allowing for a more 
robust approach to global optimization (Figure 4c).

Atomic charge is a critical component of classical force field 
parameters, and various methods have been developed to fit atomic 
charges, including Merz-Kollman83, CHELPG84, and RESP85. Among 
these, the RESP method, proposed by Kollman et al., effectively 
addresses issues such as conformational dependence, numerical 
instability, and atomic equivalence of internal atomic charges, 
making RESP charges widely used. The principle behind RESP involves 
iteratively adjusting atomic charges using the least squares method 
until the error between the calculated classical potential and the QM 
potential is minimized. To avoid unreasonable charge distributions, 
the RESP method introduces constraints, such as the neutral 
constraint (which ensures the sum of molecular charges is zero) and 
a penalty term that controls the charge distribution. Programs such 
as AmberTools86 and Multiwfn87 make it easy to fit RESP charges. 

3.3 Applications of Classical Force Fields

In this section, we highlight selected studies that utilize classical 
force field methods, focusing on their application in heterogeneous 
catalysis rather than providing a comprehensive literature review. 
Specifically, we explore how classical force fields are used to study 
catalyst interface properties, particularly in areas like metal particle 
morphology and molecular diffusion. These applications 

demonstrate the strengths of classical force fields in efficiently 
simulating the dynamics of heterogeneous interfaces.

The morphology of metal catalysts (specifically the size, shape, and 
distribution of metal particles) plays a crucial role in determining 
catalytic performance20, 88-91. The size and shape directly influence 
the number of active sites on the catalyst surface. For example, Hu 
et al. investigated the size effect on the atomic structure of 
amorphous systems originating from a Cu64Zr36 particle (containing 
50-5000 atoms) using MD simulations with an embedded atom 
method (EAM) potential92. Their findings show that particle size 
strongly impacts the local atomic structure, with Cu64Zr36 particles 
exhibiting core-shell structures. The shell component of the particle 
has a lower average coordination number, shorter bond lengths, 
higher ordering, and lower packing density compared to the core, 
due to Cu segregation on the shell. Given that metal nanoparticles 
often exhibit high surface energy, they tend to aggregate during 
catalytic processes, which can lead to catalyst deactivation. To 
mitigate this, metal nanoparticles are commonly dispersed on 
support surfaces to enhance stability93. In a study by Wang et al., the 
effect of metal-support interactions on the stability of metal 
nanoparticles was examined using a Morse force field for 
parameterization94, 95. Their simulations revealed that the melting 
point of Pt nanoparticles supported on a substrate was significantly 
higher than that of unsupported nanoparticles, and the melting point 
increased as the metal-support interaction strengthened. In addition 
to improving stability, the support material also affects the 
morphology of the metal nanoparticles. The simulations indicated 
that increasing the metal-support interaction leads to a higher 
number of unsaturated coordination atoms in the nanoparticle. 
Notably, when Pt nanoparticles were supported on bare MXene, a 
film-like structure formed on the substrate surface. Wang et al. 
further explored this by tuning the nanoparticle structure through 
variations in the surface functional groups of MXene96. Their results 
showed that when the surface functional groups on Nb₂C MXene 
transitioned from -Cl, -Br, and -O to partial -O, the supported Pd₅₆₁ 
nanoparticle exhibited a distinct morphological shift from 3D to 2D 
(Figure 5a), consistent with electron microscopy observations (Figure 
5b). Initially, a monolayer of Pd preferentially formed on the exposed 
Nb sites, followed by the creation of a second Pd layer upon 
encountering oxygen functional groups, ultimately exposing the 
(111) facet. Based on these findings, they constructed Pd metalenes 
supported on Nb₂C MXenes, which demonstrated efficient selective 
hydrogenation of phenylacetylene at room temperature.

Classical force fields are also commonly employed to simulate the 
dynamic behavior of molecular systems, including the diffusion, 
adsorption, and desorption processes of reactants, intermediates, 
and products, and their impact on catalyst performance97-100. To 
improve the catalytic performance of N2 electroreduction (NRR) on 
metal surfaces, hexanethiol (HEX) was selected as a modifier to 
inhibit the competitive adsorption of water molecules in the 
hydrogen evolution reaction (HER). Chen et al. studied the effects of 
HEX on the diffusion and adsorption behaviors of H₂O and N₂ 
molecules on the Cu surface through MD simulations101. The study 
involved 100 nitrogen molecules and 5000 water molecules, based 
on the solubility of N₂ in water. The results revealed that on the HEX-
modified Cu surface, N₂ molecules could diffuse to the catalyst 
surface, while H₂O molecules were blocked by the HEX layer (Figure 
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5c). In contrast, the non-HEX Cu surface is predominantly covered by 
H₂O molecules. After HEX modification, the number of N₂ molecules 
adsorbed on the Cu surface increased significantly from 24 to 48, 
while the number of H₂O molecules adsorbed decreased from 700 to 
23 (Figure 5d). Additionally, the calculated potential of mean force 
indicated that the presence of HEX notably raised the equilibrium 
position of H₂O (from 0.18 nm to 0.54 nm). After HEX modification, 
the Faraday efficiency of various metal catalysts (Cu, Au, Pd, Pt, and 
Ni) prepared by experimental collaborators was significantly 
enhanced, confirming the hydrophobicity of HEX on the metal 
surface and its effective role in promoting N₂ adsorption.

For the diffusion properties of molecules in porous materials, Xu 
et al. presented MD simulation on the gas diffusion in the interlayer 
gallery of graphene and graphene oxides (GO) membranes, and 
elucidated the mechanisms of gas selective separation (Figure 5e). 
They found that both the layer spacing and the chemical modification 
of the membrane surface significantly influenced the selective gas 
penetration43. For example, for GO membranes, the He/CO2 
selectivity can reach as high as 30, compared to 4.5 for CH4/ CO2 and 
between 2-3 for CO/CO2, N2/CO2, and O2/CO2. In contrast, for 
graphene layers, the selectivity for N2/CO2, CO/CO2, O2/CO2 are 

relatively low, ranging from 1 to 3. (Figure 5f). To further explore the 
correlation between pore properties and molecular diffusion 
coefficients, Wang et al. studied the interlayer diffusion of CO in 
graphene supported with Pt nanoparticles as a model system. They 
found that the diffusion energy barrier is related to the distribution 
of CO molecules in the system, which in turn is influenced by factors 
such as temperature, pressure, interlayer distance, and the 
properties of the supported metal. High temperature, low pressure, 
and fewer surface atoms were found to facilitate the diffusion of gas 
molecules. To quantify the relationship between the diffusion 
coefficient and the environmental and structural properties of the 
system, a generalized formula for confined diffusion of CO in the 
supported system is derived based on the simulation data97. Further 
simulations of interlayer diffusion of CO2 were conducted to study 
the effects of the metal-molecule interaction on the adsorption and 
diffusion properties of molecules44. The results showed that the 
difference in the adsorption amounts of CO and CO2 on Pt 
nanoparticles correlates with the adsorption site and exhibits a 
volcanic trend with respect to temperature. The metal-gas 
interaction and the surface atomic number of metal nanoparticles 
have great influence on the diffusion of gas molecules, especially at 

Figure 5 (a) The relationship between the interaction energies of Pd and supports and the number of Pd layers in the MD simulations of 
Pd/MXenes catalysts. (b) Microstructure of Pd supported on functional groups-modified Nb2C [Reprinted with permission from ref. 94. 
Copyright 2023 Springer Nature]. (c) Enlarged images of local surface of Cu-HEX and blank Cu sample. (d) The calculated number of adsorbed 
N2 and H2O molecules on blank Cu and Cu-HEX surfaces [Reprinted with permission from ref. 98. Copyright 2022 Elsevier]. (e) Model of 
selective gas diffusion in graphene oxides (GO) membranes. (f) Selectivity of CO2 diffusion relative to other gas molecules for graphene and 
GO membranes [Reprinted with permission from ref. 43. Copyright 2015 American Chemical Society].
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low temperatures. The simulation data further validate the accuracy 
and generality of the generalized formula.

