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An overlooked cyclase plays a central role in the biosynthesis of 
indole diterpenes
Rosannah C. Cameron,a Daniel Berry,a Alistair T. Richardson,a Luke J. Stevenson,a Yonathan Lukito,a 
Kelly A. Styles,a Natasha S. L. Nipper,a Rose M. McLellan,a and Emily J. Parker*a

Indole diterpenes (IDTs) are a large class of highly complex fungal natural products that possess a wide array of intriguing 
bioactivities. While IDTs are structurally diverse, the first four steps of IDT biosynthesis are highly conserved and result 
typically in the formation of a tetrahydropyran (THP)-ring containing structure, most commonly paspaline. The biosynthetic 
genes responsible for these steps are the most extensively studied of all IDT genes and collectively define the core 
biosynthetic pathway. Here we show that the fourth fundamental step, formation of the THP ring, is catalysed by a terpene 
cyclase encoded by an overlooked and uncharacterised fifth gene, idtA. All previously delineated biosynthetic routes have 
incorrectly attributed this step to the terpene cyclase IdtB, leading to imprecise pathway reconstructions and ignoring the 
fully evolved biosynthetic solution for core IDT generation. Moreover, while IdtA terpene cyclases are found in 
Eurotiomycete fungi, in Sordariomycete fungi this step is catalysed by the unrelated protein IdtS, demonstrating that two 
distinct solutions to this chemistry exist. All biosynthetic gene clusters known to specify production of THP-containing IDTs 
include an idtA or idtS gene. These findings reset the paradigm for core IDT biosynthesis and support accurate heterologous 
biosynthesis of these complex natural products. 

Introduction
Indole diterpenes (IDTs) are a complex and structurally diverse 
class of filamentous fungal natural products that are comprised 
of indole connected to a variably cyclised diterpenoid moiety.1-

3 Additional tailoring steps on the core scaffold then massively 
amplify the structural diversity and associated bioactivity of 
IDTs. Several hundred IDTs have been identified to date, the 
majority of which possess a hexacyclic paspaline-type IDT core, 
which includes a tetrahydropyran (THP) ring derived from the 
diterpenoid moiety (Figure 1).2 These THP-containing IDTs 
include the archetypical IDT paxilline, as well as the 
terpendoles, lolitrems, penitrems, shearinines, janthitrems and 
aflatrems.4-13. There are only a few known examples that lack 
this THP ring, such as the nodulisporic acids (Figure 1A).14 Here 
we demonstrate that, contrary to all previously published 
biosynthetic routes that proposed THP ring formation was 
catalysed by IdtB-type terpene cyclases, this chemistry is 
delivered by a discrete cluster-encoded cyclase.2, 15-23 

The first IDT biosynthetic gene cluster (BGC), which specifies the 
production of the paspaline-type IDT paxilline was identified in 
2001 from Penicillium paxilli.24 Through a series of gene 
deletion, complementation, and heterologous reconstruction 
experiments four genes from this PAX BGC (paxG, paxC, paxM 

and paxB) were identified as being sufficient to deliver 
paspaline (Figure 1B).20, 22, 25 Paspaline biosynthesis is initiated 
with the formation of geranylgeranyl pyrophosphate (GGPP) 
catalysed by the cluster-encoded GGPP synthase, PaxG. An 
indole prenyl transferase (PaxC) then catalyses the first 
dedicated step of IDT biosynthesis, producing 3'-
geranylgeranylindole (3'-GGI).

