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Photosynthetic water oxidation, vital for dioxygen production and light energy conversion, is catalyzed by the
oxygen-evolving complex of photosystem Il, where the inorganic Mn,CaOs cluster acts as the catalytic core.
In this study, we investigate the functional significance of collective motions of amino acid side chains within
the primary coordination sphere of the Mn cluster, focusing on their role in modulating the energetic
demands for catalytic transformations in the Sz state. We applied regularized canonical correlation analysis
to quantitatively correlate the three-dimensional arrangement of coordinating atoms with catalytic driving
forces computed via density functional theory. Our analysis reveals that distinct collective side chain
motions profoundly influence the energetic requirements for structural reconfigurations of the Mn cluster,
achieved through expansion and contraction of the ligand cavity while fine-tuning its geometry to stabilize
key intermediates. Complementary predictions from a neural network-based machine learning model
indicate that the coordination sphere exerts a variable energetic impact on the catalytic transformations of
the Mn cluster, depending on the S-state environment. Integrated computational analyses suggest that the
extended lifetime of the SzYz" state, consistently observed after three flash illuminations, may result from
slow, progressive protein dynamics that continuously reshape the energy landscape, thereby shifting the
equilibrium positions of rapid, reversible chemical processes over time. Overall, our findings demonstrate
that collective motions in the primary coordination sphere constitute an active, dynamic framework
essential for the efficient execution of multi-electron catalysis under ambient conditions, while
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a complex assembly of proteins and cofactors embedded in the
thylakoid membranes.*® PSII serves as the entry point for the
light-dependent reactions of photosynthesis, using sophisti-
cated pigment-protein antenna systems to capture and funnel

1 Introduction

Photosynthesis is the fundamental biochemical process
through which green plants, algae, and cyanobacteria convert

solar energy into chemical energy, simultaneously releasing
oxygen as a by-product.’ This process constitutes the corner-
stone of the global energy economy, continuously supplying the
biosphere with essential organic substrates and oxygen that
sustain the metabolic functions, growth, and adaptability of
living organisms, thereby underpinning the intricate network of
biological interactions that define life on Earth. A distinctive
aspect of photosynthesis is its reliance on water as an abundant
electron donor. The thermodynamically demanding water-
splitting reaction is mediated by photosystem II (PSII),
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solar energy efficiently. Upon light absorption by the P680
chlorophyll dimer, a highly oxidizing excited state is generated,
which is capable of extracting electrons from water, with these
electrons subsequently shuttled via the redox-active tyrosine
residue (D1-Tyr161, also known as Y,) to the oxidized P680,
thereby sustaining a continuous electron flow through the
photosynthetic electron transport chain. Central to the water
oxidation process within PSII is the oxygen-evolving complex
(OEC), which harbors an inorganic Mn,CaOs cluster as its
catalytic core. This unique metal cluster, consisting of four
manganese atoms and one calcium atom linked by five p-oxo
bridges and arranged in a distorted chair-like geometry,’® is
critical for enabling water oxidation. During its catalytic cycle,
the cluster sequentially advances through a series of defined S-
states (from S, to S,, with S, being transient), as illustrated in
Fig. 1A.''" Each photon-induced transition contributes the
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accumulation of one oxidizing equivalent, effectively bridging
the gap between individual single-electron photochemical
events and the overall four-electron water-splitting reaction.
Concomitantly, these sequential S-state transitions are coupled
with the release of four protons into the thylakoid lumen,
a mechanism that moderates the redox potential of the Mn
cluster and contributes to the proton gradient required for ATP
synthesis.

The remarkable catalytic efficiency of the Mn,CaOs cluster is
intrinsically tied to its structural and electronic flexibility. This
flexibility allows for dynamic modulation of the coordination
geometry, thereby facilitating efficient electron transfer during
sequential oxidation events and optimizing substrate water
binding and activation. This dynamic behavior is augmented by
an extensive network of amino acid residues in the D1 protein
(and one in CP43) that constitute the primary coordination
sphere of the cluster, which includes six carboxylate ligand
groups from D1-Asp170, D1-Glu189, D1-Glu333, D1-Asp342, D1-
Ala344, CP43-Glu354 and one additional N-donor group from
D1-His332. These residues have been recognized as critical
determinants in preserving the structural stability of the cluster
and fine-tuning its redox properties throughout the S-state
cycle. Before high-resolution structural data of the OEC in its
dark-stable (S;) state became available in 2011,° site-directed
mutagenesis studies were instrumental in mapping the
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functional roles of these ligand residues.'”>® These early
investigations demonstrated that each primary sphere residue
has a specific function. For instance, some (D1-Asp170, D1-
Asp342, and D1-Ala344) are indispensable for the assembly
and stabilization of the cluster,***” while others (D1-His332, D1-
Glu333, and CP43-Glu354) directly coordinate the metal ions
and influence the redox equilibrium and substrate water
dynamics.®* Certain second-sphere residues (D1-Glu189 and
the hydrogen-bond partners of the primary coordination sphere
residues) contribute to proton egress and tune the reaction
kinetics.* Mechanistic insights gained include the identifica-
tion of proton-coupled electron transfer steps (involving Y,-D1-
His190-D1-Glu189),> the assignment of fast versus slow
substrate water binding (Ca-bound water influenced by CP43-
Glu354),” and evidence suggesting that O-O bond formation
involves a p-oxo bridge (O5) and an inserted water molecule
(affected by D1-Glu333).>*

The advent of X-ray free-electron laser (XFEL)-based serial
femtosecond crystallography has finally enabled both determi-
nation of high-resolution static structures of the OEC in flash-
generated states (S,, S3, and S,) and real-time monitoring of
concerted structural changes in the metal cluster and its
surrounding protein matrix under near-physiological condi-
tions immediately following each flash of light.**** These
structural insights have corroborated many of the mutagenesis-
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(A) S-state cycle of the OEC, driven by sequential flash illuminations, illustrating stepwise one-electron oxidations via the proximal tyrosyl

radical (Yz"), each coupled to proton release and substrate water binding. (B) Molecular structures of the Ss-state hydroxo—oxo and oxyl-oxo
intermediates in both open and closed cubane conformations, with the formal oxidation states of Mn indicated in Roman numerals. (C) Overlay
of experimentally observed conformations of seven amino acid side chains within the primary coordination sphere of the Mn,CaOs cluster
during the S, to Ss transition:?¢ 1F state (green) and time points at 150 us (pink), 400 us (cyan), and 200 ms (gold) after 2F. The Mn cluster is
depicted in wireframe, coordinating residues as sticks, and directly bound O and N atoms (Oo—Oy and N.) highlighted in blue.
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derived hypotheses, validating the ligation scheme and
revealing a flexible water insertion channel involving D1-Glu189
and neighboring water molecules. A particularly illustrative
example is the transition from S, to S;, during which the side
chain of D1-Glu189 shifts markedly away from Ca, as illustrated
in Fig. 1C, accompanied by the emergence of a new oxygen
density at the Mnp site, designated O6 or Ox.>***** This
identification indicates that PSII does not start with all
substrate oxygens pre-bound; instead, the complex actively
takes up an additional water-derived ligand during the cycle.
However, such localized structural changes alone do not fully
account for all the results obtained from mutagenesis experi-
ments. For example, kinetic analyses in the S; state using H,'%0
revealed that the CP43-E354Q mutant exhibits substrate water
exchange rates that are approximately 8.5-fold faster in the fast
phase (attributed to exchangeable substrate water, 06) and
about 1.8-fold faster in the slow phase (associated with tightly
bound substrate water, O5) compared to the wild type. The
CP43-E354Q cores also exhibited an unusually prolonged S,
state lifetime, with a substantial fraction of centers remaining
in S, for over 10 hours at room temperature. Considering that
CP43-Glu354 is a bidentate ligand to Mng and Mng, but is
neither directly coordinated to Mnp nor does it engage in
hydrogen bonding with 06, these findings imply that the effects
of the CP43-Glu354 mutation extend beyond a mere static
alteration of the coordination environment. Significant
conformational dynamics observed across all coordinating side
chains, as depicted in Fig. 1C, suggest that OEC function and
substrate water exchange may be regulated by complex, collec-
tive interplay among multiple residues rather than by the iso-
lated action of a single ligand. The intricate nature of these
interactions calls for a comprehensive investigation into the
collective motions within the primary coordination sphere to
fully elucidate the mechanisms governing the OEC function and
the overall process of photosynthetic water oxidation.

