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Synthesis of gem-di(boryl)cyclopropanes from
non-activated olefins via Mn-photocatalyzed atom
transfer radical additiont

*C

Jiefeng Hu, @ *2 Kun Zhang,” Jing Wan%b Mingming Huang, Shuangru Chen,?
Zhuangzhi Shi® 9 and Todd B. Marder

The application of gem-diboryl cyclopropanes as versatile building blocks for enhancing molecular complexity
has been limited, despite the availability of a few synthetic methods. Herein, we disclose a practical and
versatile manganese-catalyzed protocol that enables the synthesis of gem-di(boryl)cyclopropanes from

non-activated alkenes in combination with (diborylmethylliodides. This photoinduced strategy displays

good functional-group tolerance, and encompasses a wide range of applicable substrates, making it
applicable to the late-stage modification of natural products. Mechanistic experiments suggest that the
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reaction proceeds via an intermolecular halogen-atom transfer radical addition, followed by deprotonative

alkylation with lithium diisopropylamide, ultimately yielding cyclization products. The versatility and

DOI: 10.1039/d55c02670a

rsc.li/chemical-science

Introduction

Cyclopropanes, particularly those with molecular skeletons con-
taining quaternary or tetrasubstituted carbon centers, represent
a valuable class of molecules characterized by high ring strain,
widely found in biologically active molecules and pharmaceuticals,
such as coronatine, lemborexant, ingenol, and orkambi (Fig. 1a).*
Over the years, numerous approaches to access these small car-
bocycles have been developed,” as represented by [2 + 1] cyclization
of olefins, including the Simmons-Smith reaction,® carbenoid
migration insertion,* ylide-type cyclopropanation,® and photoin-
duced radical cyclopropanation.®® While these strategies have
enabled the formation of cyclopropanes, methodology for the
synthesis of gem-di(boryl)cyclopropanes—compounds®  with
significant potential for multi-step functionalization and cross-
coupling to create highly functionalized cyclopropyl derivatives—
remains scarce and is generally limited in terms of diversification.
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practicality of this approach are further highlighted by the successful implementation of several
transformations, which provide an expedited route for synthesizing highly functionalized molecules.

a) Examples of bioactive compounds and drugs
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Fig. 1 De novo synthesis of gem-bis(boryl)cyclopropanes: back-
ground, challenges, and our approach.
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Traditionally, their synthesis has relied on borylative cross-
coupling of 1,1-dibromocyclopropanes with bis(pinacolato)
diboron (B,pin,)* or the use of diazo compounds for palladium-
catalyzed cyclopropanation of 1,1-diborylalkenes (Fig. 1b)."*
However, these methods suffer from some drawbacks, such as
harsh conditions, cumbersome procedures, challenging precursor
synthesis, and limited substrate scope. A recent breakthrough by
Liu and co-workers has provided a novel approach using haloge-
nated gem-diborylmethane as a boron ylide precursor, enabling the
cyclopropanation of electron-deficient olefins to deliver gem-
diborylcyclopropanes.’ Despite this progress, there remains
a clear need for the development of efficient and versatile methods
for accessing gem-di(boryl)cyclopropanes from non-activated
olefins.

1,1-Diborylalkanes are versatile building blocks extensively
used in medicine, materials science, and synthetic chemistry."
They operate through two primary reaction modes: generating a-
borylalkylmetal species or o-boryl carbanions for mono-
deborylative cross-coupling,* and deprotonation to form gem-
diboryl carbanions that readily engage in cross-coupling reac-
tions with electrophiles.”” Recent studies have increasingly
focused on synthesizing a-halogenated diboron compounds and
exploring their coupling reactions with nucleophiles to expand
the reaction modes of gem-diborylalkanes (Fig. 1c).*®
their potential for photoinduced radical reactivity has been rarely
explored.” In 2023, our group reported the photoinduced bor-
yleyclopropanation of alkenes using a (diborylmethyl)iodide to
synthesize cyclopropyl boronic esters’® via an radical polar
crossover (RPC) mechanism involving an o-iodoboryl carbon-
centered radical.” Recently, Molloy and co-workers utilized
a Lewis base to develop a photoinduced method for activating
ambiphilic reagents, leading to the generation of a-bimetalloid
radicals which can engage with various SOMOphiles to give the
functionalized organoboronates.*® Inspired by these reports, we
envisioned that the proper choice of a catalyst could facilitate
halogen-atom transfer (XAT)* from (diborylmethyl)iodide to
achieve iododiborylcarbo functionalization of alkenes, thereby
opening a unique pathway for constructing geminal di(boro-
nates) with distinctive structural features. Interestingly, Yin,
Wang, and co-workers reported the addition of the C-I bond of
RCHI(Bpin) across the CC triple bond of terminal alkynes; using
4CzIPN as the photocatalyst gave predominantly the E-isomer
whereas using Mn,(CO),, as the photocatalyst gave predomi-
nantly the Z-isomer.* Herein, we present a photoinduced
method for the modular and efficient synthesis of gem-di(boryl)
cyclopropanes through manganese-catalyzed XAT radical addi-
tion of (diboronmethyl)iodide to alkenes, followed by nucleo-
philic cyclization (Fig. 1d). Additionally, the intermediate adducts
obtained during this process can serve as valuable precursors for
various transformations, such as Heck-type cross-coupling and
radical borylation.