Construction of hexacyclic paspaline from this acyclic precursor 
then requires iterative cycles of activation and cyclisation. In the 
first of these, the third olefinic moiety of the diterpene tail is 
epoxidised by the flavin-dependent monooxygenase PaxM. A 
precise regio- and stereo-specific cyclisation cascade is then 
catalysed by the unusual integral membrane type II terpene 
cyclase PaxB, producing the first stable cyclised IDT, emindole 
SB.1, 26, 27 Generation of the THP ring of paspaline is then primed 
through a second PaxM-catalysed epoxidation on the terminal 
terpene olefin of emindole SB. A subsequent cyclisation 
generates the THP ring, a reaction which was previously also 
attributed PaxB, or the equivalent IdtBs in BGCs from other 
fungi.15-17, 19, 20, 22, 23, 25, 28, 29 Two P450 monooxygenases, PaxP 
and PaxQ, then convert paspaline to paxilline.20-22 Three 
additional genes are also present in the paxilline BGC: paxD and 
paxO encode enzymes that further decorate the indole moiety 
of paxilline—although these modifications that are not 
generally observed in P. paxilli—and a third gene, paxA, 
encoding a predicted helical transmembrane protein of 
unknown function. Intriguingly, orthologues (idtAs) of paxA are 
also found in other BGCs known to specify THP-containing IDTs 
(Figure 2).
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Figure 1. A) Representative IDTs with the THP ring shown in blue. B) The biosynthetic pathway for paxilline.

Results and Discussion
To investigate the function of PaxA we created paxA deletion 
strains (ΔpaxA) in P. paxilli (Figure S1, Supp. Info 1.2). In contrast 
to wild type, ΔpaxA strains were attenuated for the production 
of paxilline (Figures 3, S5, Supp. Info. 1.2.3) and accumulated an 
IDT not observed in wild type (Figures 3A, S4). This compound, 
with a molecular weight of 421 Da, was isolated and 
characterized as 3′,4′-epoxyemindole SB (Supp. Info. 1.3), the 
proposed substrate for THP ring formation (Figure 1B).20

Reintroduction of paxA into ∆paxA strains complemented this 
chemotype, attenuating the 3’,4’-epoxyemindole SB peak and 
restoring paxilline biosynthesis (Figures 3A, S6, S7, Supp. Info. 
1.2.4.). In a parallel study, we used a biomimetic approach to 
construct synthetic BGCs containing paxG, paxC, paxM, paxB, 
and optionally paxA, which were then transformed into the 
∆PAX locus of a P. paxilli strain in which the entire PAX BGC had 
been deleted. Consistent with our hypothesis that PaxA 
catalyses THP ring formation, the synthetic BGC containing paxA 
conferred the ability to synthesise paspaline without 
appreciable accumulation of 3′,4′-epoxyemindole SB. Whereas 
the strains transformed with the synthetic BGC lacking paxA 
accumulated the epoxidised intermediate (Figures S8, S9, Supp. 
Info. 1.2.6.).

Figure 2. IDT biosynthetic gene clusters from the Eurotiomycete fungi P. paxilli 
(PAX), Penicillium janthinellum (JAN), Penicillium crustosum (PTM), Aspergillus 
desertorum (DES) showing idtA homologs in pink. The BCGs from Sordariomycete 
fungi Epichloe festucae (LTM) and Tolyplocladium album (TER) contain an 
alternative gene, idtS (shown in yellow). Letters above the PAX cluster correspond 
to the gene name and function of the encoded enzyme – as shown in Figure 1B.
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Figure 3. Extracted ion chromatograms showing IDT production of m/z 422 (LHS) and 436 (RHS) species. Maximum ion intensity counts are shown on the y-axis. A). IDT 
production of wildtype P. paxilli, ∆paxA and a paxA complemented knockout strain. B). Complementation of P. paxilli ∆paxA with alternative idtA/S homologs (janA, 
ptmA, desA and ltmA).