To confront these challenges, we implemented a compre-
hensive analytical framework that integrates statistical meth-
odologies, machine learning models, and conventional density
functional theory (DFT) calculations. Specifically, we applied
regularized canonical correlation analysis (rCCA) to systemati-
cally correlate the collective motions of coordinating residues
with the energetic demands for catalysis in the S; state. Com-
plementing this, our neural network-based machine learning
model, trained on extensive datasets spanning a diverse range
of physiologically relevant conditions, captures complex
nonlinear dependencies inherent in the system. This integrated
computational approach allows for a quantitative assessment of
how side chain dynamics influence the catalytic progression of
the OEC in the state immediately preceding O, evolution,
thereby advancing our understanding of the mechanisms that
underpin optimal catalytic performance and overall function.

2 Computational methods
2.1. OEC model construction

Structural models of the OEC were constructed using mono-
meric units (A and B) extracted from high-resolution XFEL
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crystallography data of PSII, as reported by Kern et al*® and
Suga et al.”” An overall view of the OEC models employed in this
study is illustrated in Fig. S1.1 The models represent various S-
states, with the corresponding PDB codes as follows: 6DHE,
6JL], and 6JLM for the dark-stable (S;) state; 6DHF, 6]JLK, and
6JLN for the one-flash (1F, corresponding to S,) state; 6DHG for
two flashes (2F) + 150 ps; 6DHH for 2F + 400 ps; 6DHO, 6]JLL,
and 6JLO for the 2F (S3) state; 6DHP and 6JLP for the three-flash
(3F, corresponding to S,) state. Each structural model
comprises 348 atoms, including the Mn,CaOs inorganic cluster,
four terminal aqua/hydroxo ligands coordinated to Ca and Mn,,
an additional O6 (or Ox) ligand at Mnp, 12 crystal water mole-
cules, a chloride ion (Cl ™), and specific amino acid residues: D1-
Asp61, D1-Asn87, D1-Tyr161 (Tyrz), D1-GIn165, D1-Ser169, D1-
Asp170, D1-Asn181, D1-vVal185, D1-Phe182 (backbone only),
D1-Glu189, D1-His190, D1-Asn298 (fragment), D2-Lys317 (frag-
ment), D1-His332, D1-Glu333, D1-Ala336, D1-His337, D1-
Asp342, D1-Ala344 (C-terminus), CP43-Glu354, and CP43-
Arg357.

2.2 Dataset preparation

The construction and preparation of datasets constitute critical
components of any machine learning workflow and statistical
data analysis. In our study, we carefully balanced consistency
with diversity to develop models that are both highly reliable
and widely applicable. Consistency was ensured by constraining
the backbone coordinates to experimentally determined posi-
tions and maintaining chemical plausibility, thereby avoiding
the generation of physically or chemically unrealistic confor-
mations. Conversely, diversity was introduced by extensively
sampling ligand configurations, thereby capturing the intrinsic
structural flexibility and dynamic adaptability of the OEC. This
dual focus on consistency and diversity is essential for
enhancing the model's generalization capacity, i.e., its ability to
make accurate predictions on novel, previously unseen data.**3*

To elucidate the relationship between the collective motion
within the primary coordination sphere and the catalytic func-
tion of the OEC, we employed supervised machine learning,
complemented by rCCA as an additional statistical tool. The
input feature dataset (X) was derived from the three-
dimensional (3D) coordinates of coordinating atoms, while
the target variable dataset (Y) corresponds to the energetic
driving forces computed via DFT for two chemical species,
hydoroxo-0xo (St = 3)*** and oxyl-oxo (EPR silent, Syt =
6)*** in the S; state, as depicted in Fig. 1B. The driving force
(AE) is quantitatively defined as the energy difference between
the ‘open cubane’ and ‘closed cubane’ conformations**** after
water binding in the S; state, i.e., AE = E(open) — E(closed). All
target data (Y) were generated using a consistent computational
protocol, as detailed in the subsequent section, thereby mini-
mizing potential biases and ensuring uniform data quality
across diverse conformational states. Initial structural config-
urations were obtained from the aforementioned XFEL crys-
tallographic data. Given the ambiguity surrounding the Mn
oxidation states in the experimental structures,*®* all Mn
cluster geometries were fully optimized under the assumption

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of a high oxidation state scenario.”®*" Validation of the opti-
mized clusters was achieved by calculating Mulliken spin
densities for each Mn ion, which converged to approximately 4
for Mn"" and 3 for Mn"", thereby confirming that the optimized
clusters correspond to the intended oxidation states. It is
important to note that the structural parameters of the opti-
mized Mn clusters were not directly used as input features
(dataset X) for the rCCA and machine learning models. Instead,
our focus is on the spatial arrangement of the amino acid side
chains within the primary coordination sphere, which enabled
an in-depth investigation of how dynamic adjustments in these
side chains influence the relative stability of the open and
closed cubane conformations. To prevent overfitting to
a specific conformational state, the final training dataset was
balanced to represent coordination environments correspond-
ing to both the open cubane and closed cubane structures.
Ligand positions within the primary coordination sphere were
sampled in three distinct manners: (1) by retaining the experi-
mental coordinates, (2) by optimizing the open cubane
conformation via DFT, and (3) by optimizing the closed cubane
conformation via DFT. These sampling approaches were
applied across a broad range of physiologically relevant S-states
of PSII (including both monomeric units A and B), covering
states with smaller cavities (S, and S,) as well as those with
larger cavities (S4, S3, and the S, — S; transient states) as dis-
cussed later, while also accounting for both the hydroxo-oxo
and oxyl-oxo species. The resulting dataset comprises 130
entries, with extensive sampling details provided in Table S1
and visualized in Fig. S2.f This comprehensive sampling
procedure enabled both the machine learning and rCCA models
to learn intricate patterns and interdependencies between the
ligand arrangements (feature set X) and the associated catalytic
driving forces (target variable Y).

2.3 DFT calculations

Geometry optimizations were carried out using the B3LYP
functional®*®* augmented with Grimme's D3 empirical disper-
sion correction and the Becke-Johnson (BJ) damping func-
tion,**** as implemented in Gaussian 16.>” For Ca and Mn, the
Los Alamos (LANL2DZ) pseudopotential basis set®**° was used,
while all remaining atoms were treated with the 6-31G(d) basis
set; together, these are referred to as BS1. To maintain steric
constraints imposed by the protein matrix, the backbone and
selected peripheral residues (D1-GIn165, D1-Asn298, and D2-
Lys317) were fixed at their crystallographic coordinates during
the optimizations. These constraints ensure a realistic repre-
sentation of the protein environment while allowing the active
site sufficient freedom to relax within its local structural
context. Unless otherwise noted, single-point energy calcula-
tions were performed using a modified B3LYP functional in
which the Hartree-Fock (HF) exchange component (wyy) was
reduced from 20% to 15%.°* These calculations employed an
extended basis set designated BS2, comprising the Stuttgart/
Dresden (SDD) pseudopotential basis set®*®* for Ca and Mn,
and the 6-311G(d,p) basis set for all remaining atoms. An
implicit solvent model (IEFPCM)* with a dielectric constant of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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5.7 (approximating chlorobenzene) was used to simulate the
low-polarizability environment characteristic of the protein
interior. Following the DFT computations, rCCA and supervised
machine learning were applied to investigate the interplay
between ligand movements and catalytic driving forces. These
analyses were executed using a combination of Python libraries
(NumPy, pandas, SciPy,* scikit-learn,*® Chainer,*” Optuna®®)
and R (mixOmics).* Additional technical details are provided in
the ESLY

3 Results and discussion
3.1 Assessing ligand cavity variability in the OEC

Understanding the collective motion of primary ligands
surrounding the Mn cluster in the OEC is essential for eluci-
dating the mechanism of water oxidation. In this study, we
introduce a robust framework to characterize the ligand envi-
ronment by modeling the cavity as an effective sphere with
a radius R. This radius quantitatively represents the spatial
extent of the coordination environment, providing a global
metric for the distribution of ligands, which is a critical factor
when comparing different states within the catalytic cycle. The
cavity size is estimated via the inertial radius of 13 coordinating
atoms belonging to seven first-shell ligands, as highlighted in
blue in Fig. 1C. Mathematically, the effective radius R can be
defined as

78 terms

o lee—r (@)