However,

Results and discussion

In our initial investigation, we focused on a model reaction
between 4-phenyl-1-butene (1a) and 2,2'-(iodomethylene)
bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2a). We first
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screened various potential photocatalysts in dry n-hexane.
Commonly wused photocatalysts, such as fac[Ir(ppy)s],
[Ru(bpy);]Cl,, eosin Y, and [Mes-Acr]'[BF,]”, showed no cata-
Iytic activity, and the starting materials were recovered (Table 1,
entries 1-4). With 4CzIPN as a photocatalyst, the reaction
mixture was irradiated with a 25 W blue light-emitting diode
(LED, Amax = 440 nm) at room temperature for 3 h, followed by
the treatment with lithium diisopropylamide (LDA, 2.5 M, in
THF) at —20 °C, and a trace amount of 1,1-bis(boryl)cyclopro-
pane (3a) was detected by gas chromatography-mass spec-
trometry (GC-MS). Upon replacing 4CzIPN with Mn,(CO);4,*
the GC yield of 3a significantly increased, and we successfully
isolated the cyclopropane product with an 81% yield (Table 1,
entry 6). However, using Mn(CO);Br as the photocatalyst led to
reduced reactivity (Table 1, entry 7), and MnBr, failed to
produce the desired gem-bis(boryl)cyclopropanes (Table 1, entry
8). Reducing the catalyst loading lowered the yield somewhat
(Table 1, entry 9). We then explored various bases, including

Table 1 Effect of reaction parameters”

|
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OC—Mn n—CO
g o co o %o
Eosin Y [Mes- Acr] [BF.J ACzIPN Mny(CO)ro
Entry Photocatalyst (mol%) Base Solvent Yield” (%)
1 Sfac-Ir(ppy)s (2) LDA "Hexane 0
2 [Ru(bpy)s]Cl, (2) LDA "Hexane 0
3 Eosin Y (10) LDA "Hexane 0
4 [Mes-Acr]'[BF,]~ (10) LDA "Hexane 0
5 4CzIPN (10) LDA "Hexane <10
6 Mn,(CO);, (10) LDA "Hexane 90 (81)°
7 Mn(CO)5Br (10) LDA "Hexane 27
8 MnBr, (10) LDA "Hexane 0
9 Mn,(CO)y (5) LDA "Hexane 71
10 Mn,(CO);, (10) LiO'Bu  "Hexane 0
11 Mn,(CO);0 (10) LTMP "Hexane 87
12 Mn,(CO);, (10) "BuLi "Hexane 22
13 Mn,(CO)y, (10) LDA MeCN 0
14 Mn,(CO)4, (10) LDA DMF 0
15 Mn,(CO)y, (10) LDA THF <10
16 Mn,(CO)4, (10) LDA DCM 47
17 — LDA "Hexane 0
184 Mn,(CO),, (10) LDA "Hexane 0

% Unless otherwise noted, the reaction conditions are as follows: 4-
phenyl-1-butene 1a (0.3 mmol, 1 equiv.), (diborylmethyl)iodide 2a
(0.36 mmol, 1.2 equiv.), photocatalyst (10 mol%), solvent (1 mL), 3 h,
440 nm blue LED (40 W), 25-40 °C, under argon. The reaction
mixture was cooled to 720 °C, followed by the addition of base and
stirring for 2 h at 0 °C. ? The ylelds of 3a were determined from the
crude reaction mixtures by GC-MS analysis vs. a calibrated internal
standard and are averages of two runs. °Isolated yield after
chromatography. ¢ Reaction carried out in the dark. LDA = lithium
diisopropylamide; LTMP = lithium tetramethylpiperidide.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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LiO'Bu, lithium tetramethylpiperidide (LTMP), and "BuLi
(entries 10-12), and found that LTMP was the most effective.
The impact of different solvents was also assessed: acetonitrile
(MeCN), N,N-dimethylformamide (DMF), and tetrahydrofuran
(THF) proved ineffective for the photoinduced cyclopropanation
(Table 1, entries 13-15), while dichloromethane (DCM) lowered
the yield of 3a (Table 1, entry 16). Finally, control experiments
validated the indispensability of the photocatalyst and visible
light exposure for this transformation (Table 1, entries 17 and
18). Exploration of other reaction conditions is given in the
ESL