To interrogate directly the catalytic role of PaxA we set up a 
series of feeding experiments using ∆PAX strains into which 
paxM alone, paxM + paxA, or paxM + paxB had been 
reintroduced. These strains were fed by the addition of purified 
emindole SB. Whereas strains expressing paxM + paxA 
efficiently converted this to paspaline, the strains expressing 
paxM alone or paxM + paxB accumulated 3′,4′-epoxyemindole 
SB (Figures 4, S15, Supp. Info. 1.4). Combined, these results 
demonstrate that PaxA catalyses the conversion of 3′,4′-
epoxyemindole SB to paspaline in vivo. The terpene cyclase 
PaxB, which was previously assigned this role, does not 
contribute to THP ring formation.20, 22

The structural model for PaxA reveals that this protein is a 
helical integral membrane protein reminiscent of the terpene 
cyclase PaxB, but with no clear structural or sequence 
relationship (Figures 5, S16-S18). Interestingly however, PaxA 
bears similarity to other meroterpenoid cyclases that 
specifically catalyse the formation of THP or tetrahydrofuranyl 
(THF) rings.30-32 Notably in Acremonium egyptiacum, which 
generates meroterpenoids ascofuranone and ascochlorin, both 

IdtA- and IdtB-like terpene cyclases are encoded.30 However, 
rather than operating sequentially as they do in paspaline 
biosynthesis, in A. egyptiacum they operate to bifurcate the 
pathway to the two alternative meroterpenoid outcomes. Our 
modelling of 3′,4′-epoxyemindole SB into PaxA reveals a likely 
active site nestled between helices at the C-terminal end of the 
helical bundle (Figure 5A). While the putative binding site is 
lined by hydrophobic residues as expected to support the 
required conformation for reaction, an aspartate residue is 
located appropriately to promote THP formation through a 
favoured 6-exo-tet cyclisation (Figure 5B, 5C). Accordingly, we 
found that substituting Asp279 for Ala (D279A) also generated 
a 3′,4′-epoxyemindole SB accumulating chemotype (Figures 5D, 
S19, Supp. Info. 1.5).  An equivalent Asp residue has been shown 
to be important for the ascofuranone pathway THF-forming 
biosynthetic cyclase AscI.30 We note that Cys66, which is 
conserved across all confirmed IdtA cyclases, resides ~4Å from 
the hydroxyl group of 3′,4′-epoxyemindole SB and may play a 
role in proton loss in THP formation.
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It was notable that some paspaline formation was detected in 
cultures of ΔpaxA strains (Figures 3, S4, Supp. Info. 1.2.3), in the 
paxGCMB heterologous reconstruction strains that lacked paxA  
(Figure S8, Supp. Info. 1.2.6.), and in feeding studies where 
PaxM was present in the absence of PaxA (Figures 4, S15). These 
observations indicate that spontaneous conversion of 3′,4′-
epoxyemindole SB to paspaline is occurring either in vivo or 
during chemical extraction. The stereochemical outcome in this 
reaction is set by the prior PaxM-catalysed epoxidation step, 
and 6-exo-tet THP formation is the expected reaction outcome. 
Indeed, we have observed this conversion directly in vitro, with 
isolated samples of 3′,4′-epoxyemindole SB slowly converting to 
paspaline, and as expected, we show that this reaction is 
accelerated by the addition of weak acid (Figure S20, Supp. Info. 
1.6). This observed PaxA-independent formation of paspaline 
(and correspondingly paxilline in strains containing paxP and 
paxQ) explains why previous investigations have overlooked the 
role of PaxA.15-23 Similarly, the equivalent non-enzymatic 
formation of the THF ring for the epoxy intermediate in 
ascofuranone biosynthesis was also observed.30

Figure 4. Combined EIC traces showing IDT production at m/z 406 and 422 in P. 
paxilli strains fed with emindole SB. Ion intensity counts are shown on the y-axis 
(y-axis range: 0–1 x 106). Chromatograms are annotated with the genes present in 
each strain.  