K <L

1 13 terms 1

N _ 2 — -
52 In—rl=y

where ryx and 1y, (K, L € {O,4, Og, ..., N;}) denote the atomic
positions of the ligand atoms, and ris their mean position. The
notation ||A| signifies the l,-norm of the vector A, implying that
|A||> = ATA. The first formulation defines R as the square root of
the mean squared deviation of the ligand positions from their
centroid, providing a global measure of the overall dispersion.
In contrast, the second formulation expresses R in terms of the
average of all pairwise distances among the ligand atoms ||rx —
r.||, hereafter referred to as X ;.. This alternative representation
is derived from a fundamental identity that relates the variance
of a set of points to the sum of their pairwise separations. While
the variance-based formulation is intuitive for understanding
the overall spread relative to a central point, the pairwise
distance approach offers a more detailed view of interatomic
spacing, thereby revealing subtle local variations that might
otherwise be averaged out in a global variance measure.
Application of this analysis to structural datasets from the
Protein Data Bank (PDB codes: 3WU2,° 5B5E, 5B66,° 4UB6,
4UBS8,™ 5WS5, 5WS6,% 6DHE, 6DHF, 6DHG, 6DHH, 6DHO,
6DHP,*® 6JL], 6]JLK, 6JLL, 6JLM, 6]JLN, 6]JLO, 6]JLP,” 6W1O0,
6W1P, 6W1Q, 6W1R, 6W1T, 6W1U, 6W1V,? 7RF2, 7RF3, 7RF4,
7RF5, 7RF6, 7RF7, 7RF8,% 7COU, 7CJI, 7CJJ,*® 8EZ5, 8FAC,*
8IR5, 8IRC, 8IRD, 8IRE, 8IRF, 8IRG, 8IRH, and 8IRI**) enabled
us to compute ligand cavity sizes for the various oxidation states
(So, S1, Sz, and S3) as well as during the S, to S; transition (S, —, 3).
The resulting distributions of these cavity sizes, illustrated as
box plots in Fig. 2, exhibit notable variability. Standard

R=
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deviations (Std) ranging from 0.027 to 0.042 A likely reflect
differences in resolution, heterogeneity of S-state populations,
experimental noise, and variations in sample preparation and
measurement temperature. Importantly, even when applying
the conservative bounds of Hoeffding's inequality” to account
for experimental uncertainties, the observed shifts in median
cavity sizes across the S-states remain statistically significant, as
indicated in Fig. 2. This analysis reveals a clear trend: smaller
cavity sizes in the lower oxidation states (S, and S, excluding S,)
and larger sizes in the higher oxidation states (S,_; and S;).
Two observations merit particular attention. First, the S; state
shows a median cavity size (3.68 A) that is unexpectedly larger
than those in the S, and S, states (both 3.64 A). Although the
mechanism behind this expansion is not fully understood, one
plausible explanation is that the observed increase may reflect
equilibrium processes such as protonation isomerism or
tautomerism within the OEC. For example, variations in the
protonation states of water-derived ligands (e.g., W1 and W2 as
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H,O versus OH ™, and O4 and O5 as OH ™~ versus 0°~),””* as well
as Jahn-Teller distortions at the Mn'" site,”> could be respon-
sible for these subtle differences. While this finding highlights
the need for further investigation, our current investigation
does not address this issue further. Second, during the S, to S;
transition, the median cavity size (3.67 A) lies between those of
S, (3.64 A) and S, (3.71 A) and exhibits substantial variability.
Time-resolved XFEL data (Fig. 3A), derived from studies by Kern
et al. (6DHF, 6DHG, 6DHH, and 6DHO)* and Suga et al. (6JLK,
6JLL, 6]JLN, and 6JLO),” demonstrate a progressive cavity
enlargement following the second flash (2F). Mechanistically,
this suggests that the effective radius R serves as a rough indi-
cator for monitoring structural changes during the S, to S;
transition. However, we recognize that this model assumes
a ligand distribution that is uniform in all directions, which
may not adequately capture anisotropic fluctuations that can
occur under dynamic conditions. Indeed, our analysis of
selected pairwise distances (X 1) in Fig. 3B shows that while the
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Fig.2 Box plots of experimentally determined ligand cavity sizes, represented by inertial radii R, for the Sg, S1. S,, and Sz states, as well as during
the S, to Sz transition (S, _, 3). The experimental data are sourced from the following PDB codes: 6DHP and 6JLP for Sp; 3WU2, 5B5E, 5B66, 4UB6,
4UB8, 5WS5, 6DHE, 6JLJ, 6JLM, 6W10, 7RF2, 7COU, 7CJI, and 8IRS5 for S;; 6DHF, 6JLK, 6JLN, 6W1P, 7RF3, 7CJJ, and 8IRC for S,; 6DHG, 6DHH,
6W1Q, 6WIR, 6W1T, 6W1U, 7RF4, 7RF5, 7RF6, 7RF7, 8IRD, 8IRE, 8IRF, 8IRG, 8IRH, and 8IRI for S, _, 5; and 5WS6, 6DHO, 6JLL, 6JLO, 6W1V, 7RF8,
8EZ5, and 8F4C for Ss. For details regarding the box plot construction, see Fig. 7. Std denotes the standard deviation. Conservative bounds based
on Hoeffding's inequality’> were computed under the assumption that each measurement is confined to its observed minimum (Mix) and
maximum (Max). For a 95% confidence interval, the deviation t is calculated as ¢t = (Max — Min)/In(2/0.05)/2Count, yielding lower and upper
bounds of mean — t and mean + t, respectively.
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Kern et al. (6DHF, 6DHG, 6DHH, and 6DHO)?¢ and from Suga et al. (6JLK, 6JLL, 6JLN, and 6JLO).?” (B) Alterations in specific pairwise interatomic
distances during the S, to Ss transition. Eight distances that exhibit large coefficients in the canonical variate (see Fig. 5A) were selected, with the

experimental data taken from monomer A as reported by Kern et al.?¢

majority of distances increase over time, consistent with an
overall expansion of the ligand cavity, some specific pairs show
transient decreases at certain time intervals. This observation
highlights the importance of incorporating higher-order
moments of the spatial distribution, for example through the
pair-specific formalism presented in eqn (1), to achieve a more
detailed characterization of the ligand environment.

Importantly, the expansion of the ligand cavity in the S; state
is not permanent, as it reverts to its original dimensions during
the subsequent S; to S, transition (Fig. 2). This reversible
behavior implies that critical catalytic processes, such as
substrate binding and activation, and the formation and release
of dioxygen, likely occur within an environment that cyclically
undergoes both expansion and contraction. This observation
raises an intriguing question: to what extent are these dynamic
changes in the coordination environment linked to the catalytic
reactions within the Mn cluster? To explore this inquiry, our
study employs a complementary approach that combines
statistical analyses, machine learning techniques, and quantum
chemical calculations. Statistical analyses are used to identify
patterns and correlations across multi-dimensional datasets,
machine learning methods provide predictive models linking
ligand motions to catalytic function, and quantum chemical
calculations offer detailed molecular and electronic insights
into reaction mechanisms. By cross-referencing evidence from
these complementary methods, we aim to uncover the func-
tional interplay between structural dynamics and catalytic
activity in the OEC.

© 2025 The Author(s). Published by the Royal Society of Chemistry

3.2 Structural-energetic mapping of ligand motions using
rCCA

To investigate the interplay between ligand dynamics and
catalytic activity, we initiated our study with a quantitative
analysis employing canonical correlation analysis (CCA).”® CCA
is a robust multivariate statistical method that reduces the
dimensionality of two complex datasets while simultaneously
identifying the maximal correlations between their linear
combinations. By transforming these high-dimensional data-
sets into a smaller set of canonical variates, CCA allows us to
extract underlying interaction patterns that might be obscured
when variables are considered individually. In our analysis, two
primary datasets were constructed from the same N entries. The
first dataset, represented by an N x P matrix X = (X4, X, ..., Xp),
consists of P pairwise distances between atoms that directly
coordinate with three critical catalytic manganese ions (Mn,,
Mng, Mny,). Pis equal to 19 as it excludes the distances between
oxygen atoms within the same carboxyl group. These pairwise
distances were chosen as features instead of the global ligand
cavity radius R, as they more effectively capture subtle local
distortions and anisotropic deformations within the coordina-
tion sphere that are critical for elucidating the catalytic func-
tion. The second dataset, stored in an N x Q matrix Y = (Y3, Y5,
..., Yg), comprises Q variables that represent the driving forces
for the interconversion between closed and open cubane
configurations. In our case, Q is set to 2, corresponding to the
hydroxo-oxo and oxyl-oxo species.**** These datasets are
derived from the XFEL data reported by Kern et al** and
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includes a total of 60 samples for N (entries 1-60 in Table S17).
Prior to the application of CCA, each column vector in the X and
Y matrices was standardized using Z-score normalization to
ensure that all variables contribute equally. Specifically, the
standardization was performed as follows:

