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diastereoselective hydroboration
of acrylates with a vinylborane reagent†

Guanwen Hu, Peiqi Zhang, Xinmou Wang, Chunteng Wan, Yiyi Fu,
Wa Hung Leung, Zhenyang Lin * and Yangjian Quan *

Organoboron compounds exhibit unique properties and valuable applications in organic synthesis,

catalysis, materials science, and drug discovery, driving researchers to improve their structural and

functional diversity. Despite significant advancements, challenges remain in accessing complex

organoboron compounds, particularly in constructing boron-stereogenic skeletons. Here we report

a nickel catalyzed diastereoselective hydroboration of olefins using a newly developed vinylborane

reagent, CH2]CH–BH2L (where L is a dative donor). This protocol enables the efficient synthesis of

versatile vinylborane derivatives featuring a boron-stereogenic center. Mechanistic studies, including the

isolation and structural characterization of a key B–H–Ni bonded intermediate, control experiments, and

DFT calculations reveal a s-coordination enabled B(sp3)–H activation. The s-coordination induces an

oxidative metalation, simultaneously forming B–Ni, C–Ni and C–H bonds. The C]C unit in the

vinylborane reagent plays a pivotal role in facilitating the otherwise challenging oxidative metalation of

the B(sp3)–H bond. This unique B(sp3)–H metalation mode may have broader implications for achieving

other forms of selective B–H functionalization.
Introduction

Organoboron compounds are nding increasingly valuable
applications in synthetic chemistry, materials science, and drug
discovery. Notably, due to the unique interactions between
borane motifs and bioactive centers, ve boron-based drugs
have been approved by the FDA, and more candidates are under
clinical trials (Fig. 1a).1–3 Furthermore, boron-containing units
such as azaborines4–6 and carboranes7,8 serve as benzene
analogues to enhance or alter the bioactivity of the lead drug
molecules. Given these advancements, it remains a compelling
goal to enhance the structural and functional complexity of
organoboron molecules. Despite signicant progress, chal-
lenges persist in the synthesis of complex organoboranes,
particularly in constructing boron-stereogenic skeletons.9,10 To
address these challenges and expand the chemical space of
organoboranes, design and development of a versatile reagent
would be an ideal solution.

In view of the inherent versatility of C]C and C–B units,
vinylboron reagents containing both active centers have been
developed and proven to be powerful synthons for organo-
borane synthesis and organic transformations (Fig. 1b).11–19

These reagents typically undergo three main reaction modes,
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including (1) C]C double bondmodications,20–30 (2) C–B bond
transformations,13,31–34 and (3) 1,2-migrations of “boron-ate”
complexes.35–39 However, functionalization at the boron center
assisted by the C]C motif in vinylboron reagents remains
unexplored, despite its potential to access boron-stereogenic
compounds. In this connection, we have designed a bench-
stable vinylborane reagent, CH2]CH–BH2L (1, L is a dative
donor). This reagent is hypothesized to undergo B(sp3)–H
functionalization to generate a broad range of vinylborane
derivatives distinguished by a chiral-at-boron center
(Fig. 1b).9,10,40–44 For realizing effective B(sp3)–H modication,
the activation strategy should be able to differentiate the B(sp3)–
H site from other active centers in 1 and allow for precise
selectivity control.

A promising approach for selective B–H derivatization
involves transition metal catalysis,45–52 which has been widely
applied in borylative transformations53–65 but remains relatively
underdeveloped in B(sp3)–H activation.66–68 Pioneering studies
by Weller,69 Chuzel and Parrain,43 and Shi70 demonstrated noble
metal catalysts (e.g., Rh, Au) for B(sp3)–H functionalization, but
successful examples remain scarce. This difficulty arises
because B(sp3)–Hbonds are electron-rich, weakly polarized, and
lack an empty p-orbital on boron, making their oxidative addi-
tion on transition metals challenging compared to B(sp2)–H
bonds. Interestingly, several studies document s-coordination
of B(sp3)–H bonds to transition metal centers, which weakens
the B(sp3)–H bond and may facilitate its activation.71–75 Building
on this premise, we have developed a nickel-catalyzed
Chem. Sci., 2025, 16, 13449–13458 | 13449
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Fig. 1 Vinylborane reagent. (a) Unique interactions between boron motifs and biomolecules, and representative FDA-approved boron drugs. (b)
Representative reaction modes of vinylboron reagents and the unexplored B(sp3)–H functionalization. (c) This work: design of a vinylborane
reagent and its reaction with olefins via nickel catalysis.
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diastereoselective hydroboration of olens using the vinyl-
borane reagent (Fig. 1c). The successful isolation and structural
characterization of a key B–H–Ni bonded intermediate, along
with control experiments and DFT calculations, reveal a unique
s-coordination enabled oxidative metalation that simulta-
neously generates B–Ni, C–Ni and C–H bonds while cleaving the
B–H bond and olen p bond. The C]C unit in the vinylborane
reagent plays a crucial role in facilitating the key oxidative
metalation of the B(sp3)–H bond.
Results and discussion