Compared to the above classical force fields, the newly developed 
GFN-FF force field demonstrates superior generality and accuracy, 
approaching the precision of QM methods in certain cases. For 
instance, metal-organic frameworks (MOFs), widely used in 
heterogeneous catalysis, typically have few available force fields 
(such as UFF), these are often inadequate for describing conjugated 
systems and metal coordination. In contrast, GFN-FF enables 
accurate geometric optimization of MOF structures. For example, for 
a Goldberg polyhedra composed of 46 Pd2+ ions and 96 organic 
ligands, with a total of 3888 atoms, the RMSD of the heavy atoms in 
the GFN-FF optimized structure is only 0.75 Å, which is in excellent 
agreement with experimental results. Similar accuracy can be 
achieved for other metal-organic polyhedra and MOFs59. 
Additionally, water, as the most common liquid, is notoriously 
difficult to describe accurately, leading to the development of 
various force field models, including rigid, flexible, and polarizable 
force fields. Molecular dynamics simulation of water using GFN-FF 
force field shows that, while the calculated self-diffusion coefficient 
(2.06×10-5 cm2/s) is remarkably close to the experimental value 
(2.35×10-5 cm2/s), its density is significantly overestimated (1.23 
g/cm3 compared to the experimental value)102. Therefore, while 
GFN-FF offers a fast and accurate classical force field, like all universal 
force fields, it may not always provide the most accurate results.

From above cases, it is evident that classical force fields remain 
valuable tools for modeling heterogeneous catalysis, particularly 
when large system sizes and long simulation times are required. 
Their computational efficiency enables exploration of phenomena 
such as adsorbate diffusion, nanoparticle sintering, and solvent-
mediated surface restructuring over length and time scales 
inaccessible to QM methods. In supported catalyst systems, classical 
force fields have been successfully applied to investigate 
nanoparticle morphology evolution, interfacial interactions between 
support and active phase, and adsorption-desorption equilibria 
under realistic reaction conditions.

However, the inherent limitations of classical force fields arise 
from their fixed topologies, predefined interaction functional forms, 
and parameter sets that are typically tuned for narrow chemical 
spaces. These constraints hinder their ability to capture bond 
formation/breaking, charge transfer, and polarization effects, which 
are central to catalytic processes. Furthermore, the lack of explicit 
electronic degrees of freedom makes it challenging to describe 
surface reactions involving variable oxidation states, adsorbate-
induced reconstruction, or metal-support charge redistribution. 
Transferability across different surfaces, phases, and chemical 
environments is often limited, necessitating reparameterization for 
each new system.

Future developments should aim to improve the accuracy and 
transferability of classical force fields for catalysis by integrating 
more flexible interaction terms (e.g., polarizable force fields), 
incorporating long-range electrostatics more rigorously, and 
systematically coupling classical descriptions with reactive or ML 
force fields in hybrid schemes. Such approaches could preserve the 
efficiency of classical force fields while extending their applicability 
to the complex, reactive, and dynamically evolving environments 
characteristic of heterogeneous catalysis.

4 Reactive Force Fields
4.1 Forms of Reactive Force Fields

The reactive force field is typically based on bond order to 
construct the system’s PES. In the early stage of development, its 
form was designed specifically for the bonding situation in a specific 
reaction system, making it difficult to generalize. For example, based 
on the relationship between Pauling bond length and bond order, 
Johnston developed the BEBO force field to study the reactive PES of 
the H+H2 system103. Besides BEBO force field, several other reactive 
force fields have been developed to address bond formation and 
breaking in specific systems. The AIREBO (Adaptive Intermolecular 
Reactive Empirical Bond Order) potential104, an extension of the 
REBO model105, is designed for hydrocarbons and carbon-based 
materials and has been widely used in simulations involving 
graphene, CNTs, and organic reactions. COMB3 (Charge-Optimized 
Many-Body) potentials106 enable the simulation of metal–ceramic 
interfaces and allow for dynamic charge transfer using a charge 
equilibration scheme, making them suitable for oxide-based 
catalysts and interfacial systems. The Environment-Dependent 
Interatomic Potential (EDIP)107 is tailored for covalent materials, 
particularly silicon, and can model defect formation and surface 
reconstructions with relatively low computational cost. While these 
models have not yet seen widespread application in complex 
catalytic reactions, they offer valuable tools for studying specific 
materials and interfaces under reactive conditions.

Currently, ReaxFF, developed by van Duin et al. in 200156, is the 
most widely used reactive force field due to its parameter 
transferability. The initial version of ReaxFF (2001) was focused on 
hydrocarbons and used the same dissociation energy for C-C single, 
double, and triple bonds, which worked well for hydrocarbons but 
was limited for more complex systems. In 2003, the ReaxFF 
functional form was extended to systems containing Si, O, and H, 
with separate parameters for single, double, and triple bond 
dissociation energies. This extension also introduced a lone-pair 
energy term to handle the formation and dissociation of oxygen lone 
pairs. The 2003 extension was further improved to handle more 
complex group chemistries, such as the conjugation term for -NO2 
group chemistry in nitramines and a triple-bond stabilization term for 
better describing terminal triple bonds108. By 2005, the ReaxFF 
functional form stabilized109, and the general form now includes 
terms for:

𝐸system = 𝐸bond + 𝐸over + 𝐸under + 𝐸val + 𝐸tors + 𝐸conj
+ 𝐸vdw + 𝐸Coulomb + 𝐸H―bond + 𝐸rest                  (14)

where the terms of bonding interactions include bond, valence 
angle, lone pair, conjugation, and torsion angle, and the terms of 
nonbonding interactions include van der Waals, Coulomb 
interaction, and hydrogen bond. In addition, to deal with special 
systems, additional terms will be introduced into the formula, such 
as angle bending terms for Mg-Mg-H zero-degree angles110 and 
double-well angular terms for aqueous transition metal ions111.