- Xk X,
X, =24 )

¥= ©)

where X; and Y; represent the mean values of the ith variable in
the X and Y datasets, while g5, and oy, denote their corre-
sponding standard deviations. The tilde symbol (~) signifies the
standardized values. The objective of CCA is to find linear
combinations of these standardized variables that maximize the
correlation between the two datasets. These combinations,
referred to as canonical variates, are defined as:

f= ia = alf(l + azi2+...+ap)~(p (4)
g = Yb = blYl + b2Y2+...+bQYQ (5)
where a = (ay, a, ..., ap)" and b = (by, by, ..., bo)" are the

coefficient vectors determined via an optimization process that
maximizes the correlation between f and g. Owing to the high-
dimensional nature of our datasets and the risk of overfitting,
we adopted a regularized version of CCA (rCCA) that includes an
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l,-norm (ridge) penalty.
formally expressed as:

The optimization problem is

cov(f, g)
var(f)/var(g)  (6)
subject to var(f) = var(g) = 1

p' = corr(f', g') = matxcorr(f, g) =

The highest canonical correlation p' corresponds to the first
canonical variates f' and g', which capture the dominant
correlated pattern between the standardized datasets X and Y.
In subsequent dimension, CCA identifies the second canonical
correlation (p”) with its associated variates f* and g”, subject to
the condition that p' = p* and the orthogonality constraints
corr(f', £2) = corr(g', g*) = 0. A key advantage of using the linear
combinations of pairwise distances (the f variates) is that they
provide insight into the collective motions within the primary
coordination sphere and their connection to catalytic activity, as
captured by the driving forces represented in the g variates.

The outcomes of the rCCA analysis are illustrated in Fig. 4,
with detailed numerical values provided in Table S5.f The
original 19-dimensional space, defined by pairwise distance
vectors derived from 10 coordinating atoms of the first-shell
ligands (Xop.oc, Xopops -+ Xojne), together with the two
energy vectors corresponding to the hydroxo and oxyl species
(Yhydroxo and Y1) (Fig. 4A), can be effectively compressed into
a two-dimensional canonical space (Fig. 4B and C). The first
canonical correlation coefficient p* = 0.91 indicates a remark-
ably strong correlation between f' and g' (Fig. 4B), suggesting

(B) first canonical correlation (p' = 0.9099748)

g'o

-1

m 20 05 00 05 10  1s
,1

4y =0.5306122
Jp =0.008979592
CV-score = 0.9354357 2

(C) second canonical correlation (¢? = 0.2896444)

g2o

-2

Fig.4 (A) Graphical representation of the correlation matrices within and between two datasets X and Y. The upper-left and lower-right sections
depict the autocorrelation matrices for X and Y, while the off-diagonal sections are mirror images of the cross-correlation matrix. The distance

and energy vectors (Xog.oc, Xos.op: --

.. Yhydroxo: Yoxy are arranged along both axes in the same order as in Fig. 5A. (B) And (C) scatter plots of the

first and second pairs of canonical variates, overlaid with linear regression fits (solid lines) and 95% confidence intervals (shaded regions). For
detailed definitions of the regularization parameters A; and 2,, as well as CV-score, see the ESL}
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that the collective movement of the amino acid side chains
captured by f; is closely linked to the catalytic driving force
represented by g;. In contrast, the second canonical correlation
coefficient p®> = 0.29 (Fig. 4C) suggests a relatively weak asso-
ciation for the second mode, which is therefore not considered
in further analyses.

The strong correlation between f' and g' implies the exis-
tence of common underlying factors that simultaneously
influence the structural and energetic aspects of the system. To
elucidate these factors, we examined the canonical coefficients
a and b associated with f and g, as demonstrated in Fig. 5. This
analysis enables us to identify the variables that contribute to
the observed canonical correlations and to assess both the
magnitude and the direction of their effects. For instance, the
coefficients corresponding to g' indicate that this variate is
predominantly determined by the energy difference of the
hydroxo species ?hydmxo The negative sign of this coefficient
implies that an increase in any f' variable with a positive coef-
ficient will amplify the catalytic driving force promoting the
transition from the closed to the open cubane structure in its
hydroxo form, while increases in f' variables with negative
coefficients are expected to counteract this driving force.

In Fig. 5A, distances highlighted in red exhibit large coeffi-
cients in f' suggesting potential links to variations in the
separations among the catalytic Mn ions. For example, the
distance Xop o has a strongly negative coefficient, indicating
that a reduction in this distance, representing the separation
between the Og and Og oxygen atoms that directly coordinate to
Mny, and Mng, leads to a contraction of the Mny,---Mng distance.
This contraction stabilizes the open cubane configuration,
which is characterized by a shorter Mn,---Mng distance, while
destabilizing the closed cubane that favors a longer separation.

View Article Online

Chemical Science

Similarly, distances such as Xop.or, Xop.ne Xor.or, aNd Xog ne
exhibit positive coefficients, likely reflecting elongation between
Mng and Mnp that energetically supports the open cubane
configuration characterized by extended Mng---Mny, distances,
while suppressing the closed cubane that requires shorter
Mng---Mnp, distances.

The interpretation of changes in distances marked within
blue boxes (specifically, Xop.oL, Xosns and Xopog) iS more
complex. Initially, one might hypothesize that changes in Xog oL
and Xop n. reflect variations in the spatial relationship between
Mn,---Mnp, as depicted in Fig. 5B. However, the impact of water
binding complicates this interpretation. Prior to water binding,
the Mn,---Mnp, distances differ substantially between configu-
rations (approximately 4.8 A in the open cubane versus 5.2 A in
the closed cubane); however, following water binding, these
distances change only marginally (around 5.2 A and 5.3 A,
respectively). This minimal alteration does not fully account for
the pronounced coefficients observed in f', and the positive
coefficients for Xopo. and Xopne contradict the expected
contraction associated with the open cubane. Consequently, we
propose an alternative interpretation: these changes may arise
from the motions of ligands in response to variations in the
coordination geometries of Mn,, Mng, and Mnyp, influenced by
the movements of O5 and O6. This hypothesis is corroborated by
the overlay of amino acid side chains corresponding to the open
and closed cubane structures, as illustrated in Fig. 5C. Specifi-
cally, with reference to the page orientation, the transition from
the closed to the open cubane configuration following water
binding involves Mn, moving backward, Mng shifting to the left,
and Mnp remaining largely stationary. As a result, D1-Asp170 is
displaced backward, while D1-Glu333 and CP43-Glu354 adjust in
response to the altered coordination environment of Mng.

(A) (B) (©)
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Fig. 5

(A) Coefficients a and b in the canonical variates f and g, as defined in eqn (4) and (5). (B and C) Potential causal factors underlying the

strong correlation between the collective motion of side chains and the catalytic driving force in the first canonical variates f* and g*: changes in
intermetallic distances within the Mn cluster (B) and alterations in the coordination geometries of Mn,, Mng, and Mnp associated with the

movements of O5 and O6 (C).
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Although Mnp remains largely static after water binding, the
alteration in its coordination geometry causes O; to move
outward. These side chain movements, manifesting as elonga-
tions in the Og---O;, and O --N, distances and a contraction in
the Op---Og distance, are consistent with the observed signs of
the coefficients for Xog o1, Xos.ne and Xop.ok-

We now broaden our interpretation of the results. Based on
eqn (1), the substantial increase in the majority of distances
between the coordinating atoms is closely associated with the
expansion of the ligand cavity, characterized by the inertial
radius R. Considering the predominance of positive coefficients
within the red and blue boxes in Fig. 5A, we propose the
following interpretation, as illustrated in Fig. 6A: the expansion
of the cavity defined by first-shell residues inherently amplifies
the catalytic reaction in the guest cofactor. This provides a clear
illustration of how coordinated ligand movements actively drive
and enhance catalytic activity, a process that can be effectively
approximated by a spherical model using a single parameter, R.
However, the enlargement of the cavity is not uniformly
distributed. Counteracting driving forces appear to become
significant during the interval from 150 to 400 ps after 2F,
potentially stabilizing the closed cubane before the onset of
water binding, although they are insufficient to overcome the
primary force that triggers the transition to the open cubane
conformation after water binding. This interpretation is sup-
ported by the negative coefficients attributed to the Xop op and
Xop.or distances (Fig. 5A), along with the experimentally
observed irregular shortening of the Xopor and Xogpnwe
distances (Fig. 3B). Notably, these distances involve the O atom
of Glu354 (Fig. 1C), the sole OEC ligand contributed by the CP43