In the presence of NiBr2(PPh3)2 as a catalyst, reaction of the
vinylborane reagent 1 with benzyl acrylate in dioxane at room
temperature overnight gave the coupling product 3 in 80% yield
with a diastereomeric ratio (dr) of 8 : 1 (entry 1, Table 1). Using
NiCl2 as the catalyst without a phosphine ligand provided
a comparable yield of 75%, but with a signicantly reduced dr of
1.1 : 1 (entry 2, Table 1). We then screened a series of ligands to
improve the dr of product 3 (Table 1 and S1b in the ESI†). Mono-
phosphine ligands, P(p-F–Ph)3 and P(p-Cl–Ph)3, proved optimal,
leading to excellent drs of > 20 : 1. The most electron-decient
P(C6F5)3, electron-rich PCy3, or bidentate phosphine ligands
offered low drs ranging from 1 : 1 to 2 : 1 (entries 7 and 9, Tables
1 and S1b in the ESI†). Using less polar toluene as the solvent
increased the yield to 97% without compromising the dr (entry
12, Table 1). The employment of Ni(COD)2 instead of NiCl2
resulted in a decreased yield of 84% with a reduced dr of 16 : 1
(entry 13, Table 1). Reducing the loadings of NiCl2 and P(p-F–
13450 | Chem. Sci., 2025, 16, 13449–13458
Ph)3 to 5 mol% and 12.5 mol%, respectively, did not affect the
reaction efficiency (entry 14, Table 1) and was therefore chosen
as the optimal reaction condition. Replacing the vinylborane
reagent 1with NHC–BH3 or NHC–BH2Ph failed to give the target
product (Section 4.4 in the ESI†), highlighting the important
role of the “C]C” motif in 1 in facilitating B–H metalation/
activation. In contrast, the previously developed boryl radical
strategy proved to give b-borylation products with poor dia-
stereoselectivity (Fig. S14†).66,76–80

To gain insights into the reaction mechanism, control
experiments were conducted. Treatment of 1, Ni(COD)2, and
P(p-F–Ph)3 in THF at room temperature for 6 h produced a B–H–

Ni bonded complex INT1 in 60% isolated yield (Fig. 2a). The 1H
NMR spectrum of INT1 exhibited a signicantly up-eld peak at
−0.88 ppm (Fig. 2c). Its assignment to one BH was supported by
the subsequent 11B–1H HSQC analysis, with another BH being
detected at 0.66 ppm (Fig. 2c). The B(sp3)–H coordination mode
was further veried by the single-crystal structure of INT1
(Fig. 2a). Upon hydrogen addition through modeling, the bond
length of the B(sp3)–H s-coordinated to the Ni center was
measured as 1.29 Å, longer than the 1.13 Å length measured for
the free B(sp3)–H bond. Moreover, the distance between the B
and Ni centers was found to be 2.28 Å, suggesting a potential
interaction. A combination of the NMR and X-ray diffraction
ndings indicated (1) the s-coordination of one B(sp3)–H in the
vinylborane reagent to the Ni center and (2) the signicant
activation of this B(sp3)–H bond by Ni. Such a bonding and
activation mode differs from the deprotonation or C–H metal-
ation reaction observed in forming transition metal-allylic
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Synthesis of 1 and optimization of reaction conditionsa

Entry [Ni] (10 mol%) PR3 (25 mol%) Solvent Yieldb (%) dr
b

1 NiBr2(PPh3)2 — Dioxane 80 8/1
2 NiCl2 — Dioxane 75 1.1/1
3 NiCl2 PPh3 Dioxane 88 19/1
4 NiCl2 P(p-F–Ph)3 Dioxane 92 >20/1
5 NiCl2 P(p-Cl–Ph)3 Dioxane 88 >20/1
6 NiCl2 P(p-OMe–Ph)3 Dioxane 89 18/1
7 NiCl2 P(C6F5)3 Dioxane 72 1.1/1
8 NiCl2 P(p-Me–Ph)3 Dioxane 91 12/1
9 NiCl2 PCy3 Dioxane 42 2/1
10 NiCl2 P(p-F–Ph)3 MeCN 37 11/1
11 NiCl2 P(p-F–Ph)3 DMA 87 14/1
12 NiCl2 P(p-F–Ph)3 Toluene >95 >20/1
13 Ni(COD)2 P(p-F–Ph)3 Toluene 84 16/1
14 NiCl2 P(p-F–Ph)3

c Toluene >95 (97) >20/1

a Reactions were conducted at 0.05 mmol scale in 0.5 mL of solvent in
a closed ask. b Yields and drs were determined by 1H NMR with
1,3,5-trimethoxybenzene as an internal standard. c 5 mol% NiCl2 and
12.5 mol% P(p-F–Ph)3 were used, isolated yield in parentheses.
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complexes,81,82 probably due to the distinct electronic nature of
B(sp3)–H (hydridic) versus C–H (protonic). Compound INT1
reacted with ethyl (E)-2-hexenoate under the standard condi-
tions to deliver 41 in 21% yield with a dr of over 20 : 1 (Fig. 2b). It
was also proved effective as a catalyst in the hydroboration
reaction (Fig. 2b). These results support the role of INT1 as a key
intermediate involved in the reaction pathway.