As noted, we identified orthologues (idtAs) of paxA in BGCs 
from Eurotiomycete fungi that are known to biosynthesise 
similar THP-containing IDTs (Figures 2, S16, S17). Accordingly, 
we tested the function of JanA and PtmA, encoded within the 
JAN and PTM clusters that specify the paspaline-derived 
janthitremane and penitrem IDTs, respectively. Introduction of 
the janA or ptmA genes into one of our ΔpaxA strains eliminated 
3′,4′-epoxyemindole SB accumulation and restored paxilline 
production (Figures 3B, Figures S21-24, Supp. Info. 1.7), 
demonstrating that JanA and PtmA are indeed functional 
orthologues of PaxA. Additionally, we showed that desA, which 
is a paxA homologue located within the emindole DA-specifying 
DES cluster from Aspergillus desertorum, also complemented 
these chemotypes when added to a ΔpaxA strain (Figure 3, S25, 
S26, Supp. Info. 1.7).15  This is notable as while emindole DB, like 
paspaline, contains a THP ring (Figure 1A), this product likely 

arises from the epoxidation of emindole DA and its subsequent 
cyclisation catalysed by DesA, implying a wider repertoire of 
chemistry for the IdtA cyclases solely than the formation of 
paspaline.15 This finding implies that some substrate 
promiscuity is demonstrated by DesA. 

Figure 5 Structural model of PaxA (generated by AlphaFold33), with substrate 3′,4′-
epoxyemindole SB (cyan). A). PaxA is a helical integral membrane protein, 3′,4′-
epoxyemindole SB shown as spheres B). Close up of predicted binding site showing 
Asp279 and Cys66. C) Acid catalysed THP formation. D) EIC traces showing IDT 
production at m/z 422 for two Asp to Ala substitution mutants (D279A). Maximum 
ion intensity counts are shown on the y-axis.

Our attention then turned to the IDT BGCs from Sordariomycete 
fungi, which do not include paxA homologues (Figure 2). For 
some this was to be anticipated; the nodulisporic acids do not 
contain a THP ring, being derived directly from emindole SB 
rather than via paspaline, so a paxA homologue is not 
required.23, 34, 35 However, several of these BGCs are known to 
specify paspaline-derived IDTs, yet do not contain an idtA gene. 
Notably, these include the LTM cluster from Epichloë festucae 
and the TER cluster from Tolypocladium album, which are 
respectively responsible for delivering the lolitrems and the 
terpendoles.17, 36 We noted that these clusters include the 
homologous uncharacterised genes ltmS and terS, which 
encode proteins with a predicted helical transmembrane 
topology that is similar to PaxA despite lacking any significant 
sequence homology (Figure S27, Supp. Info. 1.8). Introduction 
of the ltmS gene into a paxA deletion strain restored efficient 
conversion of 3′,4′-epoxyemindole SB to paspaline and 
production of paxilline, demonstrating that LtmS is functionally 
equivalent to PaxA (Figures 3, S28, S29, Supp. Info. 1.8). 
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Consistent with this observation and supporting an important 
role for LtmS in lolitrem biosynthesis, E. festucae ΔltmS strains 
grown inside their grass hosts accumulated 3′,4′-
epoxyemindole SB and showed a reduction in the production of 
lolitrem B (Figures S30-33, Supp. Info. 1.8.3).

Collectively these results indicate clearly that these unassigned 
idtA and idtS genes encoded within IDT BGCs specify cyclases 
with key roles in IDT biosynthesis.  While the previously 
proposed biosynthetic pathways for the paspaline and related 
IDTs included a dual role for the terpene cyclase IdtB in 
constructing both emindole SB and the full paspaline skeleton, 
our work here shows that this long-held paradigm is incorrect; 
the distinct cluster-encoded IdtA and IdtS cyclases deliver the 
THP functionality.15-17, 19, 20, 22, 23, 25, 28, 29 Moreover, through IdtA 
and IdtS, Eurotiomycete and Sordariomycete fungi have 
evolved two seemingly independent solutions for delivering this 
chemistry, reflecting the importance of this catalysis for 
efficient IDT biosynthesis.
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