As mentioned above, the ReaxFF is categorized into bond-order-
dependent and bond-order-independent contributions. Bond order 
(BO) a function of interatomic distance 𝑟𝑖𝑗, which is divided into the 
contribution of single bond (𝐵𝑂𝜎

𝑖𝑗), double bond (𝐵𝑂𝜋
𝑖𝑗), and triple 

bond (𝐵𝑂𝜋𝜋
𝑖𝑗 ):
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𝐵𝑂𝑖𝑗 = 𝐵𝑂𝜎
𝑖𝑗 + 𝐵𝑂𝜋

𝑖𝑗 + 𝐵𝑂𝜋𝜋
𝑖𝑗 = 𝑒𝑥𝑝 𝑝𝑏𝑜1

𝑟𝑖𝑗

𝑟𝜎
0

𝑝𝑏𝑜2

                  

+𝑒𝑥𝑝 𝑝𝑏𝑜3
𝑟𝑖𝑗

𝑟𝜋
0

𝑝𝑏𝑜4

+𝑒𝑥𝑝 𝑝𝑏𝑜5
𝑟𝑖𝑗

𝑟𝜋𝜋
0

𝑝𝑏𝑜6

          (15)

Based on the bond order formula, interactions such as bond and 
valence angle terms can be derived through a series of 
transformations; for details, see the work of van Duin et al109. 
Additionally, this bond order formula accounts for long-distance 
covalent interactions in transition state, enabling the ReaxFF to 
accurately predict reaction barriers.

For the Coulomb interaction, the QEq method is used to calculate 
and adjust the charge distribution of each atom in the system66. This 
method achieves charge distribution through electronegativity 
equilibration, accounting for both atomic interactions and the 
dynamic changes occurring during chemical reactions. During a 
reaction, the electronegativity of each atom varies as its local 
environment changes. Atoms with higher electronegativity tend to 
attract electrons, while those with lower electronegativity tend to 
lose electrons. 

Initially, the ReaxFF parameters were developed exclusively for 
organic systems56. Subsequently, the parameters gradually 
incorporated metallic elements110, 112, 113 and other non-metallic 
elements108, 114, further expanding the applicability of ReaxFF in a 
wider range of systems. Currently, the ReaxFF method has been 
successfully applied to simulate various reaction dynamics, including 
hydrocarbon organic small molecule systems56, polymer systems115, 

116, high energy material systems117, 118, metal oxide systems119, 120 
and transition metal catalyst systems113, 121. Rapid reaction 

processes, such as explosion and combustion, can also be simulated 
using ReaxFF parameters117, 118, 122. Additionally, the ReaxFF-based 
Monte Carlo reaction kinetics method has been employed to 
investigate experimental structures that are difficult to resolve 
experimentally119, 120, catalytic reactions in fuel cell electrode 
materials123, 124, and catalytic processes in porous materials114, 125. To 
date, ReaxFF parameters for various elements in the periodic table 
have been developed, as shown in Figure 6a30. However, in the 
specific study, the transferability of these parameters is limited, and 
it is impossible to simply combine these parameters to get 
satisfactory results. Depending on the different O/H atomic and bond 
parameters, there are currently two main categories of ReaxFF 
parameter sets that are intra-transferable with one another: the 
combustion group and the aqueous group. Additionally, there are 
several independent groups whose parameters often require more 
extensive refitting. For specific details on grouping, refer to the 
summary by Thomas et al.30

4.2 Fitting Methods of ReaxFF parameters

Compared to the classical force field, the ReaxFF function is more 
complex and has a greater number of parameters, making it more 
challenging to develop. During the development of ReaxFF, it is often 
not possible to fit all parameters. Some validated force field 
parameters can be obtained from existing parameter libraries or 
theoretical literature, and relevant parameters can be selected for 
fitting based on the system under study. Two main methods are 

Figure 6 (a) Elements described in available ReaxFF parameter sets. (b) General flowchart of ReaxFF parameters fitted using a genetic 
algorithm. (c) Software architecture of GARFfield [Reprinted with permission from ref. 125. Copyright 2014 American Chemical Society].
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commonly used for fitting process: successive one-parameter search 
and genetic algorithm.

Successive one-parameter search is the earliest method used for 
ReaxFF parameter fitting126. The method assumes a parabolic 
relationship between a single parameter value and the total fitting 
error, determining the optimal parameter value by calculating the 
total error at three distinct parameter values. However, because 
most parameters in ReaxFF are interdependent, a change in one 
parameter will cause the optimal values of others to shift. Therefore, 
the parameters must be optimized iteratively to ensure that the 
fitting error is minimized. This method offers certain advantages for 
fitting processes with many parameters, as the fitting process can be 
interrupted if a parameter appears an unrealistic value. However, its 
fitting efficiency is relatively low.

For ReaxFF with multiple parameters, in addition to the fitting 
efficiency issue, the fitting process is a high-dimensional, non-
separable optimization problem with multiple minima. As a result, 
the fitting results often converge to local optima. While deterministic 
global optimization techniques are available, they encounter 
significant practical challenges in high-dimensional search spaces 
and with computationally expensive objective functions, both of 
which are typical of the present problem. Viable alternatives include 
nondeterministic search heuristics, such as genetic algorithms 
(GA)127.

GA are optimization techniques inspired by the process of natural 
evolution. The two primary concepts underlying genetic algorithms 
are natural selection and genetic dynamics. Natural selection 
involves choosing individuals with greater fitness to pass their traits 
to the next generation, based on superior performance. The goal of 
the genetic algorithm is to maximize fitness as the generations 
progress. A simplified depiction of the genetic algorithm, illustrating 
the key steps, is shown in Figure 6b. First, based on parameters from 
the literature, multiple sets of parameters are generated through 
mutation operations to form the initial population, with each set 
representing an individual. The fitness function is then used to assess 
the quality of each individual, typically defined by the difference 
between the system energy calculated from the parameters and the 
system energy obtained from QM calculations. Next, a selection 
operation is applied to the current population, with methods such as 
rank-based selection used to retain individuals with higher fitness. 
These selected high-fitness individuals undergo crossover 
operations, simulating genetic recombination to produce offspring. 
To enhance population diversity and prevent premature 
convergence to a local optimum, mutation operations are employed 
to randomly alter specific force field parameters, thereby generating 
new individuals. By applying selection, crossover, and mutation 
operations, a new generation is created to replace the old one, 
followed by a fitness evaluation of the new population. After each 
generation, a check is made to determine whether the termination 
criteria have been met. Common termination criteria include 
reaching the maximum number of iterations or achieving a 
predefined fitness threshold. If the termination criteria are satisfied, 
the individual with the best fitness in the current population is 
selected as the final solution.

To enable efficient and rapid parallel optimization of parameters, 
Goddard et al. developed GARFfield (genetic algorithm-based 
reactive force field optimizer method), a hybrid multi-objective 

Pareto-optimal parameter development scheme combining  genetic 
algorithms, hill-climbing routines and conjugate-gradient 
minimization128. The software architecture is illustrated in Figure 6c. 
The core of the GA search mechanism is stochastic gradient search, 
which requires the evaluation of the objective function’s fitness for 
each generation. A drawback of this method is the significant time 
cost associated with the repetitive search and fitness evaluation. To 
address this, a hybrid algorithm combining artificial neural networks 
(ANN) and GA has been proposed and accepted for fitting the ReaxFF 
parameters129, 130. The ANN reads and analyzes the data and total 
error values generated during the GA process, thereby enhancing the 
efficiency and reducing the time cost of the heuristic search.