With the optimized conditions identified, we examined the
scope and limitations of this one-pot synthesis method. As
shown in Scheme 1, terminal alkenes, such as 1-heptene,
allylbenzene, and 4-methylpent-1-ene, afforded the corre-
sponding gem-disubstituted cyclopropanes efficiently (3b-3d).
The structure of compound 3¢, was confirmed by single-crystal
X-ray diffraction.”® For highly sterically hindered olefins, this
cyclization reaction proceeds smoothly under standard reaction
conditions (3e and 3f). Moreover, the mild conditions accom-
modated a wide range of functional groups, including ethers
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(3g-3i), halide (3j-3m), trifluoromethyl (3n), and ester (30). A
substrate containing an internal olefin moiety under our
conditions afforded the desired product 3p in 68% yield,
resulting from reaction at the terminal olefin moiety, with the
internal C=C bond remaining untouched. An alkene contain-
ing a siloxy group gave the corresponding gem-di(boryl)cyclo-
propane (3q) in good yield. 1-Allylnaphthalene was a suitable
substrate for this reaction yielding 3r. Furthermore, substrates
featuring heterocyclic cores, such as carbazole and indole,
yielded the corresponding products (3s and 3t) in 63% and 78%
yields, respectively. However, using acyclic internal alkenes or
methyl acrylate as substrates under the standard conditions, no
products or adducts were detected by GC-MS (see ESIf for
details). After evaluating the scope of this photochemical
method, we next aimed to demonstrate its application by
incorporating di(boryl)cyclopropanes into natural products and
biologically relevant molecules. An L-menthol derivative reacted
with 2a using the light-induced Mn-catalyzed system, leading to
gem-bis(boryl)cyclopropane 3u in 78% yield. Several commer-
cially available complex molecules, such as tigogenin and
diacetone-p-glucose, were converted into corresponding alkene
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Scheme 1 Photoinduced synthesis of gem-bis(boryl)cyclopropanes.
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derivatives and subjected to the photoinduced synthesis
protocol, resulting in corresponding products (3v and 3w) in
63% and 66% yields, respectively. A compound with a ketal
group, derived from epiandrosterone, exhibited good reactivity
for photochemical functionalization (3x). Additionally, when
a vitamin E derivative was subjected to the reaction conditions,
cyclized product 3y was obtained in a 71% yield. A more
complex steroidal compound also performed well under the
reaction conditions to deliver the corresponding product (3z).
Under standard conditions, the reaction of 2b, the brominated
gem-diboryl analogue of 2a, with 1a resulted in the corre-
sponding product, as confirmed by GC-MS. However, 2¢, the
chlorinated analogue of 2a proved ineffective in this system,
failing to produce the desired product (see ESIT for details).
To elucidate the reaction mechanism, a series of experi-
ments were conducted. The reaction of 1a with 2a was carried
out using Mn,(CO);, as a catalyst under 440 nm blue LED
irradiation, yielding the vy-iodo-gem-diborylalkane 3’a. Subse-
quent treatment of 3’a with LDA produced the target product,
indicating the Mn-catalyzed step as a crucial stage in the
synthesis of cyclopropanes (Scheme 2a). Under standard
conditions, the presence of radical traps such as 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO), 9,10-dihydroanthracene
(DHA), or butylated hydroxytoluene (BHT) inhibited the
photoinduced difunctionalization reaction (Scheme 2b).
Instead, a radical adduct 4 was identified using high-resolution
mass spectrometry. These results support the formation of gem-