(A)

. =

open cubane
favored

¥

View Article Online

Edge Article

subunit that coordinates the Mn cluster on the side opposite
D1-Asp170/Glu189. This collective motion appears to be driven
primarily by a positional shift of CP43-Glu354 relative to D1-
Asp170, D1-Glu189, D1-Glu333, and D1-His332, as depicted in
Fig. 6B. Such a shift leads to a deformation in the cavity
geometry that cannot be adequately represented by a simplified
spherical model. An alternative interpretation is therefore
plausible: while the backbone movement that enlarges the
cavity promote the catalytic reaction, the slower side chain
motions, tracking the structural changes in the Mn cluster, may
manifest in the deformation of the cavity. This dynamic inter-
play between backbone and side chains movements indicates
that the cavity can both expand to facilitate catalysis and adapt
its shape to stabilize intermediate states. The cooperative
nature of primary coordination sphere movements may also
explain why certain observations from site-directed mutagen-
esis studies cannot be fully accounted for by examining the
isolated action of any single residue.'>*>*

Before concluding this section, we would like to address the
question of causal directionality. In the present study, we have
adopted a “structure-first” scenario, in which the backbone
movement is interpreted as the primary determinant of the
thermodynamic driving direction within the OEC. However, this
is only one possible interpretation. An alternative “electron-
first” scenario suggests that redox-driven changes in the elec-
tronic configuration of the Mn cluster act as the initial trigger
for coordinating side-chain rearrangements, with backbone
shifts and cavity resizing subsequently occurring. Indeed, as
shown in Fig. 2, increases in cluster oxidation state appear to
induce corresponding expansions and contractions of the

(B)
CP43-Glu354

O

D1-Glu333 \ / 4 s,

(4

D1-His332
&

L

closed cubane

favored D1-Glu189

Fig. 6 Schematic representation of dual functions within the primary coordination sphere, identified by comparing the first canonical variates £t
and g* (Fig. 5A) with experimentally observed variations in pairwise distances (Fig. 3B). (A) Expansion of the ligand cavity to promote the transition
from the closed to open cubane conformations, which can be represented using a spherical model with a radius R. (B) Adjustment of the ligand
cavity geometry to stabilize the closed cubane intermediate, a motion that cannot be modeled by a sphere. Dashed lines indicate pairwise
distances that contribute significantly to this stabilization, all involving the Og atom from CP43-Glu354. The color scheme for CP43-Glu354, D1-
Aspl170, D1-Glul89, D1-Glu333, and D1-His332 is consistent with that in Fig. 1C.
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ligand cavity, intuitively supporting this electron-first view.
However, time-resolved XFEL studies have demonstrated that
flash illumination provokes extensive, multi-layered conforma-
tional changes across the entire PSII complex, including inter-
subunit interface reorganization and dynamic hydrogen-bond
network rearrangements that extend into the OEC region.”
This complexity underscores the difficulty of unambiguously
assigning cause and effect. Thus, whether electron movement
or structural rearrangement comes first remains an open
question that cannot be resolved by the current first-shell-
focused analytical approach alone.

3.3 Nonlinear modeling of catalytic energy landscapes with
DNN

The rCCA analysis yielded a notably small second canonical
correlation coefficient (p> = 0.29), indicating that the second set
of canonical variates (f> and g*) contains little meaningful
information. Moreover, the energy vector corresponding to the
0Xyl-0X0 Y,y contributes only marginally to the first canonical
variate g', thereby complicating direct comparisons between
the driving forces of the oxyl-oxo and hydroxo-oxo species. A
key limitation of rCCA is its inherent linearity: while this facil-
itates the interpretability of causal factors, which is a primary
motivation for our choice of rCCA, it restricts the model's
capacity to capture complex, nonlinear relationships that are
likely intrinsic to the OEC system. To address this limitation, we
implemented a supervised learning approach based on the
hypothesis that the mapping between the input distance matrix
and the output energy matrix is fundamentally nonlinear.
Accordingly, we designed a deep neural network (DNN) archi-
tecture comprising three layers, in which each layer first applies
an affine (linear) transformation to the input data, followed by
a nonlinear activation function (the rectified linear unit,
ReLU).** The architecture concludes with a fully connected layer
that integrates the learned features into the final output.

One major challenge in developing our DNN model was
achieving robust generalization while mitigating overfitting.
Initially, we employed Z-score normalization, as indicated in
eqn (2) and (3), to standardize both the distance (X) and energy
(Y) matrices across the training and testing datasets. However,
this approach consistently resulted in near-perfect correlations
(approaching unity) between Y and the predicted energies,
clearly indicating that the model was overfitting to the training
data. Despite various modifications, including changes to the
DNN architecture, alternative optimizers, and additional regu-
larization techniques, the overfitting issue persisted (Fig. S4A-
Ct). Ultimately, replacing Z-score normalization with min-max
scaling, as defined in eqn (7) and (8), resolved the problem.
Xk — min (X5)

1k !
X = max (XF) — min(X}) @)

ik ik

ks k
Y} — min(Y)

i

Y/k _
i kY _ mi k
max(Y[) — min(Y[)

i
i

(8)
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Here, the prime symbol () signifies that min-max scaling has
been applied. This change enabled effective hyperparameter
optimization via 10-fold cross-validation (Table S4t), as evi-
denced by concurrent reductions in both training and testing
loss curves during training (Fig. S4Dt), indicating that the
model successfully captured meaningful patterns without
overfitting. The fundamental difference between the standard-
ized data (X) and the min-max scaled data (X') lies in the
distance metric employed. The min-max scaling preserves the
Euclidean metric within the distance matrix, thereby main-
taining the spatial relationships (relative distances and angles)
present in the original dataset (X), while the Z-score normali-
zation converts the metric into a variant of the Mahalanobis
distance characterized by a diagonal variance-covariance
matrix (Table S371). Although the Z-score normalization equal-
izes the contributions of each variable, it can distort intrinsic
spatial relationships critical to understanding the physical or
chemical properties of the system, particularly when the orig-
inal 3D configurations of coordinating residues in the input
feature dataset (X) are closely linked to catalytic processes in the
target variable dataset (Y).

Fig. 7A displays a scatter plot comparing driving forces
computed via DFT [Y = (Yhydroxos Yoxy1)] With those predicted by
the DNN model [Ypred = (Ypred, hydroxos Ypred, oxyl)] for 130
samples (Table S17), with hydroxo-oxo results depicted in red
and oxyl-oxo results in blue. The DNN predictions (Ypreq) Were
obtained by applying the inverse transformation of eqn (8) to
the scaled outputs Y;)red, thereby restoring the energy values to
units of kcal mol™*. The horizontal and vertical axes further
depict the distribution curves for Y and Ypq. The results
demonstrate a good correlation between the DFT-computed and
DNN-predicted driving forces; for the hydroxo-oxo species, the
correlation coefficient is 0.95 with a regression slope of 0.90,
while for the oxyl-oxo species, the coefficient is 0.92 with a slope
of 0.83. Notably, the hydroxo-oxo species exhibit considerably
larger standard deviations (19.1 kcal mol™* for Yhydroxo and
18.2 keal mol™" for Ypred, hydroxo) cOmpared to the oxyl-oxo
species (11.2 and 10.2 kcal-mol ", respectively). These differ-
ences in variability are consistent with the latent factors
uncovered by rCCA, i.e., underlying sources not explicitly rep-
resented in either X or Y, which appear to be closely linked to
structural modifications within the Mn cluster. In particular,
variations in the coordination geometries of three catalytic
metals (Mn,, Mng, and Mnp) and changes in their intermetallic
distances Mn,---Mng (rap) and Mng---Mnyp, (7gp) seem to govern
the driving forces. The ratio rag/rgp, which effectively distin-
guishes between the open and closed cubane configurations,*
serves as a sensitive metric in this context; for the hydroxo-oxo
species, this ratio is lower in the open cubane conformation
(0.78) compared to the oxyl-oxo species (0.85), while in the
closed cubane conformation, the hydroxo-oxo species exhibits
a higher ratio (1.12) than the oxyl-oxo species (1.03). This
distinct trend suggests that the hydroxo-oxo species is more
responsive to subtle changes in the coordination environment,
particularly those driven by the collective motion of coordi-
nating side chains, consistent with the results presented in
Fig. 7A.
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Fig.7 (A) Scatter plot of DFT-computed [Y = (Yiydroxo: Yoxy] and DNN-predicted [Ypreq = (Ypred, hydroxo Ypred, oxyt] Catalytic driving forces for the
hydroxo—oxo and oxyl-oxo species, with distribution curves for Y and Y4 on the horizontal and vertical axes. Linear regression fits and 95%
confidence intervals are represented by solid lines and shaded regions. (B) Scatter plot of Y and Y,eq for the So, S1, Sz, and S states, as well as
during the S, to Sz transition (S ., 3), with box plots for Y and Y4 on the horizontal and vertical axes. (C) Scatter plot of Y and Ypeq fOr monomers
A and B, with box plots for Y and Y,,..q 0N the horizontal and vertical axes. Linear regression fits and 95% confidence intervals are represented by

solid lines and shaded regions.