4.3 Applications of ReaxFF

Modeling catalytic processes requires consideration of bond 
breaking and formation, yet the time and length scales inherent in 
nanoscale interface reactions cannot be addressed with QM. The 
bond order concept, coupled with the low computational cost, 
enables ReaxFF to bridge the gap between QM and non-reactive 
force fields. In this context, we focus on the application of ReaxFF to 
metal catalysts and their oxides to highlight the methodological 
strength of ReaxFF: modeling reactive chemistry at heterogeneous 
interfaces, rather than providing a comprehensive review of the 
literature.

Transition metals are widely used in heterogeneous catalysis 
reactions due to their unique electronic structures, with their 
geometric structures closely influencing their properties131-134. The 
simulation scale achieved by ReaxFF is well-suited for modeling 
catalytic processes on metal surfaces and clusters, particularly at 
defect sites or unsaturated sites. Iron-based catalysts play a 
significant role in the water-gas shift and Fischer-Tropsch synthesis 
reactions. Based on ReaxFF fitted by genetic algorithm, Wen et al. 
studied the structure-activity relationship of Fe nanoparticles in CO 
activation135. The results showed that CO dissociation can be 
effectively promoted by introducing line dislocation and vacancies on 
Fe nanoparticles. Furthermore, four mechanisms of CO2 formation 
catalyzed by Fe nanoparticle were analyzed through adsorption and 
activation of surface carbon in MD simulation trajectories (Figure 7a-
d). They found that, at the initial stage of the reaction, CO molecules 
adsorb on the surface of Fe nanoparticle and dissociate. At this point, 
the oxygen concentration on the surface is low, and the probability 
of CO2 formation via the Langmuir-Hinshelwood (LM) mechanism 
(adsorbed O atom reacts with gas CO molecule) is minimal. However, 
some CO molecules adsorb on the Fe surface without dissociation are 
more likely to react with gas CO molecules, forming CO2 through the 
Eley-Rideal (ER) mechanism. As the reaction progresses, O atoms 
accumulate on the surface of the nanoparticles, and the surface also 
contains undissociated CO molecules, which can form CO2 through 
the LM mechanism. Additionally, adsorbed undissociated CO 
molecules can also react with each other to form CO2. According to 
the above analysis, it can be concluded that both the ER and LH 
mechanisms play crucial roles at different stages of CO2 formation 
catalyzed by Fe, with the ER mechanism primarily dominates in the 
early reaction stages, while the LH mechanism becomes more 
prominent in the later stages. For metal-catalyzed carbon nanotube 
(CNT) growth, the process involves the dissolution and migration of 
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carbon atoms within the metal. CNT growth is initiated by the 
adsorption and dissociation of hydrocarbons on the metal surface. 
To investigate the factors influencing this process, Mueller et 
al.developed a ReaxFF reactive force field to describe the interaction 
between hydrocarbons and the Ni surface121. They found that 
surface defects play a key role in the decomposition rate of CH3, 
particularly in the final step, where CH decomposes into C and H. 
Furthermore, due to the transferability of ReaxFF parameters, the 
Ni/C/H parameter set was utilized by Neyts et al. to elucidate the 
influence of ion bombardment on CNT formation136. The simulation 
results showed that the energy of the impacting ion can be adjusted 
to break low-coordination C-C bonds, leading to the formation of 
new bonds in the network, which facilitates guided growth.

The ReaxFF formula combines bond order and charge transfer 
formalisms, making it particularly well-suited for describing the 
evolution of the reaction process in metal oxide materials, which 
exhibit both covalent and ionic interactions. For example, 
Chenoweth et al. developed a V/O/C/H ReaxFF parameters aimed at 
describing the interaction of hydrocarbons with vanadium oxide119, 

120, 137. Based on the MD simulation with this ReaxFF parameter set, 
they investigated the dissociation process of methanol on the surface 
of V2O5. On a defect-free surface, C-H dissociates more easily than O-
H. On the defect surface, oxygen atom in methanol binds to the 
reduced vanadium defect site, lowering the energy barrier of O-H 
dissociation. Additionally, they observed the desorption of water 
molecule formed on the hydroxylated V surface, which leads to 
interlayer bonding between two metal atoms of different oxidation 
states, transitioning from VV and VIII sites to two VIV sites. Metal oxide 
materials typically exhibit partial, mixed, and irregular metal 
occupations at various crystallographic sites. To obtain the lowest-
energy structure, the researchers employ the combined Monte Carlo 

method to explore possible metal oxide configurations. For example, 
Janik et al. used ReaxFF-based Grand Canonical Monte Carlo (GCMC) 
simulations to construct thermodynamically stable Pd/CeO2 surface 
models under reaction conditions138. Based on the equilibrium 
configuration, they further simulated methane activation using 
reactive MD to evaluate the catalytic performance of different 
interface morphologies. By counting the number of reactive species, 
it was found that a sharp decrease in the number of gas CH4 
molecules was accompanied by an increase in adsorbed H atoms at 
approximately 1440 K, indicating that methane was activated (Figure 
7e). By comparing methane activation on Pd and PdOx clusters that 
are both supported on and embedded in the CeO2 lattice (Figure 7f), 
they found that the supported metal clusters facilitate methane 
activation more efficiently, with C-H bond break occurring at the 
unsaturated coordination sites on the cluster edges. But in the 
embedded model, methane activation is slower because CH4 has 
limited access to these sites. In contrast, PdOx clusters in the 
embedded structure are more likely to activate methane. This can be 
attributed to the reduced exposure of edge sites in the embedded 
clusters, while the PdOx/CeO2 interface mixing generates unique 
active sites (Figure 7g). These studies demonstrate the utility of 
ReaxFF in modeling catalytic processes on metal and metal oxides, as 
it can simulate large-scale reaction processes that are not achievable 
through QM. 

In summary, reactive force fields such as ReaxFF, provide a 
powerful framework for simulating bond-breaking and bond-forming 
events at scales relevant to heterogeneous catalysis. They have been 
widely applied to investigate surface reaction mechanisms, catalyst 
activation and deactivation, support-metal interfacial chemistry, and 
degradation pathways under realistic temperature and pressure 
conditions. By explicitly accounting for variable bond orders and 

Figure 7 (a) E-R mechanism 1: adsorption of a molecule leading to CO2 formation. (b) E-R mechanism 2: adsorption of an atom leading to CO2 
formation. (c) L-H mechanism 1: adsorption of two molecules leading to CO2 formation. (d) L-H mechanism 2: Adsorption of one atom and 
one molecule leading to CO2 formation [Reprinted with permission from ref. 128. Copyright 2019 Elsevier]. (e) Reactive MD simulation of 
methane light-off over an embedded PdOx cluster. (f) Simulated methane light-off curves comparing supported and embedded cluster 
models. (g) Reactive MD snapshot at methane activation light-off (pink arrow) over the embedded PdOx cluster model in panel (e) [Reprinted 
with permission from ref. 131. Copyright 2016 American Chemical Society].
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dynamic charge equilibration, reactive force fields enable the 
exploration of catalytic cycles beyond the reach of classical force 
fields, while maintaining computational tractability for systems 
containing thousands of atoms.

