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Residence time, which refers to the average duration a drug remains bound to its receptor, is a crucial
parameter in determining its pharmacological effects. However, the mechanisms governing the
residence time of G protein-coupled receptor (GPCR) ligands remain unclear. In this study, we observed

NMR signals from the methyl groups of alanine and methionine located at the intersection of the binding
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Accepted 27th August 2025 cavity and extracellular loops of A;,AR under conditions where E165Q and T256A mutations led to
reduced residence times. Our NMR analysis revealed that the spatial arrangement surrounding the E165-

DOI: 10.1039/d55c02398 H264 salt bridge correlates with residence time. These findings provide quantitative insights into
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Introduction

In the early stage of drug discovery campaigns, compounds are
usually evaluated based on their equilibrium dissociation
constant or its proxies, such as ECso, and IC5,. However, drug
concentrations in the human body fluctuate over time due to
factors such as gastrointestinal absorption, tissue distribution,
drug metabolism, and elimination processes, which may
prevent the attainment or maintenance of binding equilib-
rium.' Additionally, ligand-receptor binding kinetics can induce
time-dependent biases in intracellular signaling patterns.>?
Increasing evidence suggests that residence time, the average
time a drug remains bound to its receptor, often determines the
duration of target occupancy in vivo and correlates with the
pharmacological actions of the drug.»** When achieving target
selectivity is important, a drug with a longer residence time on
one receptor can kinetically favour that receptor over others.®
Conversely, drugs with faster dissociation rates can increase the
therapeutic index, defined as the ratio of a drug's toxic dose to
its efficacious dose, when extended target receptor occupancy
leads to toxicity.®

Adenosine A,, receptor (A,;,AR) is a class A GPCR that
regulates inflammation, neurotransmission, blood flow, and
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residence time and could assist in the development of drugs with optimized effects.

immune responses.” A»,AR ligands are used in the treatment of
Parkinson's disease® and myocardial perfusion imaging,® and
clinical evaluation of A;,AR ligands for cancer immunotherapy
is ongoing.' The residence time of A;,AR ligands determines
the duration of sustained agonist responses, and plays
a crucial role in their pharmacological effects.'> Therefore,
understanding the relationship between residence time and the
conformation of A,,AR would provide valuable insights into the
mechanisms underlying residence time and aid in the devel-
opment of drugs with optimal effects.

The three-dimensional structures of A,,AR bound to various
ligands have been determined using X-ray crystallography and
cryo-electron microscopy.”™” In solution, A;,AR, like other
GPCRs, exists in an equilibrium between multiple inactive and
active conformations, with the populations and exchange rates
determining signaling activities, as demonstrated by NMR and
other spectroscopic studies.***

In the A,,AR structures, ligands are bound at the base of
a cavity in the extracellular region. Over the ligand binding site
of A;4AR, a lid is formed by a salt bridge between E169 and
H264, located at the intersection of the binding cavity and the
extracellular loops (Fig. 1a). T256 forms a hydrogen bond
network with E169 and H264.** Upon disruption of this triad by
E169Q or T256A mutations, the residence times of the ligand
reportedly decrease by 62- and 17-fold, respectively, indicating
that these residues regulate residence time.** However, the
mechanism by which residence time is regulated remains
unclear due to the lack of structural information on these
mutants. Whereas the E169-H264 salt bridge remains intact in
the crystal structure of the A,,AR bound to a ligand, LUF5834, it
is disrupted in the crystal structure of A,,AR bound to LUF5833,
a derivative of LUF5834 with similar residence time.'7*>%¢
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Fig.1 NMR signals of alanine and methionine methyl groups of A;aAR.
(a) Closing of the ligand binding pocket by the E169-H264 salt bridge
in the crystal structure of A;sAR (PDB code: 3EML). E169 and H264 are
depicted by blue and red spheres, respectively, while the ligand-
binding pocket is shown in pink. ZM241385 is depicted as black sticks.
(b) Distribution of the observed residues in the crystal structure of
A2aAR. The crystal structure of A pAR with ZM241385 (PDB code:
3EML), is shown in ribbons in a side view, with the extracellular side at
the top. Methionine residues, A165, and A265 are shown as green
sticks. The region corresponding to M211, which is not observed in the
crystal structure, is indicated by a green circle. M177 and M193, which
were likely not observed due to line broadening of the resonances
from these residues, are shown in grey. E169, T256, and H264 are
depicted by blue, cyan, and red sticks, respectively. ZM241385 is
represented by black sticks. (c) Magnified view of the region
surrounding the E169-H264 salt bridge in A;pAR. The display style and
coloring of A,,AR are identical to those in panel B. ZM241385 is rep-
resented by black lines. (d) and (e). *H-*C HMQC spectra of [H-8AA,
afy-2H, methyl-1*C-Met, «-2H, methyl-1*C-Ala] A,xAR bound to
ZM241385. Only the alanine and methionine methyl regions are shown
in (d) and (e), respectively. The resonances from A165, A265, M140,
M174, M211, and M270 are indicated, and the centers of these signals
are marked with dots. (f). Crystal structure of A;aAR bound to LUF5833,
where the E169-H264 salt bridge is disrupted (PDB code: 7ARO). The
display style is identical to that in panels (b) and (c). (g) Overlaid *H-3C
HMQC spectra of AaAR and A>pAR/H265A, labeled with [PH-8AA,
afy-2H, methyl-3C-Met, a-2H, methyl-*C-Ala], bound to ZM241385.
Only the regions containing A265 methyl resonances are shown.
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Therefore, these crystal structures alone cannot fully explain the
role of the E169-H264 salt bridge in determining the residence
time.