In our DFT calculations, we fixed the backbone coordinates
of all residues to their experimentally determined positions
(Table S17), thereby preserving the essential structural features
of the OEC unique to each S-state and incorporating the effects
of oxidation-induced backbone conformational changes into
the computational results. This approach allowed us to cate-
gorize the ligand environments into distinct oxidation states
(So, S1, Sz, and S3), as well as the transient state (S,_.3), and to
investigate how oxidation-induced modifications, primarily in
the backbone region, impact the catalytic driving forces gov-
erning structural transformations within the Mn cluster. Fig. 7B
presents a scatter plot that applies this categorization to both
the DFT-computed and DNN-predicted driving forces, with Sy,
S1, Sz, S2—3, and S; color-coded as red, blue, green, purple, and
ocher, respectively. Because of inherent data variability, differ-
ences among individual S-state environments may not be
immediately apparent. Therefore, we incorporated box plots
along the horizontal and vertical axes of the scatter plot,
providing a visual summary of the distributions based on a five-
number summary, as illustrated in the bottom right of Fig. 7.
The median is emphasized as a robust measure of central

12034 | Chem. Sci., 2025, 16, 12024-12042

tendency that is relatively insensitive to outliers. Analysis of the
median values reveals a marked contrast between low and high
oxidation environments. In the high oxidation (S3) environ-
ment, both DFT and DNN results exhibit remarkably strong
driving forces (—10.2 and —9.3 keal mol™"), while in the low
oxidation (So, S1, and S,) environment, the driving forces are
much weaker, ranging from —1.6 to +1.9 kcal mol " for DFT and
—1.8 to +2.6 keal mol ™ for DNN. During the transition from the
low to high oxidation environment (S,_,3), the median driving
forces are comparable to (—11.1 kecal mol ' as computed by
DFT) or even stronger than (—13.1 keal mol ™" as predicted by
DNN) those in the high oxidation (S;) environment. Interest-
ingly, subtle differences between monomers A and B, poten-
tially arising from sample preparation and crystal packing,®
appear to influence the driving forces. As illustrated in Fig. 7C,
the median driving forces are higher in monomer A (—8.7 and
—5.1 kcal mol™' for DFT and DNN, respectively) than in
monomer B (—2.1 and —0.7 kcal mol™"). These inter-monomer
variations may mirror differences, as seen in high-resolution X-
ray diffraction structures of the OEC in its dark-stable state,”

© 2025 The Author(s). Published by the Royal Society of Chemistry
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further underscoring the sensitivity of the catalytic process to
even subtle structural perturbations.

To further substantiate the predictive capabilities of our
DNN model, we applied the pre-trained network to independent
experimental data that were not included in the previous 10-fold
cross-validation tests. This dataset comprises experimental
structural data of PSII across various S states, obtained from the
following PDB ID codes: 6DHP and 6JLP for S,; 3WU2, 5B5E,
5B66, 4UB6, 4UBS, 5WS5, 6DHE, 6JL], 6JLM, 6W10, 7RF2,
7COU, 7CJ1, and 8IR5 for S;; 6DHF, 6JLK, 6JLN, 6W1P, 7RF3,
7CJJ, and 8IRC for S,; 6DHG, 6DHH, 6W1Q, 6W1R, 6W1T,
6W1U, 7RF4, 7RF5, 7RF6, 7RF7, 8IRD, 8IRE, SIRF, 8IRG, SIRH,
and 8IRI for S, _,;; and 5WS6, 6DHO, 6]JLL, 6]JLO, 6W1V, 7RFS,
8EZ5, and 8F4C for S;. The dataset, comprising data from both
monomers A and B, includes 94 samples. Of these, 26 samples
(derived from 6DHE, 6DHF, 6DHG, 6DHH, 6DHO, 6DHP, 6]L],
6JLK, 6JLL, 6JLM, 6JLN, 6JLO, and 6JLP) were previously
incorporated into the training/validation sets, while the
remaining 68 samples were entirely new to the model. The
cavity size distributions for these 94 samples are visualized in
Fig. 2. Prior to input into the model, these data were normalized
using the min-max scaling method described in eqn (7) and (8).
Following prediction, an inverse scaling transformation was
applied to restore the driving force values to their original
physical units (kcal mol™).

Fig. 8A displays box plots of the predicted driving forces for
the OEC under different oxidation state environments. In this
panel, the data for the hydroxo-oxo and oxyl-oxo species have
been merged, effectively doubling the number of data points
compared to those in Fig. 2; see S51 for individual species
results. The predicted driving forces exhibit considerable
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variability, with standard deviations of 2.9, 4.4, 4.7, 12.9, and
14.5 keal mol™" for S, Si, S», S>3, and Ss, respectively. This
variability likely arises from a combination of random and
systematic errors inherent in the experimental measurements,
as previously noted, which contribute to the dispersion in
ligand cavity size and other related structural parameters
(Fig. 2), as well as additional uncertainties introduced during
the machine learning process. Two potential sources of error
may become particularly evident in the S; state. The first arises
from incomplete separation of the S, and S; states in the XFEL
structural data, such that nominal S; models may still carry
S,-derived ligand arrangements. This state-contamination
provides a straightforward explanation for why our DNN model
continues to predict S; driving-force fluctuations with ampli-
tudes comparable to those seen in the S, to S; transition. The
second source of error lies in the limited scope of our current X
data, which may simply lack critical S;-specific descriptors,
such as the detailed topology of hydrogen-bonding network
surrounding the Mn cluster and interactions with distal resi-
dues beyond the primary coordination sphere, thereby limiting
the model's ability to capture key environmental influences and
to fully eliminate any residual S, memory effects. Despite these
variabilities, the differences in the median driving force
between low (S, S;, and S,) and high (S,_. 3, and S;) oxidation
environments are both pronounced and statistically significant.
For instance, the Hoeffding upper bounds for the S,_, ;, and S;
states (—6.6 and —8.7 kcal mol %) are substantially lower than
the Hoeffding lower bounds for the S,, S;, and S, states (—1.8,
—2.1, and —3.4 kcal mol™'). As Hoeffding's inequality yields
conservative, wide confidence intervals,” the clear separation
between these bounds suggests that significant differences exist
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Hoeffding Upper (A) 4.837 9171 6.805 -7.760 -7.301

Count 8 56 28 64 32

Count 8 56 28 64 32

Fig. 8

(A) Box plots of the driving forces predicted by the DNN model trained on the full dataset of 130 samples listed in Table S1.1 The input data

are identical to those listed in Fig. 2: 6DHP and 6JLP for Sp; 3WU2, 5B5E, 5B66, 4UB6, 4UB8, 5WS5, 6DHE, 6JLJ, 6JLM, 6W10, 7RF2, 7COU, 7CJI,
and 8IR5 for Sy; 6DHF, 6JLK, 6JLN, 6W1P, 7RF3, 7CJJ, and 8IRC for S,; 6DHG, 6DHH, 6W1Q, 6W1R, 6W1T, 6W1U, 7RF4, 7RF5, 7RF6, 7RF7, 8IRD,
8IRE, 8IRF, 8IRG, 8IRH, and 8IRI for S, _, 3; and 5WS6, 6DHO, 6JLL, 6JLO, 6W1V, 7RF8, 8EZ5, and 8F4C for S3. The outcomes for the hydroxo—oxo
and oxyl—oxo species have been combined, effectively doubling the number of data points compared to those in Fig. 2. Std denotes the standard
deviation. For details regarding the derivation of the Hoeffding upper and lower bounds, see the caption of Fig. 2. (B) Box plots of the driving
forces predicted by the DNN model trained on a reduced dataset of 78 samples, generated by excluding entries corresponding to closed cubane
coordination environments from Table S1.f The input data remain the same as those described above. For details regarding the box plot
construction, see Fig. 7.
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in the central tendencies and variances between the two groups.
In the low oxidation environments, the median driving forces
remain slightly positive, ranging from 1.4 to 2.3 kcal mol .
Interestingly, although the S; state exhibits a considerably
larger cavity size relative to S, and S,, its driving force
(1.7 keal mol™") is comparable to those of S, (2.3 kcal mol )
and S, (1.4 kcal mol™"). In stark contrast, the transition to
higher oxidation states is accompanied by a dramatic reversal in
the driving force; for S,_,; and S;, the median values shift to
strongly negative levels (—14.5 and —20.2 kcal-mol™"). This
dramatic change implies a previously unrecognized, funda-
mental reorganization within the catalytic landscape of the OEC
that distinguishes the high (S,_.; and S;) from the low (So, Si,
and S,) oxidation environments.