a) Control experiments
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diboryl carbon-centered radical species during this process.
Subsequently, the difunctionalization of diene substrate laa
was conducted under standard conditions (Scheme 2c). Inter-
estingly, only rearrangement product 5 was detected, indicating
that the iodination reaction occurs after the migrational ring-
closing step. Additionally, 5 underwent intramolecular cycliza-
tion when treated with NaO'Bu, yielding a bicyclic mono-
boronate ester 5a (see ESI} for details). To elucidate further the
reaction mechanism, we used stoichiometric initiators instead
of Mn,(CO);, for the XAT reaction between 1a and 2a. Thus, 1.2
equivalents of dilauroyl peroxide (DLP) produced 41% of the
desired product compared to only 17% yield when using 0.5
equivalents (Scheme 2d). We extended these studies to include
the common radical initiators AIBN and BEt; (see ESIt), which
showed similar behavior. In addition, a competition experiment
was conducted using 1la and two different o-halogenated
diboron compounds (2a and 2b). Only the iodine-containing
product was observed by NMR or GC-MS (Scheme 2e). These
results imply that a radical propagation pathway is unlikely to
be operative in this transformation. Based on these observa-
tions, a plausible mechanism for the reaction is proposed
(Scheme 2f), although other mechanism may be possible. (1)
Homolysis of Mn,(CO),, precatalyst under irradiation with
a blue LED forms the (CO)sMn" radical,* which serves as the
active catalyst for subsequent reactions.”**** (2) The (CO)sMn’
radical species acts as an iodine atom extractor from substrate
2a, forming the Mn(CO);I complex and a gem-diboryl carbon-

d) Stoichiometric radical initiator experiments
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a) Synthesis of 1,1-allylic diboronic esters
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centered radical I. This step involves the transfer of the iodine
atom from 2a to the catalytic species. (3) The gem-diboryl
carbon-centered radical I undergoes radical addition to an
alkene,*® generating an alkyl radical II. This step introduces the
alkyl radical functionality into the reaction. (4) The alkyl radical
II undergoes atom transfer using (CO)sMn-I as an oxidant to
form the adduct III. Simultaneously, the (CO)sMn" catalyst is
regenerated. (5) Compound II further undergoes intra-
molecular nucleophilic cyclization in the presence of base*” to
give the final product.

To demonstrate the versatility and practicality of this system,
we conducted a series of synthetic experiments. Thus, styrene or
a 2,2-disubstituted alkene, under our conditions, did not
produce cyclopropanes; instead, 1,1-allylic diboronic esters 7
and 8 were formed in yields of 53% and 49%, respectively
(Scheme 3a). Subsequently, substituted iododiboryl alkanes
lacking a-C(sp®)-H bonds were reacted photochemically with
unactivated olefins, yielding products containing tetrasub-
stituted carbon centers (3'b-3’e) in good to moderate yields
(Scheme 3b). A large-scale reaction was conducted with 1a and
2a under the standard conditions, resulting in a 67% isolated
yield of product 3a, which possesses the potential for further
transformations (Scheme 3c). Treatment of 3a with KO'Bu
enabled it to undergo deborylative protonation, affording 1,2-
substituted cyclopropylboronate 9 in 87% yield. The Suzuki-
Miyaura coupling of gem-di(boryl)cyclopropane 3a with bro-
mobenzene afforded coupling product 10 in 71% yield. Inter-
estingly, compound 3a was oxidized with 5 equivalents of
NaBO;-H,0 to produce benzocyclohexanone (11a) with
a moderate yield, whereas using 3 equivalents of NaBO;-H,0
gave 5-phenylpentanal (11b). Additionally, we also explored one-
pot synthetic routes, i.e., a radical borylation®® to produce 1,1,3-

© 2025 The Author(s). Published by the Royal Society of Chemistry

alkyltriboronate (12), and a Heck-type cross-coupling® to yield
v-substituted gem-diborylalkanes (13).

Conclusions

In summary, we developed a general and versatile approach for
the synthesis of gem-di(boryl)cyclopropanes via manganese
catalysis, starting from readily available alkenes and (dibor-
ylmethyl)iodides. This transformation features operational
simplicity, exceptional catalytic efficiency, excellent tolerance
toward different functional groups, and applicability for late-
stage modification of complex molecules. Furthermore, this
method also provides an efficient route to synthesize previously
inaccessible vy-iodo-gem-diborylalkanes. The multifunctional
compounds obtained from this method serve as versatile
building blocks for further transformations, which offer
opportunities for synthesizing diverse molecular architectures.
Mechanistic experiments support the proposed Mn-catalyzed
atom transfer radical addition, followed by a base-mediated
intramolecular dehydrocyclization pathway. Given the
synthetic importance of gem-di(boryl)cyclopropanes and broad
interest in XAT chemistry, we anticipate that this methodology
will find extensive application in synthetic chemistry and
inspire further exploration of novel multifunctional reagents,
serving as a key to unlocking synthetic challenges for diverse
and intricate molecular architectures.

Data availability

ESIt is available and includes the experimental procedures,
characterization data and crystallographic data for 3ec.
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