Despite these strengths, several limitations hinder their predictive 
reliability. The accuracy of reactive force fields strongly depends on 
the breadth and quality of the parameterization dataset, which must 
adequately sample relevant reactive configurations, surface 
reconstructions, and intermediates. Transferability remains a 
challenge, as parameters optimized for one catalytic material or 
reaction type may not generalize to others without significant re-
fitting. Current charge equilibration schemes (e.g., QEq) often fail to 
capture non-local charge transfer, polarization under strong electric 
fields, or complex redox processes, limiting their applicability in 
electrocatalysis and photocatalysis. Furthermore, the high 
dimensionality of parameter space makes systematic optimization 
difficult, and the lack of rigorous error estimation complicates the 
assessment of model reliability.

Future directions for reactive force fields in catalysis include the 
development of next-generation reactive potentials with improved 
electrostatic and polarization models, the incorporation of machine 
learning-assisted parameter optimization to accelerate and improve 
transferability, and the construction of large, diverse, and surface-
specific training datasets. Hybrid simulation schemes that couple 
reactive force fields with on-the-fly QM calculations or ML force 
fields may offer a promising pathway to combine chemical reactivity 
with long-timescale dynamics, thereby bridging the accuracy-
efficiency gap for realistic catalytic environments.

5 Machine Learning Force Fields
5.1 Forms of Machine Learning Force Fields

The application of ML methods in the construction of PES dates 
back to 1992, when Bobby et al. innovatively introduced neural 
networks to model and predict the energy of molecular systems, 
thereby describing the behavior of polymer molecules in vibrational 
modes139. Subsequently, in 1995, Blank et al. used neural networks 
to approximate the PES for hydrogen formation reactions on silicon 
surfaces57. This work marked a significant milestone in PES modeling 
and paved the way for the application of ML methods to model 
complex chemical reactions140-142.

Unlike classical force fields and reactive force fields, which rely on 
specific formulas, ML force fields do not have a predefined functional 
form. Instead, ML force fields use atomic local environments as 
descriptors and are trained using ML algorithms, such as neural 
networks or Gaussian regression, to construct the PES of a system. 
By moving away from intuitive, physics-based expressions, ML force 
fields can offer more accurate PES.

Designing appropriate descriptors to represent the local 
environment of atoms is crucial for the effectiveness of ML force 
fields. The local chemical environment refers to the interactions 
between an atom and its neighboring atoms within a specified cutoff 
radius rcut, as illustrated in Figure 8a. Behler et al. introduced the 
concept of locality approximation33, 143, which asserts that atomic 
interactions are primarily determined by the local chemical 
environment of the central atom, rather than by the influences of all 

other atoms in the system. This approximation reduces 
computational costs while maintaining the model's transferability.

Building upon the locality approximation, the ML force field 
further assumes that the total potential energy E of the system can 
be expressed as the sum of the energies 𝐸𝑖 of individual central 
atoms, as shown in Eq. (16). The energy 𝐸𝑖 is determined by the local 
chemical environment of atom i.

𝐸 = ∑𝑁
𝑖=1 𝐸𝑖 𝐺𝑖 𝑅                                   (16)

In a neural network force field, each atom is represented by a 
neural network (Figure 8b), with the input corresponding to the 
information about its local chemical environment and the output 
representing the atomic energy term 𝐸𝑖. The total potential energy E 
of the system is obtained by summing the outputs of the neural 
networks for all atoms. This approach constructs the model at the 
atomic level rather than for the entire system, ensuring its scalability. 
It is important to emphasize that the atomic potential energy 𝐸𝑖 is 
not a predefined label but rather an intermediate variable 
introduced based on the potential energy decomposition 
assumption. The total potential energy E is the direct target of model 
training.

Although the types and coordinates of atoms in the system can 
fully describe the PES, directly using these as inputs to the ML force 
fields is not appropriate. On the one hand, atoms do not have 
absolute coordinates, and the overall translation and rotation of the 
system, while altering the coordinates of individual atoms, do not 
affect the system's potential energy. On the other hand, regarding 
atom types, exchanging positions of identical atoms in the system 
has no effect on its properties, meaning that changing the atomic 
index order does not influence the system's behavior. Therefore, it is 
necessary to transform the atomic coordinates and type information 
into suitable descriptors for ML, which can then be used as inputs to 
the ML force fields model.

Therefore, the descriptors should adhere to the principle of 
symmetry, meaning they must be invariant under translation, 
rotation, and permutation of atomic indices. More precisely, the 
descriptors should have a bijective relationship with the atomic 
structure and type information, ensuring that for any given system 
configuration, there is a unique descriptor corresponding, and 
different structures have distinct descriptors. In addition to fulfilling 
these requirements, a good descriptor should also exhibit continuity, 
low computational cost, and high representational efficiency. Several 
methods for constructing descriptors have been proposed, including 
the Smooth Overlap of Atomic Positions (SOAP)144, Coulomb Matrix 
(CM)145, Atom-Centered Symmetry Functions (ACSF)143, Spherical 
Harmonics146, Many-Body Tensor Representation147, Bispectrum 
features148, 149, and others.

In addition to atomic environment descriptors, another crucial 
aspect of the ML force fields is the ML algorithms themselves. With 
advancements in ML techniques and the widespread use of GPU 
computing, numerous ML force fields models have been developed, 
as shown in Figure 8c. Early ML force fields primarily relied on 
traditional ML techniques, such as Gaussian Approximation 
Potentials (GAP)148, 149 and fully connected neural network 
architectures like Atom-Centered Symmetry Functions (ACSF)143. As 
algorithms have advanced, more sophisticated ML force fields have 
emerged, including GDML61, ANI150, 151, DPMD46 and others152-158. 
Recently, ML force fields based on graph neural network (GNN) 
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architectures have gained traction, with models like NequIP62 and 
Allegro63. These models do not require explicit descriptor 
construction; instead, they represent the entire system as a graph 
and incorporate the effects of the chemical environment through a 
message-passing mechanism. Given the wide variety of ML force 
fields, this review focuses on introducing the more widely used 
neural network force field. This emphasis does not imply that other 
models are less effective. For example, GAP based on Gaussian 
Process Regression, sGDML rooted in Nuclear Ridge Regression, and 
other linear and kernel-based methods such as Moment Tensor 
Potential (MTP)159 and Atomic Cluster Expansion (ACE)160, offer 
interpretable and systematically improvable representations of the 
PES. These approaches typically require less training data than deep 
neural networks and permit rigorous error estimation, making them 
particularly appealing for catalytic studies where generating high-
fidelity training datasets is computationally expensive.

5.2 Fitting Methods of Neural Network Force Field

Neural networks are mathematical models that mimic the 
structure and functioning of neurons in the human brain. Typically, 
these models consist of an input layer, hidden layers, and an output 
layer, with each hidden layer containing a set of interconnected 
neurons. Figure 8b illustrates a simple neural network model, where 
each input is progressively transformed through neurons in the 
hidden layers before reaching the output. The conversion between 
neurons is achieved by the following formula:

𝑌 = 𝑓(𝑊𝑋 + 𝑏) = 𝑓(∑𝑛
𝑖=1 𝜔𝑖𝑥𝑖 + 𝑏)                      (17)

where x represents the input from the preceding layer, 𝜔 denotes 
the weights, b is the bias term, and f signifies the activation function.