Experimental evidence indicates that, across all S states (S,
S1, Sa, Sz 3, and S3), the observed crystal structures consistently
adopt open-cubane-like configurations characterized by low r5g/
rsp ratios.>***>7%7* This observation questions the necessity of
including features representing the closed cubane coordination
environment in our neural network model. Although such
features are indispensable for rCCA to resolve the collective
motions of side chains involved in transient closed cubane
formation, as illustrated in Fig. 6B, their inclusion is debatable
when the DNN model relies solely on experimentally observed
information (i.e., the coordination environments stabilizing the
open cubane) for its predictions. To address this issue, we
constructed an alternative dataset by excluding samples corre-
sponding to the closed cubane environments from the training
set provided in Table S1,} resulting in a total of 78 samples. A
new DNN model trained on this reduced dataset produced
prediction results for the above 94 experimental structures
(Fig. 8B) that are qualitatively identical to those obtained with
the full dataset (Fig. 8A). Specifically, the model predicted weak
or negligible driving forces for the low oxidation environments
and pronounced driving forces for the high oxidation environ-
ments. Over 100 training trials with different random seeds
confirmed that the predictions consistently generalized
(Fig. S61), demonstrating that the performance of our DNN
model is robust and not driven by isolated outliers. This
reproducibility not only underscores the extraordinary learning
capabilities of neural networks but also offers significant
insights into the functional mechanisms of PSII. Notably, the
reorganization observed during the S, to S; transition appears
to be driven predominantly by large-scale structural alterations
in the protein, such as shifts in backbone positioning or vari-
ations in ligand cavity size, as depicted in Fig. 2, rather than by
relatively modest side chain movements that accompany
changes in the cluster structure, as illustrated in Fig. 6B.

3.4 Implications of the S;Y," lag phase

The energy landscape changes predicted by our DNN model on
an experimental dataset including previously unseen data, as
illustrated in Fig. 8, could serve as critical markers for the
dynamic chemical processes induced by protein reorganization.
By correlating these predictions with established experimental
observations, we can both validate the predictive performance

12036 | Chem. Sci, 2025, 16, 12024-12042
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of our model and enhance our understanding of the underlying
reaction mechanisms. However, current experimental tech-
niques remain insufficient for directly measuring subtle ther-
modynamic shifts, thereby complicating any rigorous
evaluation based on the ‘energy landscape’ concept. Over the
past decade, numerous theoretical studies have postulated the
involvement of a putative S, state, the highest metal oxidation
state in the S-state cycle formally expresses as Mn'O or Mn"V 0",
as an essential intermediate in oxygen evolution.****-*” However,
at present, the inability of current experimental techniques to
directly probe the S; to S, chemistry has largely confined these
proposals to purely theoretical conceptualizations. In this
context, the consistently observed extended lifetime (1.2-2.5
ms) of the S;Y," state following 3F emerges as the sole critical
benchmark. A variety of experiments have reported distinct
biphasic kinetic behavior during this transition;**®* the fast
phase (approximately 50-250 ps), attributed to the expulsion of
a proton from the protongate residues D1-Glu65 and D2-
Glu312,** (but see also ref. 93), is accompanied by a pronounced
delay in electron transfer kinetics that characterizes the
subsequent slower phase extending from 1.2 to 2.5 ms. Our
study focuses on this prolonged lifetime of the S;Y;  state as
a means to enhance the reliability and chemical interpretability
of the predictions generated by our DNN model, by verifying
their consistency with this universally observed phenomenon.
To this end, we performed quantum chemical calculations and
cross-referenced the results with insights obtained from both
the rCCA and DNN models, as discussed in the preceding
sections. It should be noted that determining which of the
previously proposed reaction mechanisms***** is correct is
beyond the scope of the present study, as such an identification
is currently unachievable without further experimental
evidence.

Fig. 9 illustrates the relative stabilities of open and closed
conformations for various intermediates in the S;Y;’, S,Y,, and
‘S4’Y7 states, with hydroxo-oxo denoted as H, oxyl-oxo as O%,
peroxo as P, superoxol as S; note that ‘S,’Y, represents nominal
S,Y; configurations in which an internal electron relocation
occurs within the Mn cluster, thereby lowering the metal
oxidation state from its highest level. These intermediates are
modeled with (W1, W2) = (H,O, OH ") for H and (W1, W2) =
(H,0, H,0) for the other structures, assuming a spin multi-
plicity of 14. The backbone structure is anchored using the PDB
coordinates of 6JLL (monomer A) corresponding to the S;-
enriched state and 6JLP (monomer A) corresponding to the Sy-
enriched state, while the orientations of amino acid side chains
were fully relaxed using DFT. The choice of these specific
coordinates is motivated by our interest in understanding the
effects of different cavity sizes formed by coordinating ligands,
with measured radii (R) of 3.72 A for 6]JLL and 3.64 A for 6JLP. To
accurately assess the energetics of the structures with markedly
different unpaired electron counts, such as the peroxo (P) and
superoxo (S) intermediates, the wyy parameter was reduced to
10% in combination with the D4 dispersion correction model,*
a methodological choice shown to closely reproduce the energy
differences calculated via the DLPNO-CCSD(T) method.”
Detailed Mulliken spin densities for all structures in Fig. 9 are

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Relative stabilities of various intermediates and transition structures in the SzYz", S4Yz and 'S,'Y7 states calculated at the IEFPCM-
B3LYP(wy15%)-D3(BJ)/BS2//B3LYP-D3(BJ)/BS1 level, using the PDB coordinates 6JLL (A) and 6JLP (B), except for S, P, and Sy, which, owing to
their significantly different unpaired electron counts compared to H, were assessed using IEFPCM-B3LYP(w10%)-D4/BS2//B3LYP-D3(BJ)/BS1,
as recommended by Drosou et al.®* Graphical representations and key interatomic distances for the transition structures TSpr and TSoo are
provided in Fig. 10. The assumed protonation states for water ligands were (W1, W2) = (H,O, OH") for H and (W1, W2) = (H,O, H,O) for all other
structures. Ligand cavity sizes (R) were determined from the experimental data using egn (1). Values in parentheses represent the distance ratios
between Mny---Mng (rag) and Mng:---Mnp (rgp), based on the 6JLL coordinates. The following color codes are used: yellow, calcium; red, oxygen;

white, hydrogen; purple, Mn"; orange, Mn'".

listed in Table S7.f The justification for adopting the proton-
ation states (W1, W2) = (H,0, OH ") for H(open) and (W1, W2) =
(H,0, H,0) for O*(open) as representations of the S;Y;" state
can be clarified by comparing the stability of the high-valent Mn
species. Notably, the Mn'YO" (or Mn"0) species in S;Y, with
a spin multiplicity of 12 featuring an antiferromagnetically
coupled Mnp,"V-06" unit, is calculated to be 6-10 keal mol ™ * less
stable than the H(open) and O*(open) species in S;Y;'.