In this study, we observed the NMR signals of the methio-
nine and alanine residues in the ligand binding site of A;,AR
under conditions with varying residence times to identify
conformational features related to residence time. Our findings
indicate that the spatial arrangement surrounding the E169-
H264 salt bridge correlates with residence time.

Results

There are six methionine residues in A;,AR, including M174
and M270, which are located in the extracellular region
(Fig. 1b). We previously observed and assigned the NMR signals
of the methyl groups of these residues in the state bound with
ZM241385, which reportedly has a residence time of 84 min.**?*
Additionally, A;,AR contains 32 alanine residues, with A165 and
A265 positioned near the triad of E169, T256, and H264 (Fig. 1c).
Therefore, we used the methionine and alanine methyl groups
to investigate the conformation at the intersection of the
binding cavity and the extracellular loops of A;,AR. The prep-
aration of deuterated, alanine-, and methionine-selectively
labeled A,AR was achieved using the insect cell-baculovirus
expression system, as previously reported.’” Deuterated amino
acids were selected based on previous reports on labeling effi-
ciencies®® and the 'H-'H distances between the observed
methyl groups and other amino acid residues in the crystal
structures of A,,AR. Our calculations revealed that, in the case
of deuteration of isoleucine, leucine, valine, phenylalanine,
threonine, lysine, arginine, proline, methionine (Ha, HB, and
Hy), and alanine (He), the "H-"H dipole-dipole interactions of
M174, M270, A165, and A265 would be reduced to 20-50% of
those in non-deuterated A,,AR. Hereafter, the A,,AR obtained
by this method is referred to as [°H-8AA, afy-"H, methyl-">C-
Met, a-*H, methyl-'*C-Ala] A;xAR.

In the "H-"*C HMQC spectra of [*H-8AA, a.By->H, methyl-"*C-
Met, o-’H, methyl-'*C-Ala]A,,AR bound to ZM241385, the
signals corresponding to approximately 20 alanine residues,
along with previously assigned resonances from M140, M174,
M211, and M270, were observed (Fig. 1d and e). To assign these
resonances, spectra of the A165T and A265S mutants were
recorded. As a result, one resonance was absent in the spectra of
the A165T and A265S mutants, revealing that these resonances
originate from A165 and A265 (Fig. S1). Assignment of the
resonances from M270, A165, and A265 in the NECA-bound
state was performed similarly (Fig. S2).

In the crystal structure of A;pAR bound to LUF5833, which
has a shorter residence time than ZM241385,* the E169-H264
salt bridge is disrupted by the imidazole moiety of LUF5833,
causing the H264 sidechain oriented toward the extracellular
surface (Fig. 1f).** This structure suggests that the orientation of
the H264 sidechain reflects the presence or absence of the
E169-H264 salt bridge. The H264 sidechain induces a ring
current effect on the neighbouring A265 methyl group (Fig. 1c).
Upon H264A mutation, the resonance from the A265 methyl
group exhibited an upfield "H shift (Fig. 1g and S3). Thus, the
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"H chemical shift of A265 reflects the presence or absence of the
E169-H264 salt bridge. The aromatic rings of LUF5833 are
located more than 8 A away from the CB atom of A265 in the
crystal structure. The calculated ring current shift is less than
0.01 ppm, indicating a negligible contribution.