In neural network force field, the input consists of the localized 
chemical environment information of each atom, and the 
corresponding atomic energy is obtained through the mapping 
between neurons, as shown in Eq. (18-20).

𝑌1 = 𝑓(𝑊1𝑋 + 𝑏1) = 𝑓 ∑𝑛
𝑖=1 𝜔1

𝑖 𝑥𝑖 + 𝑏1                 (18)
𝑌2 = 𝑓(𝑊2𝑌1 + 𝑏2) = 𝑓 ∑𝑛

𝑖=1 𝜔2
𝑖 𝛾1

𝑖 + 𝑏2               (19)
𝐸 = 𝑓(𝑊3𝑌2 + 𝑏3) = 𝑓 ∑𝑛

𝑖=1 𝜔3
𝑖 𝛾2

𝑖 + 𝑏3                (20)
A notable approximation in this method is the restriction of atomic 

interactions within a cutoff sphere. The resulting short-range 
potential is well-suited for describing local bonding, even in complex 
atomic environments. However, for many systems, long-range 
interactions (e.g., electrostatic and dispersion forces) are also 
important. To address this issue, like the environment-dependent 
atomic energies, the atomic charges also depend on vectors of ACSFs 
that describe the atomic environments, and are obtained as outputs 
of the atomic charge neural networks. These charges are then used 
to calculate the long-range electrostatic energy using standard 
methods, such as Coulomb’s law or the Ewald summation. PhysNet69 
is a prototypical example of this class of methods. Although this 
method incorporates electrostatic interaction calculations, it relies 
on atomic charges determined solely by the local chemical 
environment, which limits its accuracy in describing non-local effects. 
To overcome this limitation, methods such as charge equilibration 
neural network technique (CENT)161 have been developed to 
determine atomic charges based on the global environment, 
effectively addressing non-local interaction challenges. This method 
also uses ACSF vectors to describe the atomic environment as input 

Figure 8 (a) Workflow for fitting a force field using machine learning algorithms. (b) Framework of the neural network algorithm used in force 
field construction. (c) Timeline of the development of machine learning force field models.
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to the neural network. The key difference lies in its output, which is 
the electronegativity values that are subsequently used in a charge 
equilibration scheme to determine atomic charges.

Compared to traditional neural network force fields that rely on 
manually designed fixed descriptors, graph neural network force 
fields developed recently demonstrate superior generalization 
capabilities and dynamically adapt to varying topological structures. 
NequIP exemplifies this approach by employing an E(3)-equivariant 
architecture to accurately model atomic interactions62. In this 
framework, atoms serve as nodes, while edges represent 
interactions between a central atom and its neighbors within a cutoff 
radius, forming an atomic graph. NequIP operates directly on these 
graphs, with features that transform equivariantly under three-
dimensional rotations, translations, and reflections. This geometric 
equivariance allows the network to inherently respect physical 
symmetries, enhancing data efficiency and prediction accuracy. 
Through multiple layers of equivariant message passing that update 
node and edge features, NequIP effectively captures complex many-
body interactions and anisotropic effects essential for realistic 
molecular and materials simulations. Similar to NequIP, methods 
such as MACE65 and Allegro63 are also graph-based architectures that 
model interatomic interactions through message passing schemes, 
enabling the explicit treatment of many-body effects. 

During the training process of neural network, the weights Wi and 
biases bi are initialized randomly and optimized to minimize a loss 
function that quantifies the difference between the predicted values 
and the reference data. The primary focus is typically on two 
indicators: the system's potential energy and the atomic forces. 
Commonly used loss functions include the MAE and RMSE. The 
smaller the MAE or RMSE on the test set, the more accurate the 
model's predictions.

In some cases, additional terms are included based on the 
system’s properties; for example, for solid material systems, a stress-
related loss function term may be added. In addition to the weights 
Wi and biases bi that are determined during training for a given data 
set, model training also involves selecting hyperparameters, such as 
the number of hidden layers and neurons per layer. In theory, if the 
number of hidden layers and neurons per layer is sufficiently large, 
the model can output energy with arbitrary precision. However, too 
many hidden layers and neurons can significantly increase the 
computational cost. Therefore, selecting appropriate 
hyperparameters is crucial for the accuracy and efficiency of the 
model. Hyperparameters are typically optimized using exhaustive 
search schemes like grid search or random search, often combined 
with informed guesses for suitable search ranges. Currently, for 
many hyperparameters, model performance remains fairly robust 
for small changes, and defaults perform well across different data 
sets.

Before optimizing any hyperparameters, the test set must be 
separated from the available reference data, and the remaining data 
is then divided into training sets and validation sets. This separation 
is essential because, in force field applications, the structures are not 
included in the training data, so the model must be trained capable 
of predicting unseen data. Therefore, for each trial combination of 
hyperparameters, the model is trained on the training data, and its 
performance is evaluated on the validation set to estimate the 
generalization error. The best-performing model is then selected. To 

enhance the model's generalization ability, k-fold cross-validation 
method is also used. For more complex neural network models, 
additional considerations are required, and further detailed can be 
found in the summary by Tokita et al.162

Training ML force fields often relies on large amounts of high-
quality data, which typically demands expensive QM calculations. To 
reduce training costs, several methods for optimizing data 
acquisition have been developed. One approach is to generate initial 
data using less expensive classical molecular dynamics simulations, 
followed by selecting a minimal subset for more computationally 
expensive ab initio calculations163. Additionally, strategies such as 
active learning and enhanced sampling can further improve 
efficiency164. Active learning significantly reduces data requirements 
by intelligently selecting the most informative data points for 
labeling, while enhanced sampling techniques (e.g., meta-dynamics, 
umbrella sampling) can effectively capture rare events and improve 
the coverage of reaction paths. By combining these methods, data-
efficient ML force fields can be developed, enabling construction of 
high-precision PES with limited data conditions.

The ML force field models typically rely on local structural 
information, such as interatomic distances and angles, to predict the 
PES. However, the traditional model tends to overlook long-range 
electrostatic interactions between charged particles in the system. 
As a result, traditional models based on local structural features still 
faces challenges when studying systems (such as clusters, interfaces, 
and gas-phase systems) that are significantly influenced by long-
range electrostatic interactions. To address this, researchers have 
incorporated a long-range electrostatic interaction term into the 
traditional model, learning the hidden variables in the local atom 
descriptor and applying Ewald summation to account for these 
interactions165-167. This approach has been successfully validated in 
systems such as charged polar molecules and biological 
macromolecules. Additionally, another challenge with ML force 
fields is that the system's structural features can change under 
different environmental conditions. For example, variations in 
coordination atoms, temperature, pressure, or solvents can 
significantly affect the structure and interactions of molecules, 
making it challenging for a model trained under one set of conditions 
to transfer efficiently to another. In contrast to the parameter 
transferability observed in classical force fields and the ReaxFF force 
field for similar systems, ML force fields, particularly those based on 
neural networks, generally lack parameter transferability. As a result, 
the model needs to be retrained for new systems.