DFT calculations were carried out to gain insight into the
reaction mechanism. Fig. 2g shows the energy prole calcu-
lated. Starting from INT1 (using its single crystal structure for
geometry optimization), a ligand substitution of benzyl acrylate
for P(p-F–Ph)3 leads to the formation of INT2, from which the
crucial oxidative metalation occurs, establishing B–Ni, C–Ni,
and C–H bonds in INT3 concurrently, while cleaving a B–H
bond and benzyl acrylate p bond. The energy barrier for this
metalation step is 19.9 kcal mol−1, being the highest in the
calculated pathway (Fig. 2g). Subsequently, INT3 undergoes
reductive elimination, followed by product release to deliver the
nal product and regenerate INT1. Diastereoselectivity control
is closely associated with the rate-determining step. Therefore,
optimization was conducted for the four diastereomers of TS1,
originating from three chiral B, Ni, and C (bonded with the ester
group) centers (Fig. S15 in the ESI†). Among them, the diaste-
reomer with the least steric repulsion between the olen
substrate and the phosphine ligand was most favored (Fig. 2g),
leading to product 3 with a conguration identical to
© 2025 The Author(s). Published by the Royal Society of Chemistry
experimental observations (see single crystal structures of 4 and
21 in Fig. 3).

The deuterated vinylborane reagent 1-D was prepared and
reacted with 2-furanone to yield 49-D, wherein one hydrogen of
the b-CH2, with respect to boron, was deuterated at a rate of
67% (Fig. 2d). The addition of 1.5 equiv. of D2O into the reaction
mixture did not cause any B–H or C–H deuteration (Fig. 2d).
Competitive and parallel experiments using 1 and 1-D displayed
signicant kinetic isotope effect (KIE) with kH/kD ratios of 2.5
and 2.4, respectively (Fig. 2e). These experimental ndings
suggested that the B(sp3)–H cleavage might be involved in the
rate-determining step, consistent with the computational
results. Based on the above experiments and DFT calculations,
a plausible reaction pathway is proposed in Fig. 2f.

The reaction mode of B(sp3)–H metalation is very similar to
the documented ligand-to-ligand hydrogen transfer (LLHT)
mechanism observed in C(sp2)–H nickelation.83,84 The differ-
ence lies in the bond strength between Ni–B(sp3) and Ni–C(sp2).
The former one is believed to be relatively weak due to the lack
of p-interaction between metal and the boron unit.85 Therefore,
its formation via LLHT is involved in the rate-determining step.

We then explored the scope of various types of olens.
Terminal vinyl esters containing a diverse array of functional
groups, including alkyl, triuoromethyl, alkenyl, alkynyl, cyano,
methoxyl, ether, halide, silyl, carbonyl, amide, ester, bpin, and
pyridinyl groups, reacted with the vinylborane reagent smoothly
(3–29, Fig. 3). Most reactions exhibited excellent diastereomeric
ratios of >20 : 1. Notably, carbonyl and pyridinyl substituents,
which can coordinate to nickel, were well tolerated (21 and 29).
The hydroboration occurred regioselectively at the relatively
electron-poor C]C site, when the substrates involved multiple
unsaturated functionalities (10–14). The ferrocene-containing
substrate worked well (30), while the cyclobutylamino substit-
uent proved compatible (31). A series of aryl acrylates were
evaluated, giving 32–38 in moderate to excellent isolated yields,
yet with relatively low diastereomeric ratios of around 10 : 1.
Alkyl thioacrylate was also an effective coupling partner, deliv-
ering product 39.

A series of internal olens were subsequently evaluated as
substrates. Various functional groups including piperidine,
tetrahydropyrane, nerolin, and phthalimide were well tolerated
(42–45). The substrate featuring a cyclopropylethene motif
underwent this hydroboration effectively to afford 46, where the
cyclopropyl ring remained intact, negating the involvement of
a radical pathway. In addition to 1,2-disubstituted olens, the
1,10-disubstituted one also worked well (50), constructing
a quaternary C–B(sp3) bond. Tri-substituted olens afforded the
corresponding products (51, 53–55) effectively, albeit with
compromised diastereomeric ratios. However, the tetra-
substituted olen failed to react with the vinylborane reagent 1
(Section 4.4 in the ESI†). These results imply the inuence of
steric factors on the reaction efficiency and diastereoselectivity.
Less bulky cyclic olens were compatible, yielding 49 and 52
with diastereomeric ratios of >20 : 1.