To investigate the conformation of A,,AR under conditions
with various residence times, we recorded the 'H-"*C HMQC
spectra of the E169Q and T256A mutants. In the A;pAR/E169Q
mutant, the E169-H264 salt bridge was directly affected by the
mutation, and the residence time was 62-fold lower than that of
A, ,AR* (Fig. 2a). Chemical shifts of the resonances from M174,
M270, and A265 were significantly different from those of the
A;)AR/E169Q spectrum bound to ZM241385 (Fig. 2b-d and S4).
These residues are located near the E169, H264, and T256 triad
(Fig. 1c).

The 'H chemical shift of A265 in the E169Q mutant showed
a significant upfield shift, similar to the shift seen in the H264A
mutant (Fig. 1g and 2d). These results suggest that the E169-
H264 salt bridge is disrupted in A, AR/E169Q. In the spectrum
of A, AR/T256A, where the residence time is ~17-fold lower
than that of A;,AR, the "H chemical shift of the A265 methyl
group fell between those of the A;,AR/E169Q and A;,AR
(Fig. 2b, d, and e), suggesting that the conformation
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Fig.2 Conformation of A;aAR mutants with reduced ligand residence
time. (a) Plot of the previously reported residence time of ZM241385
bound to AZAAR, AZAAR/E1690, and AZAAR/TZS6A34 (b)=(d). Alanine
and methionine methyl regions of the overlaid *H-*C HMQC spectra
of AspaR, A2aAR/T256A, and A,xAR/E169Q, labeled with [PH-8AA,
afy-2H, methyl-3C-Met, a-2H, methyl-*C-Alal, bound to ZM241385.
Only the regions containing A265 methyl resonances are shown in
panel (d). (e) Plot of the *H chemical shifts of the A265 methyl signals
against the residence times in the ZM241385-bound state. The error
values of the H chemical shifts were calculated from the digital
resolutions.
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surrounding the E169-H264 salt bridge is partially altered by
the T256A mutation.

To examine the effects of these mutations in the presence of
other ligands, we recorded spectra of A;»AR and its mutants in
the state bound with NECA, which has a residence time slightly
shorter than that of ZM241385 (35 minutes).*® In the spectra of
A, AR/T256A bound to NECA, the chemical shift of the A265
signal was also intermediate between those of A;,AR/E169Q and
AAR (Fig. S5), suggesting that the E169Q and T256 mutations
have similar effects on A,,AR in the NECA-bound state.

To further investigate the relationship between residence
time and the conformation of the ligand binding site in A;,AR,
we recorded resonances from methionine and alanine methyl
groups of A;sAR bound to LUF5834, which reportedly has
a residence time 19-fold shorter than that of ZM241385 (ref. 36)
(Fig. 3a). The "H chemical shift of A265 fell between those of
A;,AR/E169Q and A,AR in the ZM241385-bound state (Fig. 3b-
e), indicating that the conformation surrounding the E169-
H264 salt bridge is partially perturbed in the LUF5834-bound
state.

To evaluate the dynamic behaviour of the E169-H264 salt
bridge, we performed molecular dynamics (MD) simulations of
A AAR, AppAR/T256A, and A, ,AR/E169Q in the ZM241385-bound
state. Root mean square distance (RMSD) analyses of the triad
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Fig. 3 Conformation of the A,sAR bound to a ligand with a short
residence time. (a) Chemical structures of ZM241385 and LUF5834.
Residence time of LUF5834 bound to A;sAR was reported previously.>®
(b)-(d). Alanine and methionine methyl regions of the overlaid *H-*C
HMQC spectra of A;sAR bound to ZM241385 (black), A,pAR bound to
LUF5834 (purple), and A,pAR/E169Q bound to ZM241385 (orange).
Only the region containing A265 methyl resonances is shown in panel
(d). (e) Plot of the *H chemical shifts of the A265 methyl signals against
the residence times. The error values of the 'H chemical shifts were
calculated based on the digital resolutions.
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reference to the initial A,5AR structure (PDB ID: 4EIY), revealed
that the RMSDs for all triad residues in A,,AR and A,,AR/T256A
remained within the range of 0.6-0.9 A. In contrast, A,uAR/
E169Q exhibited significantly larger RMSDs: 1.11 + 0.33 A for
Q169 and 1.49 + 0.18 A for H264 (Table S1). In addition, the
average distance between E(Q)169 and H264 revealed that
AsxAR had the shortest average distance (2.61 + 0.57 A), while
AxAR/E169Q had the longest (7.27 + 1.52 A) (Fig. S7). The
results of the fragment molecular orbital (FMO) calculations**°
based on the representative structures from MD simulations are
shown in Fig. S8. In the two complexes, A;,AR and A,,AR/
T256A, the electrostatic (ES) energy between E169 and H264
was below —100.0 kcal mol™?, indicating a strong electrostatic
interaction and the presence of a salt bridge. In contrast, in
A;AAR/E169Q, the ES energy between Q169 and H264 was
—1.2 keal mol ', suggesting a weak electrostatic interaction and
the lack of a salt bridge.