To improve learning efficiency and accuracy on new systems or 
tasks while reducing reliance on expensive high-quality training data, 
transfer learning strategies have proven effective. This process 
mainly includes pretraining followed by fine-tuning, incremental 
learning, and active learning–assisted transfer. Typically, foundation 
models such as MACE-MP-0168 are first pretrained on large-scale 
general datasets, like the Open Catalyst Project, to capture universal 
physicochemical features. They are then fine-tuned to rapidly adapt 
to specific systems, thereby reducing the demand for high-quality 
training data. Additionally, incremental learning enables continuous 
model updates as new data become available, preventing the 
forgetting of previously learned knowledge. Active learning 
incorporates uncertainty evaluation to selectively sample high-value 
data, enhancing training efficiency169. These strategies, when 
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combined, effectively facilitate the rapid deployment and efficient 
application of ML force fields across diverse catalytic and materials 
systems.

5.3 Applications of Machine Learning Force Fields

The advantage of ML force fields lies in their ability to achieve 
accuracy comparable to that of QM, while being significantly faster 
than QM methods. These simulations have been widely applied to a 
variety of systems, including molecular clusters170, solid materials171, 

172, solutions173, 174, and biomolecules69. Additionally, ML force fields 
are particularly well-suited for simulating reactive dynamic 
processes. To illustrate the potential of ML force fields in catalysis, 
this paper will focus on three primary application cases: the stability 
of supported metals, catalytic reaction processes, and material 
structure prediction.

The surface energy of metal nanoparticles in the heterogeneous 
catalytic reaction is high, making sintering more likely, which 
subsequently leads to catalyst deactivation. A common solution is to 
disperse the nanoparticles on the surface of a substrate. The 
construction of PES by neural networks offers comparable accuracy 
to QM but are several orders of magnitude faster, making it suitable 
for long-term simulations of nanoparticle sintering processes. To 
explore the influence of substrate on sintering behavior, Li et al. 

simulated the agglomeration process of gold nanoparticles on silica 
and ceria surfaces using neural networks-based deep potential 
molecular dynamics (DPMD)175. The DPMD simulation results (Figure 
9a) showed that small gold nanoparticles are more likely to migrate 
on the surface of silica and rapidly merge with large nanoparticles. 
Similarly, on the flat CeO2-x (111) surface, small gold nanoparticles 
also migrate and agglomerate. In contrast, gold nanoparticle at the 
step site of CeO2-x (111) is highly stable, with no significant migration 
during the simulation period. Further analysis revealed that the 
migration of the small particles is affected by the interaction 
between the metal and the support. Similar to hydrophilic behavior, 
gold nanoparticles on ceria exhibit smaller contact angles compared 
to silica, especially on step site of surface. These simulation results 
were also verified by the experimental characterization. The rapid 
migration of gold nanoparticles on the surface of silica was observed 
using sequential high-resolution TEM (HRTEM), where all 
nanoparticles merged into a single particle. Conversely, Au 
nanoparticles on the surface of ceria were stabilized at the step site.

The precision and speed with which PES is constructed using 
neural networks enable the simulation of more MD trajectories for 
the reaction process. For example, Jiang et al. investigated the 
equilibration dynamics of hot oxygen atoms following the 
dissociation of O2 on Pd(100) and Pd(111) surfaces using MD 
simulations based on a scalable neural network force field176. By 

Figure 9 (a) Snapshot images from DPMD simulations of Au128+Au32+Au32/SiO2 at 500 ps and Au128+Au32+Au32/CeO2-x-step at 10 ns. (b) Time-
resolved HRTEM images showing Au/CeO2(111) image at 120 s and Au/SiO2 at 416 s [Reprinted with permission from ref. 168. Copyright 
2022 American Chemical Society]. (c) Evolution of atomic oxygen positions during representative trajectories of postdissociation dynamics 
of O2 on Pd(111) and Pd(100) at 160 K, leading to different equilibrated distances [Reprinted with permission from ref. 169. Copyright 2023 
American Chemical Society]. (d) Ternary Zn-Cr-O phase diagram. The green region indicates compositions with the spinel-type skeleton 
structure as the global minimum; the blue circles labelled by numbers represent the composition. Only the spinel ZnCrO phases in the red 
dashed triangle are thermodynamically favored (see f). (e) Structure motifs of the spinel ZnCr2O4 and Zn3Cr3O8 bulk phases. (f) Convex hulls 
for all the ZnCrO structures indicated by the blue line. The blue triangles and black circles represent structures with negative and positive 
formation energy relative to the ZnO and CrO2 phases, respectively [Reprinted with permission from ref. 171. Copyright 2019 Springer 
Nature].
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analyzing hundreds of trajectories, they found that, on both surfaces, 
oxygen atoms produced by oxygen dissociation tend to neighboring 
sites and perform a random-walk-type motion. This mechanism 
results in a finite distance distribution of equilibrium atoms, which is 
consistent with experimental observations. And the initial molecular 
orientation and surface thermal fluctuations have significant effects 
on the overall dissociation kinetics. Similarly, a study on the 
decomposition dynamics of formate (HCO2) on Cu surfaces 
demonstrated the application of neural network force field in 
catalytic process177. Based on globally accurate high-dimensional PES 
fitted with density functional theory data, the study predicted the 
mean translational energy distribution and angular distribution of 
desorbed CO2 on Cu(111) and Cu(100) surfaces. Additionally, the 
decomposition of HCOOH on different Cu surfaces is structurally 
sensitive due to different surface repulsion. These studies represent 
a significant advancement in modeling surface reactions using ML 
force fields, providing a more comprehensive understanding of the 
state of reactive species on catalyst surfaces and improving theory-
experiment agreement.

ML force fields can also be used to predict the composition and 
structure of materials. For example, the thermodynamic phase 
diagram of metal oxide alloys remains largely unknown due to their 
compositive variability and associated atomic structural complexity, 
as does the catalytic kinetics on different surfaces of different 
compositions. By combining a global neural network potential with 
stochastic surface walking global optimization, Liu et al. investigated 
the relationship between the structure of ternary zinc-chromium 
oxide (ZnCrO) catalysts and the performance of syngas (CO/H2) 
conversion178. They explored the PES structure under different 
components (ZnxCryO) and constructed the ternary Zn-Cr-O phase 
diagram (Figure 9d). Further calculation of the formation energy 
revealed the presence of a small, stable composition island in phase 
diagram, where the oxide alloy crystallizes primarily in a spinel phase 
(Figure 9e-f). Two representative crystal phases (ZnCr2O4 and 
Zn3Cr3O8) were selected for further analysis of the syngas conversion 
mechanism. Reaction kinetics results indicated that a planar [CrO4] 
site, dynamically formed under reaction conditions, is the active 
center for methanol production. This planar [CrO4] is only present 
when Zn:Cr exceeds 1:2, after the appearance of [ZnO6], 
demonstrating that ZnCrO catalysis is highly sensitive to the Zn:Cr 
ratios. This work highlights the role of ML force fields in predicting 
the composition and structure of materials, providing valuable 
insights into the connection between atomic structure and its 
properties. 