The computational results are consistent with the predic-
tions from the rCCA and DNN models, confirming that the
driving force for the closed-to-open structural change is signif-
icantly dependent on the crystal structure employed. Altering
the crystal structure from S; to S, leads to a marked decrease in
the driving force for hydroxo-oxo Y’f,ydmxo [where the sharp
symbol (#) denotes the incorporation of reorganization energy],
reducing it from 15.3 to 8.6 kcal mol . All structures, except for
O*(closed), also experience stabilization relative to H(open),
with energy reductions ranging from 1 to 7 keal mol~". These
findings suggest that a reduced cavity size facilitates the
conversion of H(open), which exhibits the lowest ryp/rsp ratio
(0.77), into more closed-cubane-like configurations, such as

© 2025 The Author(s). Published by the Royal Society of Chemistry

P(3444), Spre(3444), S(closed), and H(closed), which are charac-
terized by longer Mn,---Mng and shorter Mng---Mnyp, distances
compared to H(open). For clarity, the distance ratio ryg/rgp for
each structure is provided in parentheses in Fig. 9, and based on
these results, we tentatively classify structures with rg/rgp > 0.9
as ‘closed-cubane-like.’

Why is there a measurable delay between the formation of the
Y, radical and the onset of electron transfer from the Mn cluster
to Y;'? One hypothesis is that the system requires additional
time to surmount a high energy barrier associated with depro-
tonating the hydroxo ligand at Mnp, of H(open), a process that
would yield the oxyl-oxo species O*(open). Fig. 10A displays the
optimized transition structure (TSpy) that captures a proton relay
involving the transfer of three protons between O6 (OH ) and W2
(OH") via W3 and W5 during the conversion from H(open) to
O*(open). The calculated activation energy for this proton relay is
in the range of 15-18 kecal mol *, a value that remains within
acceptable limits considering inherent uncertainties in DFT
calculations and the possibility of proton tunneling through the
barrier. However, this interpretation is contradicted by the
experimentally observed small kinetic isotope effects (1.2-

Chem. Sci., 2025, 16, 12024-12042 | 12037
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Fig. 10 Graphical representations and key interatomic distances for two transition structures in the SzYz" state. TSpr represents a transition
structure involving the relayed movement of three protons during the conversion from H(open) to O*(open). TSoo depicts a transition structure
corresponding to the formation of a peroxide bond between O5 and O6 originating from O*(open) featuring a partially formed O-O bond.
Mulliken spin densities for these transition structures (Table S71) are consistent with the electronic configurations and hole distributions char-
acteristic of the Sz state. Interatomic distances, calculated using the coordinates from 6JLL (6JLP), are given in angstroms outside (inside) the

parentheses.

1.4),°%* which suggest that proton movement is unlikely to be
the rate limiting. Moreover, if O*(open) is the predominant
species in the S; state,**** this explanation makes no sense. An
alternative hypothesis that the lag phase is a consequence of O-O
bond formation preceding electron transfer has also been
proposed.”” However, our calculations show that the energy
barriers for O-O bond formation in the S;Y;," state are very low
(4-7 kcal mol '), as demonstrated by the optimized transition
structure TSoo in Fig. 10B. This discrepancy between the low
calculated barriers and the observed kinetic delay suggests that
neither mechanism alone can adequately account for the emer-
gence of the lag phase.

In our view, the observed lag phase may reflect a fundamental
mechanism within the PSII enzyme that governs the thermody-
namic pathway of the catalytic reaction. We propose that flash
illumination initiates two distinct relaxation processes within the
OEC: one involving the slower, progressive reorganization of the
protein backbone and side chains, and another characterized by
the rapid equilibration of the Mn cluster. The interplay between
these processes appears to modulate the overall progression of
the catalytic reaction, with the slower structural dynamics ulti-
mately contributing to the lag phase. Our hypothesis is based on
an analysis of the cavity-size-dependent relative stabilities of two
key intermediates in the nominal ‘S,’Y, state compared to the
S;Y;" state, specifically, the intermediates P(3444) and Spe(3443),
where the numbers in parentheses denote the oxidation states of
Mn,, Mng, Mng, and Mnp,. For example, in a protein environ-
ment with a larger cavity (3.72 A), the relatively stable peroxo
intermediate P(3444) in ‘S,’Y/*>*** is calculated to be approxi-
mately 3-4 kcal mol™" less stable than both H(open) and
O*(open) in S;Y,', This finding suggests that under these
conditions the driving force for electron transfer from the Mn
cluster to Y, is insufficient to promote the transition to the ‘S,’Y,
state. Furthermore, the formation of Sp..(3443), regarded as

12038 | Chem. Sci, 2025, 16, 12024-12042

a superoxo precursor to dioxygen formation,* is an endothermic
process requiring 12-13 kcal mol?, indicating that even if
P(3444) were to form, the energetic penalty associated with >0,
release would remain substantial. Conversely, in a protein envi-
ronment characterized by a smaller cavity (3.64 A), closed-
cubane-like structures are significantly stabilized, as previously
noted. Both P(3444) and Sp,,¢(3443) in ‘S,’Y; contain a trivalent
Mn,™ ion, which is associated with an extended Mn,---Mng
distance (3.02 and 3.17 A) and a high rp/rgp ratio (0.91 and 0.94),
features typical of the closed cubane configuration. Conse-
quently, P(3444) and Sp,(3443) in ‘S,’Y, become stabilized by 7.3
and 4.5 kcal mol ™" relative to H(open) in S;Y;", as shown in
Fig. 9B, with P(3444) emerging as a significant energy sink within
the combined S;Y;" and ‘S,’Y; states.

Our scenario is as follows: the third flash triggers the rapid
establishment of both electronic and structural equilibrium
within the Mn cluster of the S; state. This equilibration leads to
the formation of a transient O-O peroxide bond that, rather
than manifesting as a discrete, readily observable intermediate,
effectively prepares the Mn cluster for subsequent proton-
coupled electron transfer processes. In contrast, the complete
structural reorganization of the protein matrix, accompanied by
a reduction in the ligand cavity (Fig. 2), is expected to occur on
a markedly slower timescale relative to the rapid adjustments
within the Mn cluster, thereby gradually shifting the equilib-
rium positions of the fast, reversible chemical processes in the
S; state over time. Although the precise role of this delayed
structural relaxation remains to be fully elucidated, we
hypothesize that it serves as a regulatory checkpoint within the
catalytic cycle, seamlessly integrating efficient multi-electron
chemistry with the overall thermodynamic control required
for the irreversible release of >0, under mild conditions,’ as
illustrated in Fig. S7.f Such regulation may be critical for
ensuring that the catalytic reaction proceeds in a controlled and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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orderly manner, thereby minimizing the risk of stalling or
progressing in unexpected directions that might lead to ineffi-
cient catalysis or incomplete water oxidation.

4. Conclusions

In this study, we combined rCCA, neural network-based machine
learning, and DFT calculations to elucidate the functional role of
collective amino acid side chain motions within the primary
coordination sphere in directing the catalytic processes at the
Mn,CaOg cofactor of PSIIL By correlating two multidimensional
datasets, one detailing the relative positions of coordinating
atoms and the other representing the energetic demands for
catalysis in the S; state, we have been able to effectively charac-
terize the collective motion that underpins catalytic trans-
formations. Our findings reveal that the primary coordination
sphere plays a dual role: it undergoes expansion or contraction to
drive necessary structural rearrangements of the Mn cluster, and
it concurrently adjusts its cavity geometry to effectively stabilize
crucial reaction intermediates. Complementary predictions from
our neural network-based machine learning model further
suggest that the coordination sphere imposes an energetic
modulation on the structural changes of the Mn cluster, with the
magnitude of this effects varying across different S-state envi-
ronments. This modulation appears to be associated with
extensive, light-induced structural reorganizations within PSII,
as manifested in experimentally observed variations in the ligand
cavity across various S states, a behavior that is distinct from
transient side chain motions typically accompanying the
formation of unstable intermediates, thereby underscoring
a more fundamental role for the coordination sphere in shaping
the catalytic energy landscape. Additionally, our integrated
approach suggests that the extended lifetime of the S;Y," state
consistently observed after 3F may be ascribed to gradual protein
dynamics that continually reshape the energy landscape, thereby
shifting the equilibrium positions of rapid, reversible chemical
events over time. Such dynamic adjustment implies that the
thermodynamic balance among various intermediates within the
combined S;Y;" and ‘S,’Y, states is not fixed but may be
continually tuned by protein motion. Ultimately, our findings
redefine the primary coordination sphere as an active, modu-
lating framework that might be essential for energetic optimi-
zation of multi-electron chemistry under ambient conditions,
while seamlessly reconciling the dual demands of the strict
selectivity and irreversibility necessary for robust >0, evolution.
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