Discussion

Our NMR study of A,pAR-ligand complexes, which involved
various types of mutations and ligands exhibiting up to a 60-
fold difference in residence time, revealed that the H chemical
shifts of A265, located near the lid on the ligand binding cavity
formed by the E169-H264 salt bridge (Fig. 1a and f), strongly
correlate with the residence time of the complex (Fig. 2 and 3).
The "H chemical shift of A265 is influenced by the ring current
shift induced by the neighbouring aromatic group of H264
(Fig. 1c and g), and the crystal structures suggest that the
orientation of the H264 side chain reflects the presence or
absence of the E169-H264 salt bridge (Fig. 1f). Therefore, we
conclude that the E169-H264 salt bridge and its surrounding
environment modulate the residence time (Fig. 4). Molecular
dynamics simulation visualized the experimentally observed
behaviour of the E169-H264 salt bridge (Fig. S6, S7 and Table
S1). The salt bridges observed in A,,AR and A;,AR/T256A were
not formed in A;,AR/E169Q. In addition, the triad IFIE among
E(Q)169-T(A)256-H264 was —6.0 kcal mol™', which was signif-
icantly reduced compared to A;,AR and A,yAR/T256A (—115.5
and —112.5 kcal mol ™, respectively). Although multiple inter-
actions between A;,AR and the ligands also contribute to the
residence time, the conformation surrounding the E169-H264
salt bridge can account for up to a 60-fold difference in resi-
dence time.

Several crystal structures lacking the E169-H264 salt bridge
have been reported (e.g. PDB ID 3PWH, 50L0, and 3QAK).">*"*>
These absences have been attributed to the deprotonation of
H264 at high pH or steric interactions between bulky ligands
and E169/H264."** However, the E169-H264 salt bridge is
generally preserved under the pH and ligand conditions
employed in this study, as described below. All NMR measure-
ments in this study were conducted in 20 mM phosphate buffer
at pH 7.0. Notably, A;,ARs crystal structures that retain the
E169-H264 salt bridge were solved at pH = 7.0 (e.g., PDB IDs:
4UG2 and 2YDV).**** Furthermore, crystal structures that
maintain the E169-H264 salt bridge have been reported for
A;AAR bound to the ligands used in this study: ZM241385,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Schematic diagrams of the conformation surrounding E169-
H264 salt bridge in A2aAR, related to ligand residence time. In AppAR/
E169Q, where the lowest residence time was observed, the E169-
H264 salt bridge is broken. In A;pAR/T256A and A,aAR bound to
LUF5834, both of which exhibited intermediate residence time, the
conformation surrounding the E169-H264 salt bridge is partially
perturbed.

NECA, and LUF5834 (e.g. PDB ID 4EIY, 2YDV, and 8RLN)."7*>*¢
Therefore, we conclude that the salt bridge is formed under our
experimental conditions, and that its perturbation by E169Q
and T256A mutations is physiologically relevant.