This protocol also enabled the straightforward introduction
of a versatile vinylborane motif into a broad array of bioactive
molecules, including derivatives of commercially available
Chem. Sci., 2025, 16, 13449–13458 | 13451
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Fig. 2 Mechanistic investigations. (a) Synthesis and single crystal structure of INT1. (b) Demonstrating the role of INT1 in catalytic hydroboration.
(c) 1H–11B HMQC spectrum of INT1. (d) Deuterium labelling experiments. (e) KIE determination experiments. (f) Proposed reaction mechanism.
(g) DFT calculations on B3LYP-D3(BJ)/def2-QZVPP (Ni), def2-TZVP (rest)/SMD (toluene)//B3LYP-D3(BJ)/def2-TZVP (Ni, P), 6-31G(d,p) (rest)/
PCM (toluene) level; relative Gibbs free energies and relative electronic energies (in parentheses) in kcal mol−1.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 1
1:

10
:3

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
medicines (Fig. 4a): diclofenac (61, anti-inammatory),
probenecid (62, for treating gout and hyperuricemia), febuxo-
stat (63, for treating gout), telmisartan (66, for treating high
blood pressure, heart failure, and diabetic nephropathy),
13452 | Chem. Sci., 2025, 16, 13449–13458
ciprobrate (68, a hypolipidemic agent), and indometacin (65
and 67, anti-inammatory). Additionally, cholesterol (64),
estrone (60), Boc-Ser-OMe (59, an amino acid), diacetone-D-
glucose (58, a pharmaceutical intermediate), menthol (57, anti-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Substrate scope. Reaction conditions: NiCl2 (5 mol%), P(p-F–Ph)3 (12.5 mol%), 1 (0.12 mmol), alkene (0.1 mmol), PhMe (1 mL), r.t., 16 h;
yields of isolated products. (a) 1H NMR yields are shown in parentheses. (b) Reaction conditions: Ni(COD)2 (10 mol%), P(p-F–Ph)3 (25 mol%), 1
(0.12 mmol), alkene (0.1 mmol), PhMe (1 mL), r.t., 16 h.

© 2025 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2025, 16, 13449–13458 | 13453
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Fig. 4 Derivatization and synthetic applications. (a) Integrating the vinylborane motif into commercial medicine and natural product derivatives.
(b) Large-scale synthesis and downstream transformations of the products.
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irritation), isoborneol (56, antiviral), and butenolide (69,
a marine drug) derivatives reacted well with the vinylborane
reagent, achieving good to excellent diastereomeric ratios.
These ndings highlight the remarkable compatibility and
promising potential of this nickel-catalytic protocol.
13454 | Chem. Sci., 2025, 16, 13449–13458
This nickel-catalyzed hydroboration was conveniently scaled
up to give 3 and 50 in 97% and 72% yields, respectively (Fig. 4b).
The introduced vinylborane motif is anticipated to be versatile
for further molecular modications, alike the previously re-
ported vinylboron fragments. Treatment of 3 with in situ
generated [Fe]–H species86,87 delivered a new a-boryl(sp3)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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radical, which effectively attacked olens or diazo compounds
to give 72–74 and 70–71, respectively. The ester groups in 3 and
50 were conveniently reduced to give 75 and 76. Attempts to
construct a four-membered oxaboracycle from 76 via Brønsted
acid catalyzed B–H/O–H dehydrogenative coupling failed.
However, an unexpected product 78 was isolated and charac-
terized (see Fig. S3 in the ESI†). A plausible pathway including
a sequence of borenium-induced alkenyl metathesis, nucleo-
philic 1,2-boryl shi, and carbocation hydridation was
proposed accordingly (see Fig. 4b and S4 in the ESI†). Reaction
of 50 with the diazo compound upon visible light irradiation
yielded 77 bearing a bicyclo[3.1.0] ring,62 rather than the B–H
insertion species.58

Conclusions

In summary, we have designed a new vinylborane reagent that
permits the facile modication at the boron center via B(sp3)–H
bond functionalization. The developed nickel catalytic protocol
demonstrates advantages of remarkable diastereoselectivity
control, good compatibility, andmild operation conditions. The
isolation and structural characterization of a B–H–Ni bonded
intermediate, along with DFT calculations, underscore the
important bidentate coordination of the vinylborane reagent to
the nickel center. This coordination induces a unique oxidative
metalation, distinct from the metalation modes observed for
allylic C–H bonds. The potential of this vinylborane reagent in
synthetic chemistry awaits further research efforts.
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