Overall, ML force fields have rapidly emerged as a transformative 
tool for heterogeneous catalysis, offering near-quantum accuracy at 
a lower computational cost. By learning from large and diverse QM 
datasets, ML force fields can capture complex chemical 
environments, including surface reconstructions, multi-element 
active sites, adsorbate-induced electronic effects, and reaction 
pathways, while enabling simulations at scales inaccessible to direct 
QM methods. Recent advances in equivariant graph neural networks 
(e.g., MACE, NequIP, GemNet) and databases (e.g., MP, OCP) have 
further improved data efficiency, accuracy, and transferability across 
different catalyst surfaces and reaction intermediates. Notably, 
MACE-OFF179 represents a significant advance by extending the 
MACE architecture to a large-scale pretraining paradigm, analogous 

to foundation models in natural language processing. MACE-OFF is 
trained on millions of atomic environments spanning diverse 
elements, bonding motifs, and structural phases. By leveraging this 
pretraining, the model can be adapted to new catalytic systems with 
minimal fine-tuning or, in some cases, without any additional 
retraining. And MACE-OFF has demonstrated near-DFT accuracy 
across a range of downstream tasks, including molecular dynamics, 
adsorption energy predictions, and surface reaction energetics, with 
orders-of-magnitude lower data requirements compared to 
conventional task-specific ML force fields. Moreover, SO3LR180 
further pushes the frontier by combining SO(3)-equivariance with 
explicit long-range interaction modeling. This architecture allows the 
model to capture electrostatics, polarization, and other nonlocal 
effects that are critical in catalytic environments but often neglected 
in standard ML force fields. Unlike most equivariant graph neural 
networks, which focus primarily on short-range many-body 
interactions, SO3LR incorporates efficient formulations of long-range 
physics directly into the network, enabling accurate treatment of 
charged surfaces, polar adsorbates, and extended catalytic interfaces. 
Importantly, SO3LR achieves these capabilities while remaining 
computationally scalable to large systems, positioning it as a 
promising candidate for modeling realistic catalytic reactors or 
electrochemical interfaces.

Despite their promise, ML force fields face significant challenges. 
Their predictive power is fundamentally limited by the quality, 
diversity, and representativeness of the training data, making out-of-
distribution generalization a key bottleneck. Transferability across 
phases, surface terminations, and adsorbate coverages often 
requires retraining or fine-tuning, and constructing high-quality 
datasets for reactive, charged, or open-shell catalytic systems can be 
computationally prohibitive. Moreover, most current ML force fields 
lack explicit treatment of long-range electrostatics, charge transfer, 
and excited-state effects, which are critical in electrocatalysis, 
photocatalysis, and plasmon-assisted catalysis. Benchmarking across 
relevant catalyst classes and establishing rigorous uncertainty 
quantification protocols remain underdeveloped.

Looking forward, the integration of active learning, transfer 
learning, and foundation models (e.g., those developed in the OCP) 
offers a promising route to enhance data efficiency and 
generalization. Hybrid simulations that couple ML force fields with 
reactive force fields or on-the-fly quantum refinement can provide a 
balanced description of reactivity and long-timescale dynamics. 
Furthermore, expanding benchmark datasets to include realistic 
catalytic conditions such as solvent effects, applied potentials, and 
high coverage regimes, will be essential to closing the gap between 
ML force field predictions and experimental observables, thereby 
enabling their widespread adoption in predictive catalyst design.

6 Summary and Outlook
In summary, this review provides an introduction to the principles 

of force field-based PES, highlighting three main types of force fields, 
their corresponding fitting methods and application. The evolution 
of force field-based PES reflects a progression from simplified models 
to more precise, comprehensive, and adaptable approaches. 
Furthermore, this review offers a detailed comparison of the 
strengths and limitations of each type, alongside a discussion of their 
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applicability to different systems, with a particular focus on 
heterogeneous catalysis. These advancements encompass studies on 
supported metal nanoparticle morphology, interfacial molecule 
distribution and diffusion, catalytic reaction processes, and the 
prediction of catalytic materials, though they do not represent an 
exhaustive list of all possible examples. By leveraging the cost-
effectiveness of force field methods, researchers have overcome the 
limitations of QM, enabling simulations of previously inaccessible 
phenomena and significantly advancing scientific understanding.

Although force field methods have seen widespread application, 
they still face several challenges that lead to the inconsistency 
between the experimental results and the computational 
simulations. The key to solve this issue lies in improving the precision 
of constructing PES by force field. The first challenge is in database 
construction. Since experimental data are often costly to obtain, 
force field fitting typically relies on more readily available 
computational data. However, computational data often involves 
too much simplification, which can compromise the accuracy of the 
PES. To address this, a hybrid dataset can be built, where 
computational data are used to fit the force field, and the resulting 
model is validated and fine-tuned using experimental data, thereby 
reducing the gap between simulation and experiment. The second 
challenge concerns the architecture of force field model. QM 
methods achieve accuracy through electronic-level descriptions, 
while force field methods still have shortcomings in electrostatic 
interactions. For example, the QEq method, which is primarily used 
for static charge distribution estimation, but it cannot deal well with 
the redistribution and transfer of electrons in non-equilibrium 
systems such as chemical reactions. Therefore, future force field 
models should aim to improve charge equilibration methods, so as 
to explicitly consider electrostatic interactions and non-local effects. 
Furthermore, the tradeoff between the accuracy and computational 
cost in force field fitting needs to be considered. Force field fitting 
typically requires significant computational resources and data, 
especially for high-precision fitting. Traditional fitting methods may 
require thousands of simulations to adjust and optimize parameters, 
making the process time-consuming. As a solution, the concept of 
meta-learning could be introduced to fit force fields for new systems. 
By selecting optimal algorithm and parameter configurations based 
on knowledge acquired from historical fitting tasks, the meta-
learning model can provide effective fitting effect and strong 
generalization capabilities, even in the case of sparse data.

Beyond the general limitations discussed above, several catalysis-
specific challenges remain urgent. First, the transferability of force 
fields, particularly ML force fields, across different phases, chemical 
compositions, and surface states is often limited by the diversity of 
their training data. Addressing this requires multi-fidelity and 
transfer learning strategies that leverage both large general-purpose 
datasets (e.g., MP, OCP, MD17) and system-specific fine-tuning. 
Second, long-range electrostatics and charge transfer remain difficult 
to capture accurately in heterogeneous environments, especially 
under dynamic or reactive conditions. Extensions such as polarizable 
models and explicit charge equilibration schemes within ML 
frameworks show promise. Third, electrochemical environments, 
involving applied bias or constant potential conditions, introduce 
additional complexity for reactive force fields and ML force fields, 
necessitating integration with constant potential molecular 

dynamics and implicit/explicit solvation models. Fourth, fitting 
procedures and data generation for high-dimensional potentials 
remain computationally expensive, and active learning, data 
selection, and meta-learning approaches offer routes to reduce cost 
without sacrificing accuracy. Finally, benchmark datasets such as the 
OCP, MD17, and MP are critical not only for training but also for 
enabling reproducible model comparisons, helping guide community 
progress toward more robust and transferable force fields.
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