The transmembrane region of A,,AR exists in an equilibrium
between inactive and active conformations, which determines
efficacy, as illustrated by the correlation between efficacy and
the chemical shifts of the resonances from M211 (Fig. S6A).>
These M211 chemical shifts were unaffected by the E169Q and
T256A mutations (Fig. S6B and S6C). Furthermore, a correlation
between residence times and the 'H chemical shifts of the
resonances from A265 and M270 was observed in both the
inverse agonist (ZM241385)- and full agonist (NECA)-bound
states (Fig. 2 and S5). Thus, the conformation surrounding
the E169-H264 salt bridge does not appear to influence the
equilibrium between inactive and active conformations in the
transmembrane region. However, the residence time of A;,AR
ligands is reported to determine the duration of sustained
agonist responses." Consequently, the conformation
surrounding the E169-H264 salt bridge likely regulates
signaling activity in a manner distinct from that of the trans-
membrane region. In addition, these results suggest that the
E169Q and T256A mutations do not perturb the A;,AR-ligand
interactions responsible for regulating signalling activity.
Crystal structures of A,,AR indicates that agonists activate
A,AAR through the interactions with V84, T88, S277 and H278,

Chem. Sci., 2025, 16, 17948-17955 | 17951
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located at the bottom of the ligand-binding cavity in TM3 and
TM7.** These interactions are unlikely to be affected by the
E169Q and T256A mutations.

In the LUF5834-bound state, the chemical shift of the reso-
nance from M211 lies between those observed in the ZM241385
(inverse agonist)-bound state and NECA (full agonist)-bound
states (Fig. S6A), consistent with the classification of LUF5834
as a partial agonist. Therefore, the difference in residence time
between ZM241385 and LUF5834 may be influenced not only by
the conformation around the E169-H264 salt bridge but also by
interactions with residues at the bottom of the ligand-binding
cavity. In the crystal structure of the A,yAR-LUF5834 complex,
the E169-H264 salt bridge is intact, similar to those seen in the
A;pAR-ZM241385 and A;,AR-NECA complexes."” In contrast, in
the crystal structure of A;,AR bound to LUF5833, a derivative of
LUF5834 that lacks a phenolic hydroxyl group, the E169-H264
salt bridge is disrupted by the imidazole moiety of LUF5833
(Fig. 1).** It is unlikely that the phenolic hydroxyl group directly
affects the structure surrounding the E169-H264 salt bridge, as
it is located on the opposite side of the ligand-binding site. This
leads us to speculate that in the LUF5834-bound state, A;nAR
exists in equilibrium between conformations similar to those
observed in these crystal structures, resulting in an interme-
diate residence time. The thermodynamic equilibrium dissoci-
ation constants reportedly changed by only 2.3-fold and 2.5-fold
due to the E169Q and T256A mutations, respectively, whereas
the residence time increased by 62-fold and 17-fold (Fig. S9).>*
This suggests that the E169-H264 salt bridge slows both
binding and dissociation kinetics.

We have observed NMR signals of methionine methyl groups
and leucine mainchain amide groups of B, adrenergic receptor
and p opioid receptor.’”****® However, in these studies, we did
not observe conformational features related to ligand residence
time. This may be due to the lack of observable signals from
residues in the extracellular loops, as leucine and methionine
residues are predominantly located in the transmembrane
region. In the present study, by applying our alanine-selective
labelling method using the insect-cell expression system,* we
were able to observe and assign resonances from alanine resi-
dues located in the extracellular loops, specifically A165 and
A265.

Portions of the extracellular loops of other GPCRs are also
proposed to function as lids that regulate ligand residence
times. For example, in the crystal structure of the M3 musca-
rinic acetylcholine receptor, the ligand tiotropium is shielded
by a cluster of tyrosine residues on the extracellular side, and
molecular dynamics simulations suggest that the residence
time is related to the mobility of this extracellular region.** In
the B-adrenergic receptor, which has been extensively studied
by NMR as well as A;,AR,**** the ligand-binding pocket is
partially covered by a salt bridge formed by D192 and K305,
which is thought to control ligand entry and exit pathways.>*

Drugs targeting A,,AR have diverse applications; for
instance, regadenoson is used for myocardial imaging, while
istradefylline is prescribed for the treatment of Parkinson's
disease.” The optimal residence times for these drugs differ
according to their clinical use; shorter residence times are
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preferable for the former, while longer residence times are
desirable for the latter. Monitoring the signals of A265 and
M270 may prove useful in the development of drugs targeting
A 5AR, with residence times tailored to achieve the desired
pharmacological effects.

Conclusions

Our studies on A;,AR under various ligand residence time
conditions revealed that the presence or absence of the E169-
H264 salt bridge correlates with the ligand residence time.
These findings offer valuable insights into the ligand dissocia-
tion pathway and may aid in the development of drugs targeting
A,4AR and other GPCRs with tailored residence times.
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